summaryrefslogtreecommitdiff
path: root/SRC/cgegs.f
blob: ff5105adab88a2ce56987d026cf846a63fc0934e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
*> \brief <b> CGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition
*  ==========
*
*       SUBROUTINE CGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA,
*                         VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK,
*                         INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          JOBVSL, JOBVSR
*       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
*       ..
*       .. Array Arguments ..
*       REAL               RWORK( * )
*       COMPLEX            A( LDA, * ), ALPHA( * ), B( LDB, * ),
*      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
*      $                   WORK( * )
*       ..
*  
*  Purpose
*  =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> This routine is deprecated and has been replaced by routine CGGES.
*>
*> CGEGS computes the eigenvalues, Schur form, and, optionally, the
*> left and or/right Schur vectors of a complex matrix pair (A,B).
*> Given two square matrices A and B, the generalized Schur
*> factorization has the form
*> 
*>    A = Q*S*Z**H,  B = Q*T*Z**H
*> 
*> where Q and Z are unitary matrices and S and T are upper triangular.
*> The columns of Q are the left Schur vectors
*> and the columns of Z are the right Schur vectors.
*> 
*> If only the eigenvalues of (A,B) are needed, the driver routine
*> CGEGV should be used instead.  See CGEGV for a description of the
*> eigenvalues of the generalized nonsymmetric eigenvalue problem
*> (GNEP).
*>
*>\endverbatim
*
*  Arguments
*  =========
*
*> \param[in] JOBVSL
*> \verbatim
*>          JOBVSL is CHARACTER*1
*>          = 'N':  do not compute the left Schur vectors;
*>          = 'V':  compute the left Schur vectors (returned in VSL).
*> \endverbatim
*>
*> \param[in] JOBVSR
*> \verbatim
*>          JOBVSR is CHARACTER*1
*>          = 'N':  do not compute the right Schur vectors;
*>          = 'V':  compute the right Schur vectors (returned in VSR).
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA, N)
*>          On entry, the matrix A.
*>          On exit, the upper triangular matrix S from the generalized
*>          Schur factorization.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is COMPLEX array, dimension (LDB, N)
*>          On entry, the matrix B.
*>          On exit, the upper triangular matrix T from the generalized
*>          Schur factorization.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] ALPHA
*> \verbatim
*>          ALPHA is COMPLEX array, dimension (N)
*>          The complex scalars alpha that define the eigenvalues of
*>          GNEP.  ALPHA(j) = S(j,j), the diagonal element of the Schur
*>          form of A.
*> \endverbatim
*>
*> \param[out] BETA
*> \verbatim
*>          BETA is COMPLEX array, dimension (N)
*>          The non-negative real scalars beta that define the
*>          eigenvalues of GNEP.  BETA(j) = T(j,j), the diagonal element
*>          of the triangular factor T.
*> \endverbatim
*> \verbatim
*>          Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
*>          represent the j-th eigenvalue of the matrix pair (A,B), in
*>          one of the forms lambda = alpha/beta or mu = beta/alpha.
*>          Since either lambda or mu may overflow, they should not,
*>          in general, be computed.
*> \endverbatim
*>
*> \param[out] VSL
*> \verbatim
*>          VSL is COMPLEX array, dimension (LDVSL,N)
*>          If JOBVSL = 'V', the matrix of left Schur vectors Q.
*>          Not referenced if JOBVSL = 'N'.
*> \endverbatim
*>
*> \param[in] LDVSL
*> \verbatim
*>          LDVSL is INTEGER
*>          The leading dimension of the matrix VSL. LDVSL >= 1, and
*>          if JOBVSL = 'V', LDVSL >= N.
*> \endverbatim
*>
*> \param[out] VSR
*> \verbatim
*>          VSR is COMPLEX array, dimension (LDVSR,N)
*>          If JOBVSR = 'V', the matrix of right Schur vectors Z.
*>          Not referenced if JOBVSR = 'N'.
*> \endverbatim
*>
*> \param[in] LDVSR
*> \verbatim
*>          LDVSR is INTEGER
*>          The leading dimension of the matrix VSR. LDVSR >= 1, and
*>          if JOBVSR = 'V', LDVSR >= N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.  LWORK >= max(1,2*N).
