summaryrefslogtreecommitdiff
path: root/SRC/cgeqpf.f
blob: 40fa83d8888f705285856158b664815a9e952f17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
      SUBROUTINE CGEQPF( M, N, A, LDA, JPVT, TAU, WORK, RWORK, INFO )
*
*  -- LAPACK deprecated driver routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            JPVT( * )
      REAL               RWORK( * )
      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  This routine is deprecated and has been replaced by routine CGEQP3.
*
*  CGEQPF computes a QR factorization with column pivoting of a
*  complex M-by-N matrix A: A*P = Q*R.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A. N >= 0
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          On entry, the M-by-N matrix A.
*          On exit, the upper triangle of the array contains the
*          min(M,N)-by-N upper triangular matrix R; the elements
*          below the diagonal, together with the array TAU,
*          represent the unitary matrix Q as a product of
*          min(m,n) elementary reflectors.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,M).
*
*  JPVT    (input/output) INTEGER array, dimension (N)
*          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
*          to the front of A*P (a leading column); if JPVT(i) = 0,
*          the i-th column of A is a free column.
*          On exit, if JPVT(i) = k, then the i-th column of A*P
*          was the k-th column of A.
*
*  TAU     (output) COMPLEX array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors.
*
*  WORK    (workspace) COMPLEX array, dimension (N)
*
*  RWORK   (workspace) REAL array, dimension (2*N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  Further Details
*  ===============
*
*  The matrix Q is represented as a product of elementary reflectors
*
*     Q = H(1) H(2) . . . H(n)
*
*  Each H(i) has the form
*
*     H = I - tau * v * v'
*
*  where tau is a complex scalar, and v is a complex vector with
*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i).
*
*  The matrix P is represented in jpvt as follows: If
*     jpvt(j) = i
*  then the jth column of P is the ith canonical unit vector.
*
*  Partial column norm updating strategy modified by
*    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
*    University of Zagreb, Croatia.
*    June 2006.
*  For more details see LAPACK Working Note 176.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, ITEMP, J, MA, MN, PVT
      REAL               TEMP, TEMP2, TOL3Z
      COMPLEX            AII
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEQR2, CLARF, CLARFG, CSWAP, CUNM2R, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, CMPLX, CONJG, MAX, MIN, SQRT
*     ..
*     .. External Functions ..
      INTEGER            ISAMAX
      REAL               SCNRM2, SLAMCH
      EXTERNAL           ISAMAX, SCNRM2, SLAMCH
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGEQPF', -INFO )
         RETURN
      END IF
*
      MN = MIN( M, N )
      TOL3Z = SQRT(SLAMCH('Epsilon'))
*
*     Move initial columns up front
*
      ITEMP = 1
      DO 10 I = 1, N
         IF( JPVT( I ).NE.0 ) THEN
            IF( I.NE.ITEMP ) THEN
               CALL CSWAP( M, A( 1, I ), 1, A( 1, ITEMP ), 1 )
               JPVT( I ) = JPVT( ITEMP )
               JPVT( ITEMP ) = I
            ELSE
               JPVT( I ) = I
            END IF
            ITEMP = ITEMP + 1
         ELSE
            JPVT( I ) = I
         END IF
   10 CONTINUE
      ITEMP = ITEMP - 1
*
*     Compute the QR factorization and update remaining columns
*
      IF( ITEMP.GT.0 ) THEN
         MA = MIN( ITEMP, M )
         CALL CGEQR2( M, MA, A, LDA, TAU, WORK, INFO )
         IF( MA.LT.N ) THEN
            CALL CUNM2R( 'Left', 'Conjugate transpose', M, N-MA, MA, A,
     $                   LDA, TAU, A( 1, MA+1 ), LDA, WORK, INFO )
         END IF
      END IF
*
      IF( ITEMP.LT.MN ) THEN
*
*        Initialize partial column norms. The first n elements of
*        work store the exact column norms.
*
         DO 20 I = ITEMP + 1, N
            RWORK( I ) = SCNRM2( M-ITEMP, A( ITEMP+1, I ), 1 )
            RWORK( N+I ) = RWORK( I )
   20    CONTINUE
*
*        Compute factorization
*
         DO 40 I = ITEMP + 1, MN
*
*           Determine ith pivot column and swap if necessary
*
            PVT = ( I-1 ) + ISAMAX( N-I+1, RWORK( I ), 1 )
*
            IF( PVT.NE.I ) THEN
               CALL CSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 )
               ITEMP = JPVT( PVT )
               JPVT( PVT ) = JPVT( I )
               JPVT( I ) = ITEMP
               RWORK( PVT ) = RWORK( I )
               RWORK( N+PVT ) = RWORK( N+I )
            END IF
*
*           Generate elementary reflector H(i)
*
            AII = A( I, I )
            CALL CLARFG( M-I+1, AII, A( MIN( I+1, M ), I ), 1,
     $                   TAU( I ) )
            A( I, I ) = AII
*
            IF( I.LT.N ) THEN
*
*              Apply H(i) to A(i:m,i+1:n) from the left
*
               AII = A( I, I )
               A( I, I ) = CMPLX( ONE )
               CALL CLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
     $                     CONJG( TAU( I ) ), A( I, I+1 ), LDA, WORK )
               A( I, I ) = AII
            END IF
*
*           Update partial column norms
*
            DO 30 J = I + 1, N
               IF( RWORK( J ).NE.ZERO ) THEN
*
*                 NOTE: The following 4 lines follow from the analysis in
*                 Lapack Working Note 176.
*                 
                  TEMP = ABS( A( I, J ) ) / RWORK( J )
                  TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
                  TEMP2 = TEMP*( RWORK( J ) / RWORK( N+J ) )**2
                  IF( TEMP2 .LE. TOL3Z ) THEN 
                     IF( M-I.GT.0 ) THEN
                        RWORK( J ) = SCNRM2( M-I, A( I+1, J ), 1 )
                        RWORK( N+J ) = RWORK( J )
                     ELSE
                        RWORK( J ) = ZERO
                        RWORK( N+J ) = ZERO
                     END IF
                  ELSE
                     RWORK( J ) = RWORK( J )*SQRT( TEMP )
                  END IF
               END IF
   30       CONTINUE
*
   40    CONTINUE
      END IF
      RETURN
*
*     End of CGEQPF
*
      END