1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
|
*> \brief <b> CGELSS solves overdetermined or underdetermined systems for GE matrices</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CGELSS + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelss.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelss.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelss.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
* WORK, LWORK, RWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
* REAL RCOND
* ..
* .. Array Arguments ..
* REAL RWORK( * ), S( * )
* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGELSS computes the minimum norm solution to a complex linear
*> least squares problem:
*>
*> Minimize 2-norm(| b - A*x |).
*>
*> using the singular value decomposition (SVD) of A. A is an M-by-N
*> matrix which may be rank-deficient.
*>
*> Several right hand side vectors b and solution vectors x can be
*> handled in a single call; they are stored as the columns of the
*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
*> X.
*>
*> The effective rank of A is determined by treating as zero those
*> singular values which are less than RCOND times the largest singular
*> value.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrices B and X. NRHS >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit, the first min(m,n) rows of A are overwritten with
*> its right singular vectors, stored rowwise.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB,NRHS)
*> On entry, the M-by-NRHS right hand side matrix B.
*> On exit, B is overwritten by the N-by-NRHS solution matrix X.
*> If m >= n and RANK = n, the residual sum-of-squares for
*> the solution in the i-th column is given by the sum of
*> squares of the modulus of elements n+1:m in that column.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,M,N).
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is REAL array, dimension (min(M,N))
*> The singular values of A in decreasing order.
*> The condition number of A in the 2-norm = S(1)/S(min(m,n)).
*> \endverbatim
*>
*> \param[in] RCOND
*> \verbatim
*> RCOND is REAL
*> RCOND is used to determine the effective rank of A.
*> Singular values S(i) <= RCOND*S(1) are treated as zero.
*> If RCOND < 0, machine precision is used instead.
*> \endverbatim
*>
*> \param[out] RANK
*> \verbatim
*> RANK is INTEGER
*> The effective rank of A, i.e., the number of singular values
*> which are greater than RCOND*S(1).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= 1, and also:
*> LWORK >= 2*min(M,N) + max(M,N,NRHS)
*> For good performance, LWORK should generally be larger.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (5*min(M,N))
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: the algorithm for computing the SVD failed to converge;
*> if INFO = i, i off-diagonal elements of an intermediate
*> bidiagonal form did not converge to zero.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexGEsolve
*
* =====================================================================
SUBROUTINE CGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
$ WORK, LWORK, RWORK, INFO )
*
* -- LAPACK driver routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
REAL RCOND
* ..
* .. Array Arguments ..
REAL RWORK( * ), S( * )
COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER BL, CHUNK, I, IASCL, IBSCL, IE, IL, IRWORK,
$ ITAU, ITAUP, ITAUQ, IWORK, LDWORK, MAXMN,
$ MAXWRK, MINMN, MINWRK, MM, MNTHR
INTEGER LWORK_CGEQRF, LWORK_CUNMQR, LWORK_CGEBRD,
$ LWORK_CUNMBR, LWORK_CUNGBR, LWORK_CUNMLQ,
$ LWORK_CGELQF
REAL ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM, THR
* ..
* .. Local Arrays ..
COMPLEX DUM( 1 )
* ..
* .. External Subroutines ..
EXTERNAL CBDSQR, CCOPY, CGEBRD, CGELQF, CGEMM, CGEMV,
$ CGEQRF, CLACPY, CLASCL, CLASET, CSRSCL, CUNGBR,
$ CUNMBR, CUNMLQ, CUNMQR, SLABAD, SLASCL, SLASET,
$ XERBLA
* ..
* .. External Functions ..
INTEGER ILAENV
REAL CLANGE, SLAMCH
EXTERNAL ILAENV, CLANGE, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
MINMN = MIN( M, N )
MAXMN = MAX( M, N )
LQUERY = ( LWORK.EQ.-1 )
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
INFO = -7
END IF
*
* Compute workspace
* (Note: Comments in the code beginning "Workspace:" describe the
* minimal amount of workspace needed at that point in the code,
* as well as the preferred amount for good performance.
* CWorkspace refers to complex workspace, and RWorkspace refers
* to real workspace. NB refers to the optimal block size for the
* immediately following subroutine, as returned by ILAENV.)
