summaryrefslogtreecommitdiff
path: root/SRC/cgetrs.f
blob: cdeec9eadd025850bb96b4a314dc0d6bff563957 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
*> \brief \b CGETRS
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download CGETRS + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgetrs.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgetrs.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgetrs.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          TRANS
*       INTEGER            INFO, LDA, LDB, N, NRHS
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       COMPLEX            A( LDA, * ), B( LDB, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CGETRS solves a system of linear equations
*>    A * X = B,  A**T * X = B,  or  A**H * X = B
*> with a general N-by-N matrix A using the LU factorization computed
*> by CGETRF.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          Specifies the form of the system of equations:
*>          = 'N':  A * X = B     (No transpose)
*>          = 'T':  A**T * X = B  (Transpose)
*>          = 'C':  A**H * X = B  (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrix B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          The factors L and U from the factorization A = P*L*U
*>          as computed by CGETRF.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          The pivot indices from CGETRF; for 1<=i<=N, row i of the
*>          matrix was interchanged with row IPIV(i).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is COMPLEX array, dimension (LDB,NRHS)
*>          On entry, the right hand side matrix B.
*>          On exit, the solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complexGEcomputational
*
*  =====================================================================
      SUBROUTINE CGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
*
*  -- LAPACK computational routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            INFO, LDA, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            A( LDA, * ), B( LDB, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOTRAN
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLASWP, CTRSM, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      NOTRAN = LSAME( TRANS, 'N' )
      IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
     $    LSAME( TRANS, 'C' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGETRS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
     $   RETURN
*
      IF( NOTRAN ) THEN
*
*        Solve A * X = B.
*
*        Apply row interchanges to the right hand sides.
*
         CALL CLASWP( NRHS, B, LDB, 1, N, IPIV, 1 )
*
*        Solve L*X = B, overwriting B with X.
*
         CALL CTRSM( 'Left', 'Lower', 'No transpose', 'Unit', N, NRHS,
     $               ONE, A, LDA, B, LDB )
*
*        Solve U*X = B, overwriting B with X.
*
         CALL CTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N,
     $               NRHS, ONE, A, LDA, B, LDB )
      ELSE
*
*        Solve A**T * X = B  or A**H * X = B.
*
*        Solve U**T *X = B or U**H *X = B, overwriting B with X.
*
         CALL CTRSM( 'Left', 'Upper', TRANS, 'Non-unit', N, NRHS, ONE,
     $               A, LDA, B, LDB )
*
*        Solve L**T *X = B, or L**H *X = B overwriting B with X.
*
         CALL CTRSM( 'Left', 'Lower', TRANS, 'Unit', N, NRHS, ONE, A,
     $               LDA, B, LDB )
*
*        Apply row interchanges to the solution vectors.
*
         CALL CLASWP( NRHS, B, LDB, 1, N, IPIV, -1 )
      END IF
*
      RETURN
*
*     End of CGETRS
*
      END