summaryrefslogtreecommitdiff
path: root/SRC/chbevx.f
blob: d9a22e3504f1e5b5f95310bd956ce66885f5f04b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
*> \brief <b> CHBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download CHBEVX + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbevx.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbevx.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbevx.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CHBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
*                          VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
*                          IWORK, IFAIL, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          JOBZ, RANGE, UPLO
*       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
*       REAL               ABSTOL, VL, VU
*       ..
*       .. Array Arguments ..
*       INTEGER            IFAIL( * ), IWORK( * )
*       REAL               RWORK( * ), W( * )
*       COMPLEX            AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
*      $                   Z( LDZ, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CHBEVX computes selected eigenvalues and, optionally, eigenvectors
*> of a complex Hermitian band matrix A.  Eigenvalues and eigenvectors
*> can be selected by specifying either a range of values or a range of
*> indices for the desired eigenvalues.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOBZ
*> \verbatim
*>          JOBZ is CHARACTER*1
*>          = 'N':  Compute eigenvalues only;
*>          = 'V':  Compute eigenvalues and eigenvectors.
*> \endverbatim
*>
*> \param[in] RANGE
*> \verbatim
*>          RANGE is CHARACTER*1
*>          = 'A': all eigenvalues will be found;
*>          = 'V': all eigenvalues in the half-open interval (VL,VU]
*>                 will be found;
*>          = 'I': the IL-th through IU-th eigenvalues will be found.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangle of A is stored;
*>          = 'L':  Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*>          KD is INTEGER
*>          The number of superdiagonals of the matrix A if UPLO = 'U',
*>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
*> \endverbatim
*>
*> \param[in,out] AB
*> \verbatim
*>          AB is COMPLEX array, dimension (LDAB, N)
*>          On entry, the upper or lower triangle of the Hermitian band
*>          matrix A, stored in the first KD+1 rows of the array.  The
*>          j-th column of A is stored in the j-th column of the array AB
*>          as follows:
*>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
*>
*>          On exit, AB is overwritten by values generated during the
*>          reduction to tridiagonal form.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= KD + 1.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*>          Q is COMPLEX array, dimension (LDQ, N)
*>          If JOBZ = 'V', the N-by-N unitary matrix used in the
*>                          reduction to tridiagonal form.
*>          If JOBZ = 'N', the array Q is not referenced.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*>          LDQ is INTEGER
*>          The leading dimension of the array Q.  If JOBZ = 'V', then
*>          LDQ >= max(1,N).
*> \endverbatim
*>
*> \param[in] VL
*> \verbatim
*>          VL is REAL
*> \endverbatim
*>
*> \param[in] VU
*> \verbatim
*>          VU is REAL
*>          If RANGE='V', the lower and upper bounds of the interval to
*>          be searched for eigenvalues. VL < VU.
*>          Not referenced if RANGE = 'A' or 'I'.
*> \endverbatim
*>
*> \param[in] IL
*> \verbatim
*>          IL is INTEGER
*> \endverbatim
*>
*> \param[in] IU
*> \verbatim
*>          IU is INTEGER
*>          If RANGE='I', the indices (in ascending order) of the
*>          smallest and largest eigenvalues to be returned.
*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
*>          Not referenced if RANGE = 'A' or 'V'.
*> \endverbatim
*>
*> \param[in] ABSTOL
*> \verbatim
*>          ABSTOL is REAL
*>          The absolute error tolerance for the eigenvalues.
*>          An approximate eigenvalue is accepted as converged
*>          when it is determined to lie in an interval [a,b]
*>          of width less than or equal to
*>
*>                  ABSTOL + EPS *   max( |a|,|b| ) ,
*>
*>          where EPS is the machine precision.  If ABSTOL is less than
*>          or equal to zero, then  EPS*|T|  will be used in its place,
*>          where |T| is the 1-norm of the tridiagonal matrix obtained
*>          by reducing AB to tridiagonal form.
*>
*>          Eigenvalues will be computed most accurately when ABSTOL is
*>          set to twice the underflow threshold 2*SLAMCH('S'), not zero.
*>          If this routine returns with INFO>0, indicating that some
*>          eigenvectors did not converge, try setting ABSTOL to
*>          2*SLAMCH('S').
*>
*>          See "Computing Small Singular Values of Bidiagonal Matrices
*>          with Guaranteed High Relative Accuracy," by Demmel and
*>          Kahan, LAPACK Working Note #3.