*
IF( INFO.EQ.0 ) THEN
MINWRK = 1
MAXWRK = 1
IF( MINMN.GT.0 ) THEN
MM = M
MNTHR = ILAENV( 6, 'CGELSS', ' ', M, N, NRHS, -1 )
IF( M.GE.N .AND. M.GE.MNTHR ) THEN
*
* Path 1a - overdetermined, with many more rows than
* columns
*
* Compute space needed for CGEQRF
CALL CGEQRF( M, N, A, LDA, DUM(1), DUM(1), -1, INFO )
LWORK_CGEQRF=DUM(1)
* Compute space needed for CUNMQR
CALL CUNMQR( 'L', 'C', M, NRHS, N, A, LDA, DUM(1), B,
$ LDB, DUM(1), -1, INFO )
LWORK_CUNMQR=DUM(1)
MM = N
MAXWRK = MAX( MAXWRK, N + N*ILAENV( 1, 'CGEQRF', ' ', M,
$ N, -1, -1 ) )
MAXWRK = MAX( MAXWRK, N + NRHS*ILAENV( 1, 'CUNMQR', 'LC',
$ M, NRHS, N, -1 ) )
END IF
IF( M.GE.N ) THEN
*
* Path 1 - overdetermined or exactly determined
*
* Compute space needed for CGEBRD
CALL CGEBRD( MM, N, A, LDA, S, DUM(1), DUM(1),
$ DUM(1), DUM(1), -1, INFO )
LWORK_CGEBRD=DUM(1)
* Compute space needed for CUNMBR
CALL CUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, DUM(1),
$ B, LDB, DUM(1), -1, INFO )
LWORK_CUNMBR=DUM(1)
* Compute space needed for CUNGBR
CALL CUNGBR( 'P', N, N, N, A, LDA, DUM(1),
$ DUM(1), -1, INFO )
LWORK_CUNGBR=DUM(1)
* Compute total workspace needed
MAXWRK = MAX( MAXWRK, 2*N + LWORK_CGEBRD )
MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNMBR )
MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNGBR )
MAXWRK = MAX( MAXWRK, N*NRHS )
MINWRK = 2*N + MAX( NRHS, M )
END IF
IF( N.GT.M ) THEN
MINWRK = 2*M + MAX( NRHS, N )
IF( N.GE.MNTHR ) THEN
*
* Path 2a - underdetermined, with many more columns
* than rows
*
* Compute space needed for CGELQF
CALL CGELQF( M, N, A, LDA, DUM(1), DUM(1),
$ -1, INFO )
LWORK_CGELQF=DUM(1)
* Compute space needed for CGEBRD
CALL CGEBRD( M, M, A, LDA, S, DUM(1), DUM(1),
$ DUM(1), DUM(1), -1, INFO )
LWORK_CGEBRD=DUM(1)
* Compute space needed for CUNMBR
CALL CUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA,
$ DUM(1), B, LDB, DUM(1), -1, INFO )
LWORK_CUNMBR=DUM(1)
* Compute space needed for CUNGBR
CALL CUNGBR( 'P', M, M, M, A, LDA, DUM(1),
$ DUM(1), -1, INFO )
LWORK_CUNGBR=DUM(1)
* Compute space needed for CUNMLQ
CALL CUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, DUM(1),
$ B, LDB, DUM(1), -1, INFO )
LWORK_CUNMLQ=DUM(1)
* Compute total workspace needed
MAXWRK = M + LWORK_CGELQF
MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_CGEBRD )
MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_CUNMBR )
MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_CUNGBR )
IF( NRHS.GT.1 ) THEN
MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
ELSE
MAXWRK = MAX( MAXWRK, M*M + 2*M )
END IF
MAXWRK = MAX( MAXWRK, M + LWORK_CUNMLQ )
ELSE
*
* Path 2 - underdetermined
*
* Compute space needed for CGEBRD
CALL CGEBRD( M, N, A, LDA, S, DUM(1), DUM(1),
$ DUM(1), DUM(1), -1, INFO )
LWORK_CGEBRD=DUM(1)
* Compute space needed for CUNMBR
CALL CUNMBR( 'Q', 'L', 'C', M, NRHS, M, A, LDA,
$ DUM(1), B, LDB, DUM(1), -1, INFO )
LWORK_CUNMBR=DUM(1)
* Compute space needed for CUNGBR
CALL CUNGBR( 'P', M, N, M, A, LDA, DUM(1),
$ DUM(1), -1, INFO )
LWORK_CUNGBR=DUM(1)
MAXWRK = 2*M + LWORK_CGEBRD
MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNMBR )
MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNGBR )
MAXWRK = MAX( MAXWRK, N*NRHS )
END IF
END IF
MAXWRK = MAX( MINWRK, MAXWRK )
END IF
