summaryrefslogtreecommitdiff
path: root/SRC/cgeqp3.f
blob: bab52eeb94d55fc5b0833501b78d7a6c849f9e7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
      SUBROUTINE CGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK,
     $                   INFO )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            JPVT( * )
      REAL               RWORK( * )
      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CGEQP3 computes a QR factorization with column pivoting of a
*  matrix A:  A*P = Q*R  using Level 3 BLAS.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          On entry, the M-by-N matrix A.
*          On exit, the upper triangle of the array contains the
*          min(M,N)-by-N upper trapezoidal matrix R; the elements below
*          the diagonal, together with the array TAU, represent the
*          unitary matrix Q as a product of min(M,N) elementary
*          reflectors.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,M).
*
*  JPVT    (input/output) INTEGER array, dimension (N)
*          On entry, if JPVT(J).ne.0, the J-th column of A is permuted
*          to the front of A*P (a leading column); if JPVT(J)=0,
*          the J-th column of A is a free column.
*          On exit, if JPVT(J)=K, then the J-th column of A*P was the
*          the K-th column of A.
*
*  TAU     (output) COMPLEX array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors.
*
*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
*          On exit, if INFO=0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= N+1.
*          For optimal performance LWORK >= ( N+1 )*NB, where NB
*          is the optimal blocksize.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  RWORK   (workspace) REAL array, dimension (2*N)
*
*  INFO    (output) INTEGER
*          = 0: successful exit.
*          < 0: if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  The matrix Q is represented as a product of elementary reflectors
*
*     Q = H(1) H(2) . . . H(k), where k = min(m,n).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v**H
*
*  where tau is a real/complex scalar, and v is a real/complex vector
*  with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
*  A(i+1:m,i), and tau in TAU(i).
*
*  Based on contributions by
*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
*    X. Sun, Computer Science Dept., Duke University, USA
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            INB, INBMIN, IXOVER
      PARAMETER          ( INB = 1, INBMIN = 2, IXOVER = 3 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            FJB, IWS, J, JB, LWKOPT, MINMN, MINWS, NA, NB,
     $                   NBMIN, NFXD, NX, SM, SMINMN, SN, TOPBMN
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEQRF, CLAQP2, CLAQPS, CSWAP, CUNMQR, XERBLA
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      REAL               SCNRM2
      EXTERNAL           ILAENV, SCNRM2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          INT, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test input arguments
*     ====================
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      END IF
*
      IF( INFO.EQ.0 ) THEN
         MINMN = MIN( M, N )
         IF( MINMN.EQ.0 ) THEN
            IWS = 1
            LWKOPT = 1
         ELSE
            IWS = N + 1
            NB = ILAENV( INB, 'CGEQRF', ' ', M, N, -1, -1 )
            LWKOPT = ( N + 1 )*NB
         END IF
         WORK( 1 ) = LWKOPT
*
         IF( ( LWORK.LT.IWS ) .AND. .NOT.LQUERY ) THEN
            INFO = -8
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGEQP3', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( MINMN.EQ.0 ) THEN
         RETURN
      END IF
*
*     Move initial columns up front.
*
      NFXD = 1
      DO 10 J = 1, N
         IF( JPVT( J ).NE.0 ) THEN
            IF( J.NE.NFXD ) THEN
               CALL CSWAP( M, A( 1, J ), 1, A( 1, NFXD ), 1 )
               JPVT( J ) = JPVT( NFXD )
               JPVT( NFXD ) = J
            ELSE
               JPVT( J ) = J
            END IF
            NFXD = NFXD + 1
         ELSE
            JPVT( J ) = J
         END IF
   10 CONTINUE
      NFXD = NFXD - 1
*
*     Factorize fixed columns
*     =======================
*
*     Compute the QR factorization of fixed columns and update
*     remaining columns.
