summaryrefslogtreecommitdiff
path: root/SRC/cgeqr.f
blob: a00ef45c0d021f6cfff68e0cf595fd39c51c291d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
*
*  Definition:
*  ===========
*
*       SUBROUTINE CGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK,
*                         INFO )
*
*       .. Scalar Arguments ..
*       INTEGER           INFO, LDA, M, N, TSIZE, LWORK
*       ..
*       .. Array Arguments ..
*       COMPLEX           A( LDA, * ), T( * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*> CGEQR computes a QR factorization of an M-by-N matrix A.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          On entry, the M-by-N matrix A.
*>          On exit, the elements on and above the diagonal of the array
*>          contain the min(M,N)-by-N upper trapezoidal matrix R
*>          (R is upper triangular if M >= N);
*>          the elements below the diagonal are used to store part of the 
*>          data structure to represent Q.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*>          T is COMPLEX array, dimension (MAX(5,TSIZE))
*>          On exit, if INFO = 0, T(1) returns optimal (or either minimal 
*>          or optimal, if query is assumed) TSIZE. See TSIZE for details.
*>          Remaining T contains part of the data structure used to represent Q.
*>          If one wants to apply or construct Q, then one needs to keep T 
*>          (in addition to A) and pass it to further subroutines.
*> \endverbatim
*>
*> \param[in] TSIZE
*> \verbatim
*>          TSIZE is INTEGER
*>          If TSIZE >= 5, the dimension of the array T.
*>          If TSIZE = -1 or -2, then a workspace query is assumed. The routine
*>          only calculates the sizes of the T and WORK arrays, returns these
*>          values as the first entries of the T and WORK arrays, and no error
*>          message related to T or WORK is issued by XERBLA.
*>          If TSIZE = -1, the routine calculates optimal size of T for the 
*>          optimum performance and returns this value in T(1).
*>          If TSIZE = -2, the routine calculates minimal size of T and 
*>          returns this value in T(1).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          (workspace) COMPLEX array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
*>          or optimal, if query was assumed) LWORK.
*>          See LWORK for details.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.
*>          If LWORK = -1 or -2, then a workspace query is assumed. The routine
*>          only calculates the sizes of the T and WORK arrays, returns these
*>          values as the first entries of the T and WORK arrays, and no error
*>          message related to T or WORK is issued by XERBLA.
*>          If LWORK = -1, the routine calculates optimal size of WORK for the
*>          optimal performance and returns this value in WORK(1).
*>          If LWORK = -2, the routine calculates minimal size of WORK and 
*>          returns this value in WORK(1).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \par Further Details
*  ====================
*>
*> \verbatim
*>
*> The goal of the interface is to give maximum freedom to the developers for
*> creating any QR factorization algorithm they wish. The triangular 
*> (trapezoidal) R has to be stored in the upper part of A. The lower part of A
*> and the array T can be used to store any relevant information for applying or
*> constructing the Q factor. The WORK array can safely be discarded after exit.
*>
*> Caution: One should not expect the sizes of T and WORK to be the same from one 
*> LAPACK implementation to the other, or even from one execution to the other.
*> A workspace query (for T and WORK) is needed at each execution. However, 
*> for a given execution, the size of T and WORK are fixed and will not change 
*> from one query to the next.
*>
*> \endverbatim
*>
*> \par Further Details particular to this LAPACK implementation:
*  ==============================================================
*>
*> \verbatim
*>
*> These details are particular for this LAPACK implementation. Users should not 
*> take them for granted. These details may change in the future, and are unlikely not
*> true for another LAPACK implementation. These details are relevant if one wants
*> to try to understand the code. They are not part of the interface.
*>
*> In this version,
*>
*>          T(2): row block size (MB)
*>          T(3): column block size (NB)
*>          T(6:TSIZE): data structure needed for Q, computed by
*>                           CLATSQR or CGEQRT
*>
*>  Depending on the matrix dimensions M and N, and row and column
*>  block sizes MB and NB returned by ILAENV, CGEQR will use either
*>  CLATSQR (if the matrix is tall-and-skinny) or CGEQRT to compute
*>  the QR factorization.