WORK( 1 ) = MAXWRK
*
IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
$ INFO = -12
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGELSS', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 ) THEN
RANK = 0
RETURN
END IF
*
* Get machine parameters
*
EPS = SLAMCH( 'P' )
SFMIN = SLAMCH( 'S' )
SMLNUM = SFMIN / EPS
BIGNUM = ONE / SMLNUM
CALL SLABAD( SMLNUM, BIGNUM )
*
* Scale A if max element outside range [SMLNUM,BIGNUM]
*
ANRM = CLANGE( 'M', M, N, A, LDA, RWORK )
IASCL = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
IASCL = 1
ELSE IF( ANRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
IASCL = 2
ELSE IF( ANRM.EQ.ZERO ) THEN
*
* Matrix all zero. Return zero solution.
*
CALL CLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
CALL SLASET( 'F', MINMN, 1, ZERO, ZERO, S, MINMN )
RANK = 0
GO TO 70
END IF
*
* Scale B if max element outside range [SMLNUM,BIGNUM]
*
BNRM = CLANGE( 'M', M, NRHS, B, LDB, RWORK )
IBSCL = 0
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL CLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
IBSCL = 1
ELSE IF( BNRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL CLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
IBSCL = 2
END IF
*
* Overdetermined case
*
IF( M.GE.N ) THEN
*
* Path 1 - overdetermined or exactly determined
*
MM = M
IF( M.GE.MNTHR ) THEN
*
* Path 1a - overdetermined, with many more rows than columns
*
MM = N
ITAU = 1
IWORK = ITAU + N
*
* Compute A=Q*R
* (CWorkspace: need 2*N, prefer N+N*NB)
* (RWorkspace: none)
*
CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
$ LWORK-IWORK+1, INFO )
*
* Multiply B by transpose(Q)
* (CWorkspace: need N+NRHS, prefer N+NRHS*NB)
* (RWorkspace: none)
*
CALL CUNMQR( 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAU ), B,
$ LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
*
* Zero out below R
*
IF( N.GT.1 )
$ CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
$ LDA )
END IF
*
IE = 1
ITAUQ = 1
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Bidiagonalize R in A
* (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
* (RWorkspace: need N)
*
CALL CGEBRD( MM, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
$ INFO )
*
* Multiply B by transpose of left bidiagonalizing vectors of R
* (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
* (RWorkspace: none)
*
CALL CUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
$ B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
*
* Generate right bidiagonalizing vectors of R in A
* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
* (RWorkspace: none)
*
CALL CUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, INFO )
IRWORK = IE + N
*
* Perform bidiagonal QR iteration
* multiply B by transpose of left singular vectors
* compute right singular vectors in A
* (CWorkspace: none)
* (RWorkspace: need BDSPAC)
*
CALL CBDSQR( 'U', N, N, 0, NRHS, S, RWORK( IE ), A, LDA, DUM,
$ 1, B, LDB, RWORK( IRWORK ), INFO )
IF( INFO.NE.0 )
$ GO TO 70
*
* Multiply B by reciprocals of singular values
*
THR = MAX( RCOND*S( 1 ), SFMIN )
IF( RCOND.LT.ZERO )
$ THR = MAX( EPS*S( 1 ), SFMIN )
RANK = 0
DO 10 I = 1, N
IF( S( I ).GT.THR ) THEN
CALL CSRSCL( NRHS, S( I ), B( I, 1 ), LDB )
RANK = RANK + 1
ELSE
CALL CLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