*> \endverbatim
*>
*> \param[out] M
*> \verbatim
*>          M is INTEGER
*>          The total number of eigenvalues found.  0 <= M <= N.
*>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*>          W is REAL array, dimension (N)
*>          The first M elements contain the selected eigenvalues in
*>          ascending order.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*>          Z is COMPLEX array, dimension (LDZ, max(1,M))
*>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
*>          contain the orthonormal eigenvectors of the matrix A
*>          corresponding to the selected eigenvalues, with the i-th
*>          column of Z holding the eigenvector associated with W(i).
*>          If an eigenvector fails to converge, then that column of Z
*>          contains the latest approximation to the eigenvector, and the
*>          index of the eigenvector is returned in IFAIL.
*>          If JOBZ = 'N', then Z is not referenced.
*>          Note: the user must ensure that at least max(1,M) columns are
*>          supplied in the array Z; if RANGE = 'V', the exact value of M
*>          is not known in advance and an upper bound must be used.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*>          LDZ is INTEGER
*>          The leading dimension of the array Z.  LDZ >= 1, and if
*>          JOBZ = 'V', LDZ >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (7*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (5*N)
*> \endverbatim
*>
*> \param[out] IFAIL
*> \verbatim
*>          IFAIL is INTEGER array, dimension (N)
*>          If JOBZ = 'V', then if INFO = 0, the first M elements of
*>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
*>          indices of the eigenvectors that failed to converge.
*>          If JOBZ = 'N', then IFAIL is not referenced.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, then i eigenvectors failed to converge.
*>                Their indices are stored in array IFAIL.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complexOTHEReigen
*
*  =====================================================================
      SUBROUTINE CHBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
     $                   VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
     $                   IWORK, IFAIL, INFO )
*
*  -- LAPACK driver routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, RANGE, UPLO
      INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
      REAL               ABSTOL, VL, VU
*     ..
*     .. Array Arguments ..
      INTEGER            IFAIL( * ), IWORK( * )
      REAL               RWORK( * ), W( * )
      COMPLEX            AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
     $                   Z( LDZ, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E0, 0.0E0 ),
     $                   CONE = ( 1.0E0, 0.0E0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ
      CHARACTER          ORDER
      INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
     $                   INDISP, INDIWK, INDRWK, INDWRK, ISCALE, ITMP1,
     $                   J, JJ, NSPLIT
      REAL               ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
     $                   SIGMA, SMLNUM, TMP1, VLL, VUU
      COMPLEX            CTMP1
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANHB, SLAMCH
      EXTERNAL           LSAME, CLANHB, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CCOPY, CGEMV, CHBTRD, CLACPY, CLASCL, CSTEIN,
     $                   CSTEQR, CSWAP, SCOPY, SSCAL, SSTEBZ, SSTERF,
     $                   XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, REAL, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      WANTZ = LSAME( JOBZ, 'V' )
      ALLEIG = LSAME( RANGE, 'A' )
      VALEIG = LSAME( RANGE, 'V' )
      INDEIG = LSAME( RANGE, 'I' )
      LOWER = LSAME( UPLO, 'L' )
*
      INFO = 0
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( KD.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDAB.LT.KD+1 ) THEN
         INFO = -7
      ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE
         IF( VALEIG ) THEN
            IF( N.GT.0 .AND. VU.LE.VL )
     $         INFO = -11
         ELSE IF( INDEIG ) THEN
            IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
               INFO = -12
            ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
               INFO = -13
            END IF
         END IF
      END IF
      IF( INFO.EQ.0 ) THEN
         IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
     $     INFO = -18
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CHBEVX', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      M = 0
      IF( N.EQ.0 )
     $   RETURN
*
      IF( N.EQ.1 ) THEN
         M = 1
         IF( LOWER ) THEN
            CTMP1 = AB( 1, 1 )
         ELSE
            CTMP1 = AB( KD+1, 1 )
         END IF
         TMP1 = REAL( CTMP1 )
         IF( VALEIG ) THEN
            IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) )
     $         M = 0
         END IF
         IF( M.EQ.1 ) THEN
            W( 1 ) = CTMP1
            IF( WANTZ )
     $         Z( 1, 1 ) = CONE
         END IF
         RETURN
      END IF
*
*     Get machine constants.
*
      SAFMIN = SLAMCH( 'Safe minimum' )
      EPS = SLAMCH( 'Precision' )
      SMLNUM = SAFMIN / EPS
      BIGNUM = ONE / SMLNUM
      RMIN = SQRT( SMLNUM )
      RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
*
*     Scale matrix to allowable range, if necessary.
