summaryrefslogtreecommitdiff
path: root/SRC/cgeesx.f
blob: 2ccb03a925de0701cb95aed1a5c35dedab00e913 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
      SUBROUTINE CGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, W,
     $                   VS, LDVS, RCONDE, RCONDV, WORK, LWORK, RWORK,
     $                   BWORK, INFO )
*
*  -- LAPACK driver routine (version 3.2) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          JOBVS, SENSE, SORT
      INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
      REAL               RCONDE, RCONDV
*     ..
*     .. Array Arguments ..
      LOGICAL            BWORK( * )
      REAL               RWORK( * )
      COMPLEX            A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
*     ..
*     .. Function Arguments ..
      LOGICAL            SELECT
      EXTERNAL           SELECT
*     ..
*
*  Purpose
*  =======
*
*  CGEESX computes for an N-by-N complex nonsymmetric matrix A, the
*  eigenvalues, the Schur form T, and, optionally, the matrix of Schur
*  vectors Z.  This gives the Schur factorization A = Z*T*(Z**H).
*
*  Optionally, it also orders the eigenvalues on the diagonal of the
*  Schur form so that selected eigenvalues are at the top left;
*  computes a reciprocal condition number for the average of the
*  selected eigenvalues (RCONDE); and computes a reciprocal condition
*  number for the right invariant subspace corresponding to the
*  selected eigenvalues (RCONDV).  The leading columns of Z form an
*  orthonormal basis for this invariant subspace.
*
*  For further explanation of the reciprocal condition numbers RCONDE
*  and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
*  these quantities are called s and sep respectively).
*
*  A complex matrix is in Schur form if it is upper triangular.
*
*  Arguments
*  =========
*
*  JOBVS   (input) CHARACTER*1
*          = 'N': Schur vectors are not computed;
*          = 'V': Schur vectors are computed.
*
*  SORT    (input) CHARACTER*1
*          Specifies whether or not to order the eigenvalues on the
*          diagonal of the Schur form.
*          = 'N': Eigenvalues are not ordered;
*          = 'S': Eigenvalues are ordered (see SELECT).
*
*  SELECT  (external procedure) LOGICAL FUNCTION of one COMPLEX argument
*          SELECT must be declared EXTERNAL in the calling subroutine.
*          If SORT = 'S', SELECT is used to select eigenvalues to order
*          to the top left of the Schur form.
*          If SORT = 'N', SELECT is not referenced.
*          An eigenvalue W(j) is selected if SELECT(W(j)) is true.
*
*  SENSE   (input) CHARACTER*1
*          Determines which reciprocal condition numbers are computed.
*          = 'N': None are computed;
*          = 'E': Computed for average of selected eigenvalues only;
*          = 'V': Computed for selected right invariant subspace only;
*          = 'B': Computed for both.
*          If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
*
*  N       (input) INTEGER
*          The order of the matrix A. N >= 0.
*
*  A       (input/output) COMPLEX array, dimension (LDA, N)
*          On entry, the N-by-N matrix A.
*          On exit, A is overwritten by its Schur form T.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  SDIM    (output) INTEGER
*          If SORT = 'N', SDIM = 0.
*          If SORT = 'S', SDIM = number of eigenvalues for which
*                         SELECT is true.
*
*  W       (output) COMPLEX array, dimension (N)
*          W contains the computed eigenvalues, in the same order
*          that they appear on the diagonal of the output Schur form T.
*
*  VS      (output) COMPLEX array, dimension (LDVS,N)
*          If JOBVS = 'V', VS contains the unitary matrix Z of Schur
*          vectors.
*          If JOBVS = 'N', VS is not referenced.
*
*  LDVS    (input) INTEGER
*          The leading dimension of the array VS.  LDVS >= 1, and if
*          JOBVS = 'V', LDVS >= N.
*
*  RCONDE  (output) REAL
*          If SENSE = 'E' or 'B', RCONDE contains the reciprocal
*          condition number for the average of the selected eigenvalues.
*          Not referenced if SENSE = 'N' or 'V'.
*
*  RCONDV  (output) REAL
*          If SENSE = 'V' or 'B', RCONDV contains the reciprocal
*          condition number for the selected right invariant subspace.