END IF
10 CONTINUE
*
* Multiply B by right singular vectors
* (CWorkspace: need N, prefer N*NRHS)
* (RWorkspace: none)
*
IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
CALL CGEMM( 'C', 'N', N, NRHS, N, CONE, A, LDA, B, LDB,
$ CZERO, WORK, LDB )
CALL CLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
ELSE IF( NRHS.GT.1 ) THEN
CHUNK = LWORK / N
DO 20 I = 1, NRHS, CHUNK
BL = MIN( NRHS-I+1, CHUNK )
CALL CGEMM( 'C', 'N', N, BL, N, CONE, A, LDA, B( 1, I ),
$ LDB, CZERO, WORK, N )
CALL CLACPY( 'G', N, BL, WORK, N, B( 1, I ), LDB )
20 CONTINUE
ELSE
CALL CGEMV( 'C', N, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
CALL CCOPY( N, WORK, 1, B, 1 )
END IF
*
ELSE IF( N.GE.MNTHR .AND. LWORK.GE.3*M+M*M+MAX( M, NRHS, N-2*M ) )
$ THEN
*
* Underdetermined case, M much less than N
*
* Path 2a - underdetermined, with many more columns than rows
* and sufficient workspace for an efficient algorithm
*
LDWORK = M
IF( LWORK.GE.3*M+M*LDA+MAX( M, NRHS, N-2*M ) )
$ LDWORK = LDA
ITAU = 1
IWORK = M + 1
*
* Compute A=L*Q
* (CWorkspace: need 2*M, prefer M+M*NB)
* (RWorkspace: none)
*
CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
$ LWORK-IWORK+1, INFO )
IL = IWORK
*
* Copy L to WORK(IL), zeroing out above it
*
CALL CLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, WORK( IL+LDWORK ),
$ LDWORK )
IE = 1
ITAUQ = IL + LDWORK*M
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Bidiagonalize L in WORK(IL)
* (CWorkspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
* (RWorkspace: need M)
*
CALL CGEBRD( M, M, WORK( IL ), LDWORK, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, INFO )
*
* Multiply B by transpose of left bidiagonalizing vectors of L
* (CWorkspace: need M*M+3*M+NRHS, prefer M*M+3*M+NRHS*NB)
* (RWorkspace: none)
*
CALL CUNMBR( 'Q', 'L', 'C', M, NRHS, M, WORK( IL ), LDWORK,
$ WORK( ITAUQ ), B, LDB, WORK( IWORK ),
$ LWORK-IWORK+1, INFO )
*
* Generate right bidiagonalizing vectors of R in WORK(IL)
* (CWorkspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB)
* (RWorkspace: none)
*
CALL CUNGBR( 'P', M, M, M, WORK( IL ), LDWORK, WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, INFO )
IRWORK = IE + M
*
* Perform bidiagonal QR iteration, computing right singular
* vectors of L in WORK(IL) and multiplying B by transpose of
* left singular vectors
* (CWorkspace: need M*M)
* (RWorkspace: need BDSPAC)
*
CALL CBDSQR( 'U', M, M, 0, NRHS, S, RWORK( IE ), WORK( IL ),
$ LDWORK, A, LDA, B, LDB, RWORK( IRWORK ), INFO )
IF( INFO.NE.0 )
$ GO TO 70
*
* Multiply B by reciprocals of singular values
*
THR = MAX( RCOND*S( 1 ), SFMIN )
IF( RCOND.LT.ZERO )
$ THR = MAX( EPS*S( 1 ), SFMIN )
RANK = 0
DO 30 I = 1, M
IF( S( I ).GT.THR ) THEN
CALL CSRSCL( NRHS, S( I ), B( I, 1 ), LDB )
RANK = RANK + 1
ELSE
CALL CLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
END IF
30 CONTINUE
IWORK = IL + M*LDWORK
*
* Multiply B by right singular vectors of L in WORK(IL)
* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NRHS)
* (RWorkspace: none)
*
IF( LWORK.GE.LDB*NRHS+IWORK-1 .AND. NRHS.GT.1 ) THEN
CALL CGEMM( 'C', 'N', M, NRHS, M, CONE, WORK( IL ), LDWORK,
$ B, LDB, CZERO, WORK( IWORK ), LDB )
CALL CLACPY( 'G', M, NRHS, WORK( IWORK ), LDB, B, LDB )
ELSE IF( NRHS.GT.1 ) THEN