*
      ISCALE = 0
      ABSTLL = ABSTOL
      IF ( VALEIG ) THEN
         VLL = VL
         VUU = VU
      ELSE
         VLL = ZERO
         VUU = ZERO
      ENDIF
      ANRM = CLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
         ISCALE = 1
         SIGMA = RMIN / ANRM
      ELSE IF( ANRM.GT.RMAX ) THEN
         ISCALE = 1
         SIGMA = RMAX / ANRM
      END IF
      IF( ISCALE.EQ.1 ) THEN
         IF( LOWER ) THEN
            CALL CLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
         ELSE
            CALL CLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
         END IF
         IF( ABSTOL.GT.0 )
     $      ABSTLL = ABSTOL*SIGMA
         IF( VALEIG ) THEN
            VLL = VL*SIGMA
            VUU = VU*SIGMA
         END IF
      END IF
*
*     Call CHBTRD to reduce Hermitian band matrix to tridiagonal form.
*
      INDD = 1
      INDE = INDD + N
      INDRWK = INDE + N
      INDWRK = 1
      CALL CHBTRD( JOBZ, UPLO, N, KD, AB, LDAB, RWORK( INDD ),
     $             RWORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
*
*     If all eigenvalues are desired and ABSTOL is less than or equal
*     to zero, then call SSTERF or CSTEQR.  If this fails for some
*     eigenvalue, then try SSTEBZ.
*
      TEST = .FALSE.
      IF (INDEIG) THEN
         IF (IL.EQ.1 .AND. IU.EQ.N) THEN
            TEST = .TRUE.
         END IF
      END IF
      IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
         CALL SCOPY( N, RWORK( INDD ), 1, W, 1 )
         INDEE = INDRWK + 2*N
         IF( .NOT.WANTZ ) THEN
            CALL SCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
            CALL SSTERF( N, W, RWORK( INDEE ), INFO )
         ELSE
            CALL CLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
            CALL SCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
            CALL CSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
     $                   RWORK( INDRWK ), INFO )
            IF( INFO.EQ.0 ) THEN
               DO 10 I = 1, N
                  IFAIL( I ) = 0
   10          CONTINUE
            END IF
         END IF
         IF( INFO.EQ.0 ) THEN
            M = N
            GO TO 30
         END IF
         INFO = 0
      END IF
*
*     Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN.
*
      IF( WANTZ ) THEN
         ORDER = 'B'
      ELSE
         ORDER = 'E'
      END IF
      INDIBL = 1
      INDISP = INDIBL + N
      INDIWK = INDISP + N
      CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
     $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
     $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
     $             IWORK( INDIWK ), INFO )
*
      IF( WANTZ ) THEN
         CALL CSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
     $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
     $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
*
*        Apply unitary matrix used in reduction to tridiagonal
*        form to eigenvectors returned by CSTEIN.
*
         DO 20 J = 1, M
            CALL CCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
            CALL CGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
     $                  Z( 1, J ), 1 )
   20    CONTINUE
      END IF
*
*     If matrix was scaled, then rescale eigenvalues appropriately.
*
   30 CONTINUE
      IF( ISCALE.EQ.1 ) THEN
         IF( INFO.EQ.0 ) THEN
            IMAX = M
         ELSE
            IMAX = INFO - 1
         END IF
         CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
      END IF
*
*     If eigenvalues are not in order, then sort them, along with
*     eigenvectors.
*
      IF( WANTZ ) THEN
         DO 50 J = 1, M - 1
            I = 0
            TMP1 = W( J )
            DO 40 JJ = J + 1, M
               IF( W( JJ ).LT.TMP1 ) THEN
                  I = JJ
                  TMP1 = W( JJ )
               END IF
   40       CONTINUE
*
            IF( I.NE.0 ) THEN
               ITMP1 = IWORK( INDIBL+I-1 )
               W( I ) = W( J )
               IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
               W( J ) = TMP1
               IWORK( INDIBL+J-1 ) = ITMP1
               CALL CSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
               IF( INFO.NE.0 ) THEN
                  ITMP1 = IFAIL( I )
                  IFAIL( I ) = IFAIL( J )
                  IFAIL( J ) = ITMP1
               END IF
            END IF
   50    CONTINUE
      END IF
*
      RETURN
*
*     End of CHBEVX
*
      END