*          Not referenced if SENSE = 'N' or 'E'.
*
*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.  LWORK >= max(1,2*N).
*          Also, if SENSE = 'E' or 'V' or 'B', LWORK >= 2*SDIM*(N-SDIM),
*          where SDIM is the number of selected eigenvalues computed by
*          this routine.  Note that 2*SDIM*(N-SDIM) <= N*N/2. Note also
*          that an error is only returned if LWORK < max(1,2*N), but if
*          SENSE = 'E' or 'V' or 'B' this may not be large enough.
*          For good performance, LWORK must generally be larger.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates upper bound on the optimal size of the
*          array WORK, returns this value as the first entry of the WORK
*          array, and no error message related to LWORK is issued by
*          XERBLA.
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  BWORK   (workspace) LOGICAL array, dimension (N)
*          Not referenced if SORT = 'N'.
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value.
*          > 0: if INFO = i, and i is
*             <= N: the QR algorithm failed to compute all the
*                   eigenvalues; elements 1:ILO-1 and i+1:N of W
*                   contain those eigenvalues which have converged; if
*                   JOBVS = 'V', VS contains the transformation which
*                   reduces A to its partially converged Schur form.
*             = N+1: the eigenvalues could not be reordered because some
*                   eigenvalues were too close to separate (the problem
*                   is very ill-conditioned);
*             = N+2: after reordering, roundoff changed values of some
*                   complex eigenvalues so that leading eigenvalues in
*                   the Schur form no longer satisfy SELECT=.TRUE.  This
*                   could also be caused by underflow due to scaling.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            SCALEA, WANTSB, WANTSE, WANTSN, WANTST,
     $                   WANTSV, WANTVS
      INTEGER            HSWORK, I, IBAL, ICOND, IERR, IEVAL, IHI, ILO,
     $                   ITAU, IWRK, LWRK, MAXWRK, MINWRK
      REAL               ANRM, BIGNUM, CSCALE, EPS, SMLNUM
*     ..
*     .. Local Arrays ..
      REAL               DUM( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           CCOPY, CGEBAK, CGEBAL, CGEHRD, CHSEQR, CLACPY,
     $                   CLASCL, CTRSEN, CUNGHR, SLABAD, SLASCL, XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      REAL               CLANGE, SLAMCH
      EXTERNAL           LSAME, ILAENV, CLANGE, SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      WANTVS = LSAME( JOBVS, 'V' )
      WANTST = LSAME( SORT, 'S' )
      WANTSN = LSAME( SENSE, 'N' )
      WANTSE = LSAME( SENSE, 'E' )
      WANTSV = LSAME( SENSE, 'V' )
      WANTSB = LSAME( SENSE, 'B' )
      IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
     $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
         INFO = -11
      END IF
*
*     Compute workspace
*      (Note: Comments in the code beginning "Workspace:" describe the
*       minimal amount of real workspace needed at that point in the
*       code, as well as the preferred amount for good performance.
*       CWorkspace refers to complex workspace, and RWorkspace to real
*       workspace. NB refers to the optimal block size for the
*       immediately following subroutine, as returned by ILAENV.
*       HSWORK refers to the workspace preferred by CHSEQR, as
*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
*       the worst case.
*       If SENSE = 'E', 'V' or 'B', then the amount of workspace needed
*       depends on SDIM, which is computed by the routine CTRSEN later
*       in the code.)