*>          For good performance, LWORK must generally be larger.
*>          To compute the optimal value of LWORK, call ILAENV to get
*>          blocksizes (for CGEQRF, CUNMQR, and CUNGQR.)  Then compute:
*>          NB  -- MAX of the blocksizes for CGEQRF, CUNMQR, and CUNGQR;
*>          the optimal LWORK is N*(NB+1).
*> \endverbatim
*> \verbatim
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (3*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*>          =1,...,N:
*>                The QZ iteration failed.  (A,B) are not in Schur
*>                form, but ALPHA(j) and BETA(j) should be correct for
*>                j=INFO+1,...,N.
*>          > N:  errors that usually indicate LAPACK problems:
*>                =N+1: error return from CGGBAL
*>                =N+2: error return from CGEQRF
*>                =N+3: error return from CUNMQR
*>                =N+4: error return from CUNGQR
*>                =N+5: error return from CGGHRD
*>                =N+6: error return from CHGEQZ (other than failed
*>                                               iteration)
*>                =N+7: error return from CGGBAK (computing VSL)
*>                =N+8: error return from CGGBAK (computing VSR)
*>                =N+9: error return from CLASCL (various places)
*> \endverbatim
*>
*
*  Authors
*  =======
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complexGEeigen
*
*  =====================================================================
      SUBROUTINE CGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA,
     $                  VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK,
     $                  INFO )
*
*  -- LAPACK eigen routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          JOBVSL, JOBVSR
      INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            A( LDA, * ), ALPHA( * ), B( LDB, * ),
     $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
     $                   WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E0, 0.0E0 ),
     $                   CONE = ( 1.0E0, 0.0E0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY
      INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT,
     $                   ILO, IRIGHT, IROWS, IRWORK, ITAU, IWORK,
     $                   LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3
      REAL               ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
     $                   SAFMIN, SMLNUM
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEQRF, CGGBAK, CGGBAL, CGGHRD, CHGEQZ, CLACPY,
     $                   CLASCL, CLASET, CUNGQR, CUNMQR, XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      REAL               CLANGE, SLAMCH
      EXTERNAL           ILAENV, LSAME, CLANGE, SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          INT, MAX
*     ..
*     .. Executable Statements ..
*
*     Decode the input arguments
*
      IF( LSAME( JOBVSL, 'N' ) ) THEN
         IJOBVL = 1
         ILVSL = .FALSE.
      ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
         IJOBVL = 2
         ILVSL = .TRUE.
      ELSE
         IJOBVL = -1
         ILVSL = .FALSE.
      END IF
*
      IF( LSAME( JOBVSR, 'N' ) ) THEN
         IJOBVR = 1
         ILVSR = .FALSE.
      ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
         IJOBVR = 2
         ILVSR = .TRUE.
      ELSE
         IJOBVR = -1
         ILVSR = .FALSE.
      END IF
*
*     Test the input arguments
*
      LWKMIN = MAX( 2*N, 1 )
      LWKOPT = LWKMIN
      WORK( 1 ) = LWKOPT
      LQUERY = ( LWORK.EQ.-1 )
      INFO = 0
      IF( IJOBVL.LE.0 ) THEN
         INFO = -1
      ELSE IF( IJOBVR.LE.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
         INFO = -11
      ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
         INFO = -13
      ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
         INFO = -15
      END IF
*
      IF( INFO.EQ.0 ) THEN
         NB1 = ILAENV( 1, 'CGEQRF', ' ', N, N, -1, -1 )
         NB2 = ILAENV( 1, 'CUNMQR', ' ', N, N, N, -1 )
         NB3 = ILAENV( 1, 'CUNGQR', ' ', N, N, N, -1 )
         NB = MAX( NB1, NB2, NB3 )
         LOPT = N*(NB+1)
         WORK( 1 ) = LOPT
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGEGS ', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Get machine constants
*
      EPS = SLAMCH( 'E' )*SLAMCH( 'B' )
      SAFMIN = SLAMCH( 'S' )
      SMLNUM = N*SAFMIN / EPS
      BIGNUM = ONE / SMLNUM
*
*     Scale A if max element outside range [SMLNUM,BIGNUM]
*
      ANRM = CLANGE( 'M', N, N, A, LDA, RWORK )
      ILASCL = .FALSE.