CHUNK = ( LWORK-IWORK+1 ) / M
DO 40 I = 1, NRHS, CHUNK
BL = MIN( NRHS-I+1, CHUNK )
CALL CGEMM( 'C', 'N', M, BL, M, CONE, WORK( IL ), LDWORK,
$ B( 1, I ), LDB, CZERO, WORK( IWORK ), M )
CALL CLACPY( 'G', M, BL, WORK( IWORK ), M, B( 1, I ),
$ LDB )
40 CONTINUE
ELSE
CALL CGEMV( 'C', M, M, CONE, WORK( IL ), LDWORK, B( 1, 1 ),
$ 1, CZERO, WORK( IWORK ), 1 )
CALL CCOPY( M, WORK( IWORK ), 1, B( 1, 1 ), 1 )
END IF
*
* Zero out below first M rows of B
*
CALL CLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
IWORK = ITAU + M
*
* Multiply transpose(Q) by B
* (CWorkspace: need M+NRHS, prefer M+NHRS*NB)
* (RWorkspace: none)
*
CALL CUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, WORK( ITAU ), B,
$ LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
*
ELSE
*
* Path 2 - remaining underdetermined cases
*
IE = 1
ITAUQ = 1
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Bidiagonalize A
* (CWorkspace: need 3*M, prefer 2*M+(M+N)*NB)
* (RWorkspace: need N)
*
CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
$ INFO )
*
* Multiply B by transpose of left bidiagonalizing vectors
* (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
* (RWorkspace: none)
*
CALL CUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAUQ ),
$ B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
*
* Generate right bidiagonalizing vectors in A
* (CWorkspace: need 3*M, prefer 2*M+M*NB)
* (RWorkspace: none)
*
CALL CUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, INFO )
IRWORK = IE + M
*
* Perform bidiagonal QR iteration,
* computing right singular vectors of A in A and
* multiplying B by transpose of left singular vectors
* (CWorkspace: none)
* (RWorkspace: need BDSPAC)
*
CALL CBDSQR( 'L', M, N, 0, NRHS, S, RWORK( IE ), A, LDA, DUM,
$ 1, B, LDB, RWORK( IRWORK ), INFO )
IF( INFO.NE.0 )
$ GO TO 70
*
* Multiply B by reciprocals of singular values
*
THR = MAX( RCOND*S( 1 ), SFMIN )
IF( RCOND.LT.ZERO )
$ THR = MAX( EPS*S( 1 ), SFMIN )
RANK = 0
DO 50 I = 1, M
IF( S( I ).GT.THR ) THEN
CALL CSRSCL( NRHS, S( I ), B( I, 1 ), LDB )
RANK = RANK + 1
ELSE
CALL CLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
END IF
50 CONTINUE
*
* Multiply B by right singular vectors of A
* (CWorkspace: need N, prefer N*NRHS)
* (RWorkspace: none)
*
IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
CALL CGEMM( 'C', 'N', N, NRHS, M, CONE, A, LDA, B, LDB,
$ CZERO, WORK, LDB )
CALL CLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
ELSE IF( NRHS.GT.1 ) THEN
CHUNK = LWORK / N
DO 60 I = 1, NRHS, CHUNK
BL = MIN( NRHS-I+1, CHUNK )
CALL CGEMM( 'C', 'N', N, BL, M, CONE, A, LDA, B( 1, I ),
$ LDB, CZERO, WORK, N )
CALL CLACPY( 'F', N, BL, WORK, N, B( 1, I ), LDB )
60 CONTINUE
ELSE
CALL CGEMV( 'C', M, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
CALL CCOPY( N, WORK, 1, B, 1 )
END IF
END IF
*
* Undo scaling
*
IF( IASCL.EQ.1 ) THEN
CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
$ INFO )
ELSE IF( IASCL.EQ.2 ) THEN
CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
$ INFO )
END IF
IF( IBSCL.EQ.1 ) THEN
CALL CLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
ELSE IF( IBSCL.EQ.2 ) THEN
CALL CLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
END IF
70 CONTINUE
WORK( 1 ) = MAXWRK
RETURN
*
* End of CGELSS
*
END
|