summaryrefslogtreecommitdiff
path: root/SRC/cgbtrs.f
blob: 75d195316e74371e4f5f790dc1c0fd0c616ce08c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
*> \brief \b CGBTRS
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CGBTRS + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbtrs.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbtrs.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbtrs.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CGBTRS( TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB,
*                          INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          TRANS
*       INTEGER            INFO, KL, KU, LDAB, LDB, N, NRHS
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       COMPLEX            AB( LDAB, * ), B( LDB, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CGBTRS solves a system of linear equations
*>    A * X = B,  A**T * X = B,  or  A**H * X = B
*> with a general band matrix A using the LU factorization computed
*> by CGBTRF.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          Specifies the form of the system of equations.
*>          = 'N':  A * X = B     (No transpose)
*>          = 'T':  A**T * X = B  (Transpose)
*>          = 'C':  A**H * X = B  (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*>          KL is INTEGER
*>          The number of subdiagonals within the band of A.  KL >= 0.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*>          KU is INTEGER
*>          The number of superdiagonals within the band of A.  KU >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrix B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] AB
*> \verbatim
*>          AB is COMPLEX array, dimension (LDAB,N)
*>          Details of the LU factorization of the band matrix A, as
*>          computed by CGBTRF.  U is stored as an upper triangular band
*>          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
*>          the multipliers used during the factorization are stored in
*>          rows KL+KU+2 to 2*KL+KU+1.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          The pivot indices; for 1 <= i <= N, row i of the matrix was
*>          interchanged with row IPIV(i).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is COMPLEX array, dimension (LDB,NRHS)
*>          On entry, the right hand side matrix B.
*>          On exit, the solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexGBcomputational
*
*  =====================================================================
      SUBROUTINE CGBTRS( TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB,
     $                   INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            INFO, KL, KU, LDAB, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            AB( LDAB, * ), B( LDB, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            LNOTI, NOTRAN
      INTEGER            I, J, KD, L, LM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMV, CGERU, CLACGV, CSWAP, CTBSV, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      NOTRAN = LSAME( TRANS, 'N' )
      IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
     $    LSAME( TRANS, 'C' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( KL.LT.0 ) THEN
         INFO = -3
      ELSE IF( KU.LT.0 ) THEN
         INFO = -4
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDAB.LT.( 2*KL+KU+1 ) ) THEN
         INFO = -7
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -10
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGBTRS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
     $   RETURN
*
      KD = KU + KL + 1
      LNOTI = KL.GT.0
*
      IF( NOTRAN ) THEN
*
*        Solve  A*X = B.
*
*        Solve L*X = B, overwriting B with X.
*
*        L is represented as a product of permutations and unit lower
*        triangular matrices L = P(1) * L(1) * ... * P(n-1) * L(n-1),
*        where each transformation L(i) is a rank-one modification of
*        the identity matrix.
*
         IF( LNOTI ) THEN
            DO 10 J = 1, N - 1
               LM = MIN( KL, N-J )
               L = IPIV( J )
               IF( L.NE.J )
     $            CALL CSWAP( NRHS, B( L, 1 ), LDB, B( J, 1 ), LDB )
               CALL CGERU( LM, NRHS, -ONE, AB( KD+1, J ), 1, B( J, 1 ),
     $                     LDB, B( J+1, 1 ), LDB )
   10       CONTINUE
         END IF
*
         DO 20 I = 1, NRHS
*
*           Solve U*X = B, overwriting B with X.
*
            CALL CTBSV( 'Upper', 'No transpose', 'Non-unit', N, KL+KU,
     $                  AB, LDAB, B( 1, I ), 1 )
   20    CONTINUE
*
      ELSE IF( LSAME( TRANS, 'T' ) ) THEN
*
*        Solve A**T * X = B.
*
         DO 30 I = 1, NRHS
*
*           Solve U**T * X = B, overwriting B with X.
*
            CALL CTBSV( 'Upper', 'Transpose', 'Non-unit', N, KL+KU, AB,
     $                  LDAB, B( 1, I ), 1 )
   30    CONTINUE
*
*        Solve L**T * X = B, overwriting B with X.
*
         IF( LNOTI ) THEN
            DO 40 J = N - 1, 1, -1
               LM = MIN( KL, N-J )
               CALL CGEMV( 'Transpose', LM, NRHS, -ONE, B( J+1, 1 ),
     $                     LDB, AB( KD+1, J ), 1, ONE, B( J, 1 ), LDB )
               L = IPIV( J )
               IF( L.NE.J )
     $            CALL CSWAP( NRHS, B( L, 1 ), LDB, B( J, 1 ), LDB )
   40       CONTINUE
         END IF
*
      ELSE
*
*        Solve A**H * X = B.
*
         DO 50 I = 1, NRHS
*
*           Solve U**H * X = B, overwriting B with X.
*
            CALL CTBSV( 'Upper', 'Conjugate transpose', 'Non-unit', N,
     $                  KL+KU, AB, LDAB, B( 1, I ), 1 )
   50    CONTINUE
*
*        Solve L**H * X = B, overwriting B with X.
*
         IF( LNOTI ) THEN
            DO 60 J = N - 1, 1, -1
               LM = MIN( KL, N-J )
               CALL CLACGV( NRHS, B( J, 1 ), LDB )
               CALL CGEMV( 'Conjugate transpose', LM, NRHS, -ONE,
     $                     B( J+1, 1 ), LDB, AB( KD+1, J ), 1, ONE,
     $                     B( J, 1 ), LDB )
               CALL CLACGV( NRHS, B( J, 1 ), LDB )
               L = IPIV( J )
               IF( L.NE.J )
     $            CALL CSWAP( NRHS, B( L, 1 ), LDB, B( J, 1 ), LDB )
   60       CONTINUE
         END IF
      END IF
      RETURN
*
*     End of CGBTRS
*
      END