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
         ANRMTO = SMLNUM
         ILASCL = .TRUE.
      ELSE IF( ANRM.GT.BIGNUM ) THEN
         ANRMTO = BIGNUM
         ILASCL = .TRUE.
      END IF
*
      IF( ILASCL ) THEN
         CALL CLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 9
            RETURN
         END IF
      END IF
*
*     Scale B if max element outside range [SMLNUM,BIGNUM]
*
      BNRM = CLANGE( 'M', N, N, B, LDB, RWORK )
      ILBSCL = .FALSE.
      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
         BNRMTO = SMLNUM
         ILBSCL = .TRUE.
      ELSE IF( BNRM.GT.BIGNUM ) THEN
         BNRMTO = BIGNUM
         ILBSCL = .TRUE.
      END IF
*
      IF( ILBSCL ) THEN
         CALL CLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 9
            RETURN
         END IF
      END IF
*
*     Permute the matrix to make it more nearly triangular
*
      ILEFT = 1
      IRIGHT = N + 1
      IRWORK = IRIGHT + N
      IWORK = 1
      CALL CGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
     $             RWORK( IRIGHT ), RWORK( IRWORK ), IINFO )
      IF( IINFO.NE.0 ) THEN
         INFO = N + 1
         GO TO 10
      END IF
*
*     Reduce B to triangular form, and initialize VSL and/or VSR
*
      IROWS = IHI + 1 - ILO
      ICOLS = N + 1 - ILO
      ITAU = IWORK
      IWORK = ITAU + IROWS
      CALL CGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
     $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
      IF( IINFO.GE.0 )
     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
      IF( IINFO.NE.0 ) THEN
         INFO = N + 2
         GO TO 10
      END IF
*
      CALL CUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
     $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
     $             LWORK+1-IWORK, IINFO )
      IF( IINFO.GE.0 )
     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
      IF( IINFO.NE.0 ) THEN
         INFO = N + 3
         GO TO 10
      END IF
*
      IF( ILVSL ) THEN
         CALL CLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
         CALL CLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
     $                VSL( ILO+1, ILO ), LDVSL )
         CALL CUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
     $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
     $                IINFO )
         IF( IINFO.GE.0 )
     $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 4
            GO TO 10
         END IF
      END IF
*
      IF( ILVSR )
     $   CALL CLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
*
*     Reduce to generalized Hessenberg form
*
      CALL CGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
     $             LDVSL, VSR, LDVSR, IINFO )
      IF( IINFO.NE.0 ) THEN
         INFO = N + 5
         GO TO 10
      END IF
*
*     Perform QZ algorithm, computing Schur vectors if desired
*
      IWORK = ITAU
      CALL CHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
     $             ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWORK ),
     $             LWORK+1-IWORK, RWORK( IRWORK ), IINFO )
      IF( IINFO.GE.0 )
     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
      IF( IINFO.NE.0 ) THEN
         IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
            INFO = IINFO
         ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
            INFO = IINFO - N
         ELSE
            INFO = N + 6
         END IF
         GO TO 10
      END IF
*
*     Apply permutation to VSL and VSR
*
      IF( ILVSL ) THEN
         CALL CGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
     $                RWORK( IRIGHT ), N, VSL, LDVSL, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 7
            GO TO 10
         END IF
      END IF
      IF( ILVSR ) THEN
         CALL CGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
     $                RWORK( IRIGHT ), N, VSR, LDVSR, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 8
            GO TO 10
         END IF
      END IF
*
*     Undo scaling
*
      IF( ILASCL ) THEN
         CALL CLASCL( 'U', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 9
            RETURN
         END IF
         CALL CLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHA, N, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 9
            RETURN
         END IF
      END IF
*
      IF( ILBSCL ) THEN
         CALL CLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 9
            RETURN
         END IF
         CALL CLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 9
            RETURN
         END IF
      END IF
*
   10 CONTINUE
      WORK( 1 ) = LWKOPT
*
      RETURN
*
*     End of CGEGS
*
      END