*
      IF( NFXD.GT.0 ) THEN
         NA = MIN( M, NFXD )
*CC      CALL CGEQR2( M, NA, A, LDA, TAU, WORK, INFO )
         CALL CGEQRF( M, NA, A, LDA, TAU, WORK, LWORK, INFO )
         IWS = MAX( IWS, INT( WORK( 1 ) ) )
         IF( NA.LT.N ) THEN
*CC         CALL CUNM2R( 'Left', 'Conjugate Transpose', M, N-NA,
*CC  $                   NA, A, LDA, TAU, A( 1, NA+1 ), LDA, WORK,
*CC  $                   INFO )
            CALL CUNMQR( 'Left', 'Conjugate Transpose', M, N-NA, NA, A,
     $                   LDA, TAU, A( 1, NA+1 ), LDA, WORK, LWORK,
     $                   INFO )
            IWS = MAX( IWS, INT( WORK( 1 ) ) )
         END IF
      END IF
*
*     Factorize free columns
*     ======================
*
      IF( NFXD.LT.MINMN ) THEN
*
         SM = M - NFXD
         SN = N - NFXD
         SMINMN = MINMN - NFXD
*
*        Determine the block size.
*
         NB = ILAENV( INB, 'CGEQRF', ' ', SM, SN, -1, -1 )
         NBMIN = 2
         NX = 0
*
         IF( ( NB.GT.1 ) .AND. ( NB.LT.SMINMN ) ) THEN
*
*           Determine when to cross over from blocked to unblocked code.
*
            NX = MAX( 0, ILAENV( IXOVER, 'CGEQRF', ' ', SM, SN, -1,
     $           -1 ) )
*
*
            IF( NX.LT.SMINMN ) THEN
*
*              Determine if workspace is large enough for blocked code.
*
               MINWS = ( SN+1 )*NB
               IWS = MAX( IWS, MINWS )
               IF( LWORK.LT.MINWS ) THEN
*
*                 Not enough workspace to use optimal NB: Reduce NB and
*                 determine the minimum value of NB.
*
                  NB = LWORK / ( SN+1 )
                  NBMIN = MAX( 2, ILAENV( INBMIN, 'CGEQRF', ' ', SM, SN,
     $                    -1, -1 ) )
*
*
               END IF
            END IF
         END IF
*
*        Initialize partial column norms. The first N elements of work
*        store the exact column norms.
*
         DO 20 J = NFXD + 1, N
            RWORK( J ) = SCNRM2( SM, A( NFXD+1, J ), 1 )
            RWORK( N+J ) = RWORK( J )
   20    CONTINUE
*
         IF( ( NB.GE.NBMIN ) .AND. ( NB.LT.SMINMN ) .AND.
     $       ( NX.LT.SMINMN ) ) THEN
*
*           Use blocked code initially.
*
            J = NFXD + 1
*
*           Compute factorization: while loop.
*
*
            TOPBMN = MINMN - NX
   30       CONTINUE
            IF( J.LE.TOPBMN ) THEN
               JB = MIN( NB, TOPBMN-J+1 )
*
*              Factorize JB columns among columns J:N.
*
               CALL CLAQPS( M, N-J+1, J-1, JB, FJB, A( 1, J ), LDA,
     $                      JPVT( J ), TAU( J ), RWORK( J ),
     $                      RWORK( N+J ), WORK( 1 ), WORK( JB+1 ),
     $                      N-J+1 )
*
               J = J + FJB
               GO TO 30
            END IF
         ELSE
            J = NFXD + 1
         END IF
*
*        Use unblocked code to factor the last or only block.
*
*
         IF( J.LE.MINMN )
     $      CALL CLAQP2( M, N-J+1, J-1, A( 1, J ), LDA, JPVT( J ),
     $                   TAU( J ), RWORK( J ), RWORK( N+J ), WORK( 1 ) )
*
      END IF
*
      WORK( 1 ) = IWS
      RETURN
*
*     End of CGEQP3
*
      END