*>
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE CGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK,
     $                  INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, M, N, TSIZE, LWORK
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), T( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, LMINWS, MINT, MINW
      INTEGER            MB, NB, MINTSZ, NBLCKS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLATSQR, CGEQRT, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, MOD
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
*
      LQUERY = ( TSIZE.EQ.-1 .OR. TSIZE.EQ.-2 .OR.
     $           LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
*
      MINT = .FALSE.
      MINW = .FALSE.
      IF( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) THEN
        IF( TSIZE.NE.-1 ) MINT = .TRUE.
        IF( LWORK.NE.-1 ) MINW = .TRUE.
      END IF
*
*     Determine the block size
*
      IF( MIN( M, N ).GT.0 ) THEN
        MB = ILAENV( 1, 'CGEQR ', ' ', M, N, 1, -1 )
        NB = ILAENV( 1, 'CGEQR ', ' ', M, N, 2, -1 )
      ELSE
        MB = M
        NB = 1
      END IF
      IF( MB.GT.M .OR. MB.LE.N ) MB = M
      IF( NB.GT.MIN( M, N ) .OR. NB.LT.1 ) NB = 1
      MINTSZ = N + 5
      IF( MB.GT.N .AND. M.GT.N ) THEN
        IF( MOD( M - N, MB - N ).EQ.0 ) THEN
          NBLCKS = ( M - N ) / ( MB - N )
        ELSE
          NBLCKS = ( M - N ) / ( MB - N ) + 1
        END IF
      ELSE
        NBLCKS = 1
      END IF
*
*     Determine if the workspace size satisfies minimal size
*
      LMINWS = .FALSE.
      IF( ( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) .OR. LWORK.LT.NB*N )
     $    .AND. ( LWORK.GE.N ) .AND. ( TSIZE.GE.MINTSZ )
     $    .AND. ( .NOT.LQUERY ) ) THEN
        IF( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) ) THEN
          LMINWS = .TRUE.
          NB = 1
          MB = M
        END IF
        IF( LWORK.LT.NB*N ) THEN
          LMINWS = .TRUE.
          NB = 1
        END IF
      END IF
*
      IF( M.LT.0 ) THEN
        INFO = -1
      ELSE IF( N.LT.0 ) THEN
        INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        INFO = -4
      ELSE IF( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 )
     $   .AND. ( .NOT.LQUERY ) .AND. ( .NOT.LMINWS ) ) THEN
        INFO = -6
      ELSE IF( ( LWORK.LT.MAX( 1, N*NB ) ) .AND. ( .NOT.LQUERY )
     $   .AND. ( .NOT.LMINWS ) ) THEN
        INFO = -8
      END IF
*
      IF( INFO.EQ.0 ) THEN
        IF( MINT ) THEN
          T( 1 ) = MINTSZ
        ELSE
          T( 1 ) = NB*N*NBLCKS + 5
        END IF
        T( 2 ) = MB
        T( 3 ) = NB
        IF( MINW ) THEN
          WORK( 1 ) = MAX( 1, N )
        ELSE
          WORK( 1 ) = MAX( 1, NB*N )
        END IF
      END IF
      IF( INFO.NE.0 ) THEN
        CALL XERBLA( 'CGEQR', -INFO )
        RETURN
      ELSE IF( LQUERY ) THEN
        RETURN
      END IF
*
*     Quick return if possible
*
      IF( MIN( M, N ).EQ.0 ) THEN
        RETURN
      END IF
*
*     The QR Decomposition
*
      IF( ( M.LE.N ) .OR. ( MB.LE.N ) .OR. ( MB.GE.M ) ) THEN
        CALL CGEQRT( M, N, NB, A, LDA, T( 6 ), NB, WORK, INFO )
      ELSE
        CALL CLATSQR( M, N, MB, NB, A, LDA, T( 6 ), NB, WORK,
     $                LWORK, INFO )
      END IF
*
      WORK( 1 ) = MAX( 1, NB*N )
*
      RETURN
*
*     End of CGEQR
*
      END