1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
|
*> \brief <b> CGELSY solves overdetermined or underdetermined systems for GE matrices</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CGELSY + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelsy.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelsy.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelsy.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
* WORK, LWORK, RWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
* REAL RCOND
* ..
* .. Array Arguments ..
* INTEGER JPVT( * )
* REAL RWORK( * )
* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGELSY computes the minimum-norm solution to a complex linear least
*> squares problem:
*> minimize || A * X - B ||
*> using a complete orthogonal factorization of A. A is an M-by-N
*> matrix which may be rank-deficient.
*>
*> Several right hand side vectors b and solution vectors x can be
*> handled in a single call; they are stored as the columns of the
*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
*> matrix X.
*>
*> The routine first computes a QR factorization with column pivoting:
*> A * P = Q * [ R11 R12 ]
*> [ 0 R22 ]
*> with R11 defined as the largest leading submatrix whose estimated
*> condition number is less than 1/RCOND. The order of R11, RANK,
*> is the effective rank of A.
*>
*> Then, R22 is considered to be negligible, and R12 is annihilated
*> by unitary transformations from the right, arriving at the
*> complete orthogonal factorization:
*> A * P = Q * [ T11 0 ] * Z
*> [ 0 0 ]
*> The minimum-norm solution is then
*> X = P * Z**H [ inv(T11)*Q1**H*B ]
*> [ 0 ]
*> where Q1 consists of the first RANK columns of Q.
*>
*> This routine is basically identical to the original xGELSX except
*> three differences:
*> o The permutation of matrix B (the right hand side) is faster and
*> more simple.
*> o The call to the subroutine xGEQPF has been substituted by the
*> the call to the subroutine xGEQP3. This subroutine is a Blas-3
*> version of the QR factorization with column pivoting.
*> o Matrix B (the right hand side) is updated with Blas-3.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of
*> columns of matrices B and X. NRHS >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit, A has been overwritten by details of its
*> complete orthogonal factorization.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB,NRHS)
*> On entry, the M-by-NRHS right hand side matrix B.
*> On exit, the N-by-NRHS solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,M,N).
*> \endverbatim
*>
*> \param[in,out] JPVT
*> \verbatim
*> JPVT is INTEGER array, dimension (N)
*> On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
*> to the front of AP, otherwise column i is a free column.
*> On exit, if JPVT(i) = k, then the i-th column of A*P
*> was the k-th column of A.
*> \endverbatim
*>
*> \param[in] RCOND
*> \verbatim
*> RCOND is REAL
*> RCOND is used to determine the effective rank of A, which
*> is defined as the order of the largest leading triangular
*> submatrix R11 in the QR factorization with pivoting of A,
*> whose estimated condition number < 1/RCOND.
*> \endverbatim
*>
*> \param[out] RANK
*> \verbatim
*> RANK is INTEGER
*> The effective rank of A, i.e., the order of the submatrix
*> R11. This is the same as the order of the submatrix T11
*> in the complete orthogonal factorization of A.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> The unblocked strategy requires that:
*> LWORK >= MN + MAX( 2*MN, N+1, MN+NRHS )
*> where MN = min(M,N).
*> The block algorithm requires that:
*> LWORK >= MN + MAX( 2*MN, NB*(N+1), MN+MN*NB, MN+NB*NRHS )
*> where NB is an upper bound on the blocksize returned
*> by ILAENV for the routines CGEQP3, CTZRZF, CTZRQF, CUNMQR,
*> and CUNMRZ.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexGEsolve
*
*> \par Contributors:
* ==================
*>
*> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA \n
*> E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
*> G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
*>
* =====================================================================
SUBROUTINE CGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
$ WORK, LWORK, RWORK, INFO )
*
* -- LAPACK driver routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
REAL RCOND
* ..
* .. Array Arguments ..
INTEGER JPVT( * )
REAL RWORK( * )
COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER IMAX, IMIN
PARAMETER ( IMAX = 1, IMIN = 2 )
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKOPT, MN,
$ NB, NB1, NB2, NB3, NB4
REAL ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR,
$ SMLNUM, WSIZE
COMPLEX C1, C2, S1, S2
* ..
* .. External Subroutines ..
EXTERNAL CCOPY, CGEQP3, CLAIC1, CLASCL, CLASET, CTRSM,
$ CTZRZF, CUNMQR, CUNMRZ, SLABAD, XERBLA
* ..
* .. External Functions ..
INTEGER ILAENV
REAL CLANGE, SLAMCH
EXTERNAL CLANGE, ILAENV, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, REAL, CMPLX
* ..
* .. Executable Statements ..
*
MN = MIN( M, N )
ISMIN = MN + 1
ISMAX = 2*MN + 1
*
* Test the input arguments.