*
      IF( INFO.EQ.0 ) THEN
         IF( N.EQ.0 ) THEN
            MINWRK = 1
            LWRK = 1
         ELSE
            MAXWRK = N + N*ILAENV( 1, 'CGEHRD', ' ', N, 1, N, 0 )
            MINWRK = 2*N
*
            CALL CHSEQR( 'S', JOBVS, N, 1, N, A, LDA, W, VS, LDVS,
     $             WORK, -1, IEVAL )
            HSWORK = WORK( 1 )
*
            IF( .NOT.WANTVS ) THEN
               MAXWRK = MAX( MAXWRK, HSWORK )
            ELSE
               MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'CUNGHR',
     $                       ' ', N, 1, N, -1 ) )
               MAXWRK = MAX( MAXWRK, HSWORK )
            END IF
            LWRK = MAXWRK
            IF( .NOT.WANTSN )
     $         LWRK = MAX( LWRK, ( N*N )/2 )
         END IF
         WORK( 1 ) = LWRK
*
         IF( LWORK.LT.MINWRK ) THEN
            INFO = -15
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGEESX', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 ) THEN
         SDIM = 0
         RETURN
      END IF
*
*     Get machine constants
*
      EPS = SLAMCH( 'P' )
      SMLNUM = SLAMCH( 'S' )
      BIGNUM = ONE / SMLNUM
      CALL SLABAD( SMLNUM, BIGNUM )
      SMLNUM = SQRT( SMLNUM ) / EPS
      BIGNUM = ONE / SMLNUM
*
*     Scale A if max element outside range [SMLNUM,BIGNUM]
*
      ANRM = CLANGE( 'M', N, N, A, LDA, DUM )
      SCALEA = .FALSE.
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
         SCALEA = .TRUE.
         CSCALE = SMLNUM
      ELSE IF( ANRM.GT.BIGNUM ) THEN
         SCALEA = .TRUE.
         CSCALE = BIGNUM
      END IF
      IF( SCALEA )
     $   CALL CLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
*
*
*     Permute the matrix to make it more nearly triangular
*     (CWorkspace: none)
*     (RWorkspace: need N)
*
      IBAL = 1
      CALL CGEBAL( 'P', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
*
*     Reduce to upper Hessenberg form
*     (CWorkspace: need 2*N, prefer N+N*NB)
*     (RWorkspace: none)
*
      ITAU = 1
      IWRK = N + ITAU
      CALL CGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
     $             LWORK-IWRK+1, IERR )
*
      IF( WANTVS ) THEN
*
*        Copy Householder vectors to VS
*
         CALL CLACPY( 'L', N, N, A, LDA, VS, LDVS )
*
*        Generate unitary matrix in VS
*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
*        (RWorkspace: none)
*
         CALL CUNGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
     $                LWORK-IWRK+1, IERR )
      END IF
*
      SDIM = 0
*
*     Perform QR iteration, accumulating Schur vectors in VS if desired
*     (CWorkspace: need 1, prefer HSWORK (see comments) )
*     (RWorkspace: none)
*
      IWRK = ITAU
      CALL CHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, W, VS, LDVS,
     $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
      IF( IEVAL.GT.0 )
     $   INFO = IEVAL
*
*     Sort eigenvalues if desired
*
      IF( WANTST .AND. INFO.EQ.0 ) THEN
         IF( SCALEA )
     $      CALL CLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, W, N, IERR )
         DO 10 I = 1, N
            BWORK( I ) = SELECT( W( I ) )
   10    CONTINUE
*
*        Reorder eigenvalues, transform Schur vectors, and compute
*        reciprocal condition numbers
*        (CWorkspace: if SENSE is not 'N', need 2*SDIM*(N-SDIM)
*                     otherwise, need none )
*        (RWorkspace: none)
*
         CALL CTRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, W, SDIM,
     $                RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1,
     $                ICOND )
         IF( .NOT.WANTSN )
     $      MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) )
         IF( ICOND.EQ.-14 ) THEN
*
*           Not enough complex workspace
*
            INFO = -15
         END IF
      END IF
*
      IF( WANTVS ) THEN
*
*        Undo balancing
*        (CWorkspace: none)
*        (RWorkspace: need N)
*
         CALL CGEBAK( 'P', 'R', N, ILO, IHI, RWORK( IBAL ), N, VS, LDVS,
     $                IERR )
      END IF
*
      IF( SCALEA ) THEN
*
*        Undo scaling for the Schur form of A
*
         CALL CLASCL( 'U', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
         CALL CCOPY( N, A, LDA+1, W, 1 )
         IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN
            DUM( 1 ) = RCONDV
            CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
            RCONDV = DUM( 1 )
         END IF
      END IF
*
      WORK( 1 ) = MAXWRK
      RETURN
*
*     End of CGEESX
*
      END