summaryrefslogtreecommitdiff
path: root/SRC/cgbsv.f
blob: 3adaeb1a038000bf2a19dc61e6850725dac2ac55 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
*> \brief <b> CGBSV computes the solution to system of linear equations A * X = B for GB matrices</b> (simple driver)
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download CGBSV + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbsv.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbsv.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbsv.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )
* 
*       .. Scalar Arguments ..
*       INTEGER            INFO, KL, KU, LDAB, LDB, N, NRHS
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       COMPLEX            AB( LDAB, * ), B( LDB, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CGBSV computes the solution to a complex system of linear equations
*> A * X = B, where A is a band matrix of order N with KL subdiagonals
*> and KU superdiagonals, and X and B are N-by-NRHS matrices.
*>
*> The LU decomposition with partial pivoting and row interchanges is
*> used to factor A as A = L * U, where L is a product of permutation
*> and unit lower triangular matrices with KL subdiagonals, and U is
*> upper triangular with KL+KU superdiagonals.  The factored form of A
*> is then used to solve the system of equations A * X = B.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of linear equations, i.e., the order of the
*>          matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*>          KL is INTEGER
*>          The number of subdiagonals within the band of A.  KL >= 0.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*>          KU is INTEGER
*>          The number of superdiagonals within the band of A.  KU >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrix B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in,out] AB
*> \verbatim
*>          AB is COMPLEX array, dimension (LDAB,N)
*>          On entry, the matrix A in band storage, in rows KL+1 to
*>          2*KL+KU+1; rows 1 to KL of the array need not be set.
*>          The j-th column of A is stored in the j-th column of the
*>          array AB as follows:
*>          AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
*>          On exit, details of the factorization: U is stored as an
*>          upper triangular band matrix with KL+KU superdiagonals in
*>          rows 1 to KL+KU+1, and the multipliers used during the
*>          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
*>          See below for further details.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          The pivot indices that define the permutation matrix P;
*>          row i of the matrix was interchanged with row IPIV(i).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is COMPLEX array, dimension (LDB,NRHS)
*>          On entry, the N-by-NRHS right hand side matrix B.
*>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization
*>                has been completed, but the factor U is exactly
*>                singular, and the solution has not been computed.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complexGBsolve
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The band storage scheme is illustrated by the following example, when
*>  M = N = 6, KL = 2, KU = 1:
*>
*>  On entry:                       On exit:
*>
*>      *    *    *    +    +    +       *    *    *   u14  u25  u36
*>      *    *    +    +    +    +       *    *   u13  u24  u35  u46
*>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
*>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
*>     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
*>     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
*>
*>  Array elements marked * are not used by the routine; elements marked
*>  + need not be set on entry, but are required by the routine to store
*>  elements of U because of fill-in resulting from the row interchanges.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE CGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )
*
*  -- LAPACK driver routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            INFO, KL, KU, LDAB, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            AB( LDAB, * ), B( LDB, * )
*     ..
*
*  =====================================================================
*
*     .. External Subroutines ..
      EXTERNAL           CGBTRF, CGBTRS, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( KL.LT.0 ) THEN
         INFO = -2
      ELSE IF( KU.LT.0 ) THEN
         INFO = -3
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDAB.LT.2*KL+KU+1 ) THEN
         INFO = -6
      ELSE IF( LDB.LT.MAX( N, 1 ) ) THEN
         INFO = -9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGBSV ', -INFO )
         RETURN
      END IF
*
*     Compute the LU factorization of the band matrix A.
*
      CALL CGBTRF( N, N, KL, KU, AB, LDAB, IPIV, INFO )
      IF( INFO.EQ.0 ) THEN
*
*        Solve the system A*X = B, overwriting B with X.
*
         CALL CGBTRS( 'No transpose', N, KL, KU, NRHS, AB, LDAB, IPIV,
     $                B, LDB, INFO )
      END IF
      RETURN
*
*     End of CGBSV
*
      END