*
INFO = 0
NB1 = ILAENV( 1, 'CGEQRF', ' ', M, N, -1, -1 )
NB2 = ILAENV( 1, 'CGERQF', ' ', M, N, -1, -1 )
NB3 = ILAENV( 1, 'CUNMQR', ' ', M, N, NRHS, -1 )
NB4 = ILAENV( 1, 'CUNMRQ', ' ', M, N, NRHS, -1 )
NB = MAX( NB1, NB2, NB3, NB4 )
LWKOPT = MAX( 1, MN+2*N+NB*(N+1), 2*MN+NB*NRHS )
WORK( 1 ) = CMPLX( LWKOPT )
LQUERY = ( LWORK.EQ.-1 )
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
INFO = -7
ELSE IF( LWORK.LT.( MN+MAX( 2*MN, N+1, MN+NRHS ) ) .AND.
$ .NOT.LQUERY ) THEN
INFO = -12
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGELSY', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( MIN( M, N, NRHS ).EQ.0 ) THEN
RANK = 0
RETURN
END IF
*
* Get machine parameters
*
SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
BIGNUM = ONE / SMLNUM
CALL SLABAD( SMLNUM, BIGNUM )
*
* Scale A, B if max entries outside range [SMLNUM,BIGNUM]
*
ANRM = CLANGE( 'M', M, N, A, LDA, RWORK )
IASCL = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
IASCL = 1
ELSE IF( ANRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
IASCL = 2
ELSE IF( ANRM.EQ.ZERO ) THEN
*
* Matrix all zero. Return zero solution.
*
CALL CLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
RANK = 0
GO TO 70
END IF
*
BNRM = CLANGE( 'M', M, NRHS, B, LDB, RWORK )
IBSCL = 0
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL CLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
IBSCL = 1
ELSE IF( BNRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL CLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
IBSCL = 2
END IF
*
* Compute QR factorization with column pivoting of A:
* A * P = Q * R
*
CALL CGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),
$ LWORK-MN, RWORK, INFO )
WSIZE = MN + REAL( WORK( MN+1 ) )
*
* complex workspace: MN+NB*(N+1). real workspace 2*N.
* Details of Householder rotations stored in WORK(1:MN).
*
* Determine RANK using incremental condition estimation
*
WORK( ISMIN ) = CONE
WORK( ISMAX ) = CONE
SMAX = ABS( A( 1, 1 ) )
SMIN = SMAX
IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
RANK = 0
CALL CLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
GO TO 70
ELSE
RANK = 1
END IF
*
10 CONTINUE
IF( RANK.LT.MN ) THEN
I = RANK + 1
CALL CLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
$ A( I, I ), SMINPR, S1, C1 )
CALL CLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
$ A( I, I ), SMAXPR, S2, C2 )
*
IF( SMAXPR*RCOND.LE.SMINPR ) THEN
DO 20 I = 1, RANK
WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
20 CONTINUE
WORK( ISMIN+RANK ) = C1
WORK( ISMAX+RANK ) = C2
SMIN = SMINPR
SMAX = SMAXPR
RANK = RANK + 1
GO TO 10
END IF
END IF
*
* complex workspace: 3*MN.
*
* Logically partition R = [ R11 R12 ]
* [ 0 R22 ]
* where R11 = R(1:RANK,1:RANK)
*
* [R11,R12] = [ T11, 0 ] * Y
*
IF( RANK.LT.N )
$ CALL CTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),
$ LWORK-2*MN, INFO )
*
* complex workspace: 2*MN.
* Details of Householder rotations stored in WORK(MN+1:2*MN)
*
* B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
*
CALL CUNMQR( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA,
$ WORK( 1 ), B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )
WSIZE = MAX( WSIZE, 2*MN+REAL( WORK( 2*MN+1 ) ) )
*
* complex workspace: 2*MN+NB*NRHS.
*
* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
*
CALL CTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
$ NRHS, CONE, A, LDA, B, LDB )
*
DO 40 J = 1, NRHS
DO 30 I = RANK + 1, N
B( I, J ) = CZERO
30 CONTINUE
40 CONTINUE
*
* B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS)
*
IF( RANK.LT.N ) THEN
CALL CUNMRZ( 'Left', 'Conjugate transpose', N, NRHS, RANK,
$ N-RANK, A, LDA, WORK( MN+1 ), B, LDB,
$ WORK( 2*MN+1 ), LWORK-2*MN, INFO )
END IF
*
* complex workspace: 2*MN+NRHS.
*
* B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
*
DO 60 J = 1, NRHS
DO 50 I = 1, N
WORK( JPVT( I ) ) = B( I, J )
50 CONTINUE
CALL CCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )
60 CONTINUE
*
* complex workspace: N.
*
* Undo scaling
*
IF( IASCL.EQ.1 ) THEN
CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
CALL CLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
$ INFO )
ELSE IF( IASCL.EQ.2 ) THEN
CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
CALL CLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
$ INFO )
END IF
IF( IBSCL.EQ.1 ) THEN
CALL CLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
ELSE IF( IBSCL.EQ.2 ) THEN
CALL CLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
END IF
*
70 CONTINUE
WORK( 1 ) = CMPLX( LWKOPT )
*
RETURN
*
* End of CGELSY
*
END
|