1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
*> \brief \b CHEGST
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> Download CHEGVD + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chegvd.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chegvd.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chegvd.f">
*> [TXT]</a>
*
* Definition
* ==========
*
* SUBROUTINE CHEGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
* LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOBZ, UPLO
* INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LRWORK, LWORK, N
* ..
* .. Array Arguments ..
* INTEGER IWORK( * )
* REAL RWORK( * ), W( * )
* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* Purpose
* =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> CHEGVD computes all the eigenvalues, and optionally, the eigenvectors
*> of a complex generalized Hermitian-definite eigenproblem, of the form
*> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
*> B are assumed to be Hermitian and B is also positive definite.
*> If eigenvectors are desired, it uses a divide and conquer algorithm.
*>
*> The divide and conquer algorithm makes very mild assumptions about
*> floating point arithmetic. It will work on machines with a guard
*> digit in add/subtract, or on those binary machines without guard
*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
*> without guard digits, but we know of none.
*>
*>\endverbatim
*
* Arguments
* =========
*
*> \param[in] ITYPE
*> \verbatim
*> ITYPE is INTEGER
*> Specifies the problem type to be solved:
*> = 1: A*x = (lambda)*B*x
*> = 2: A*B*x = (lambda)*x
*> = 3: B*A*x = (lambda)*x
*> \endverbatim
*>
*> \param[in] JOBZ
*> \verbatim
*> JOBZ is CHARACTER*1
*> = 'N': Compute eigenvalues only;
*> = 'V': Compute eigenvalues and eigenvectors.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangles of A and B are stored;
*> = 'L': Lower triangles of A and B are stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA, N)
*> On entry, the Hermitian matrix A. If UPLO = 'U', the
*> leading N-by-N upper triangular part of A contains the
*> upper triangular part of the matrix A. If UPLO = 'L',
*> the leading N-by-N lower triangular part of A contains
*> the lower triangular part of the matrix A.
*> \endverbatim
*> \verbatim
*> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
*> matrix Z of eigenvectors. The eigenvectors are normalized
*> as follows:
*> if ITYPE = 1 or 2, Z**H*B*Z = I;
*> if ITYPE = 3, Z**H*inv(B)*Z = I.
*> If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
*> or the lower triangle (if UPLO='L') of A, including the
*> diagonal, is destroyed.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB, N)
*> On entry, the Hermitian matrix B. If UPLO = 'U', the
*> leading N-by-N upper triangular part of B contains the
*> upper triangular part of the matrix B. If UPLO = 'L',
*> the leading N-by-N lower triangular part of B contains
*> the lower triangular part of the matrix B.
*> \endverbatim
*> \verbatim
*> On exit, if INFO <= N, the part of B containing the matrix is
*> overwritten by the triangular factor U or L from the Cholesky
*> factorization B = U**H*U or B = L*L**H.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*> W is REAL array, dimension (N)
*> If INFO = 0, the eigenvalues in ascending order.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK.
*> If N <= 1, LWORK >= 1.
*> If JOBZ = 'N' and N > 1, LWORK >= N + 1.
*> If JOBZ = 'V' and N > 1, LWORK >= 2*N + N**2.
*> \endverbatim
*> \verbatim
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal sizes of the WORK, RWORK and
*> IWORK arrays, returns these values as the first entries of
*> the WORK, RWORK and IWORK arrays, and no error message
*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (MAX(1,LRWORK))
*> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
*> \endverbatim
*>
*> \param[in] LRWORK
*> \verbatim
*> LRWORK is INTEGER
*> The dimension of the array RWORK.
*> If N <= 1, LRWORK >= 1.
*> If JOBZ = 'N' and N > 1, LRWORK >= N.
*> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
*> \endverbatim
*> \verbatim
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
*> of the WORK, RWORK and IWORK arrays, and no error message
*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
*> \endverbatim
*>
*> \param[in] LIWORK
*> \verbatim
*> LIWORK is INTEGER
*> The dimension of the array IWORK.
*> If N <= 1, LIWORK >= 1.
*> If JOBZ = 'N' and N > 1, LIWORK >= 1.
*> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
*> \endverbatim
*> \verbatim
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal sizes of the WORK, RWORK
*> and IWORK arrays, returns these values as the first entries
*> of the WORK, RWORK and IWORK arrays, and no error message
*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: CPOTRF or CHEEVD returned an error code:
*> <= N: if INFO = i and JOBZ = 'N', then the algorithm
*> failed to converge; i off-diagonal elements of an
*> intermediate tridiagonal form did not converge to
*> zero;
*> if INFO = i and JOBZ = 'V', then the algorithm
*> failed to compute an eigenvalue while working on
*> the submatrix lying in rows and columns INFO/(N+1)
*> through mod(INFO,N+1);
*> > N: if INFO = N + i, for 1 <= i <= N, then the leading
*> minor of order i of B is not positive definite.
*> The factorization of B could not be completed and
*> no eigenvalues or eigenvectors were computed.
*> \endverbatim
*>
*
* Authors
* =======
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexHEeigen
*
*
* Further Details
* ===============
*>\details \b Further \b Details
*> \verbatim
*>
*> Based on contributions by
*> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
*>
*> Modified so that no backsubstitution is performed if CHEEVD fails to
*> converge (NEIG in old code could be greater than N causing out of
*> bounds reference to A - reported by Ralf Meyer). Also corrected the
*> description of INFO and the test on ITYPE. Sven, 16 Feb 05.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CHEGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
$ LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
*
* -- LAPACK eigen routine (version 3.3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER JOBZ, UPLO
INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LRWORK, LWORK, N
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
REAL RWORK( * ), W( * )
COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX CONE
PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, UPPER, WANTZ
CHARACTER TRANS
INTEGER LIOPT, LIWMIN, LOPT, LROPT, LRWMIN, LWMIN
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CHEEVD, CHEGST, CPOTRF, CTRMM, CTRSM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, REAL
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
WANTZ = LSAME( JOBZ, 'V' )
UPPER = LSAME( UPLO, 'U' )
LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
*
INFO = 0
IF( N.LE.1 ) THEN
LWMIN = 1
LRWMIN = 1
LIWMIN = 1
ELSE IF( WANTZ ) THEN
LWMIN = 2*N + N*N
LRWMIN = 1 + 5*N + 2*N*N
LIWMIN = 3 + 5*N
ELSE
LWMIN = N + 1
LRWMIN = N
LIWMIN = 1
END IF
LOPT = LWMIN
LROPT = LRWMIN
LIOPT = LIWMIN
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
INFO = -1
ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -2
ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
END IF
*
IF( INFO.EQ.0 ) THEN
WORK( 1 ) = LOPT
RWORK( 1 ) = LROPT
IWORK( 1 ) = LIOPT
*
IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -11
ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
INFO = -13
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
INFO = -15
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CHEGVD', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Form a Cholesky factorization of B.
*
CALL CPOTRF( UPLO, N, B, LDB, INFO )
IF( INFO.NE.0 ) THEN
INFO = N + INFO
RETURN
END IF
*
* Transform problem to standard eigenvalue problem and solve.
*
CALL CHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
CALL CHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, LRWORK,
$ IWORK, LIWORK, INFO )
LOPT = MAX( REAL( LOPT ), REAL( WORK( 1 ) ) )
LROPT = MAX( REAL( LROPT ), REAL( RWORK( 1 ) ) )
LIOPT = MAX( REAL( LIOPT ), REAL( IWORK( 1 ) ) )
*
IF( WANTZ .AND. INFO.EQ.0 ) THEN
*
* Backtransform eigenvectors to the original problem.
*
IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
*
* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
* backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
*
IF( UPPER ) THEN
TRANS = 'N'
ELSE
TRANS = 'C'
END IF
*
CALL CTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, N, CONE,
$ B, LDB, A, LDA )
*
ELSE IF( ITYPE.EQ.3 ) THEN
*
* For B*A*x=(lambda)*x;
* backtransform eigenvectors: x = L*y or U**H *y
*
IF( UPPER ) THEN
TRANS = 'C'
ELSE
TRANS = 'N'
END IF
*
CALL CTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, N, CONE,
$ B, LDB, A, LDA )
END IF
END IF
*
WORK( 1 ) = LOPT
RWORK( 1 ) = LROPT
IWORK( 1 ) = LIOPT
*
RETURN
*
* End of CHEGVD
*
END
|