summaryrefslogtreecommitdiff
path: root/SRC/VARIANTS/lu/CR/zgetrf.f
blob: 2dafefbf56b6e073d336f2b821af4ff5dab898ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
      SUBROUTINE ZGETRF ( M, N, A, LDA, IPIV, INFO)
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     March 2008
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX*16         A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  ZGETRF computes an LU factorization of a general M-by-N matrix A
*  using partial pivoting with row interchanges.
*
*  The factorization has the form
*     A = P * L * U
*  where P is a permutation matrix, L is lower triangular with unit
*  diagonal elements (lower trapezoidal if m > n), and U is upper
*  triangular (upper trapezoidal if m < n).
*
*  This is the Crout Level 3 BLAS version of the algorithm.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
*          On entry, the M-by-N matrix to be factored.
*          On exit, the factors L and U from the factorization
*          A = P*L*U; the unit diagonal elements of L are not stored.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  IPIV    (output) INTEGER array, dimension (min(M,N))
*          The pivot indices; for 1 <= i <= min(M,N), row i of the
*          matrix was interchanged with row IPIV(i).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
*                has been completed, but the factor U is exactly
*                singular, and division by zero will occur if it is used
*                to solve a system of equations.
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ONE
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IINFO, J, JB, NB
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMM, ZGETF2, ZLASWP, ZTRSM, XERBLA
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, MOD
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZGETRF', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
*     Determine the block size for this environment.
*
      NB = ILAENV( 1, 'ZGETRF', ' ', M, N, -1, -1 )
      IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
*
*        Use unblocked code.
*
         CALL ZGETF2( M, N, A, LDA, IPIV, INFO )
      ELSE
*
*        Use blocked code.
*
         DO 20 J = 1, MIN( M, N ), NB
            JB = MIN( MIN( M, N )-J+1, NB )
*
*           Update current block.
*
            CALL ZGEMM( 'No transpose', 'No transpose', 
     $                 M-J+1, JB, J-1, -ONE, 
     $                 A( J, 1 ), LDA, A( 1, J ), LDA, ONE,
     $                 A( J, J ), LDA )
            
*
*           Factor diagonal and subdiagonal blocks and test for exact
*           singularity.
*
            CALL ZGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )
*
*           Adjust INFO and the pivot indices.
*
            IF( INFO.EQ.0 .AND. IINFO.GT.0 )
     $         INFO = IINFO + J - 1
            DO 10 I = J, MIN( M, J+JB-1 )
               IPIV( I ) = J - 1 + IPIV( I )
   10       CONTINUE
*            
*           Apply interchanges to column 1:J-1            
*
            CALL ZLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )
*
            IF ( J+JB.LE.N ) THEN
*            
*              Apply interchanges to column J+JB:N            
*
               CALL ZLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1, 
     $                     IPIV, 1 )
*               
               CALL ZGEMM( 'No transpose', 'No transpose', 
     $                    JB, N-J-JB+1, J-1, -ONE, 
     $                    A( J, 1 ), LDA, A( 1, J+JB ), LDA, ONE,
     $                    A( J, J+JB ), LDA )
*
*              Compute block row of U.
*
               CALL ZTRSM( 'Left', 'Lower', 'No transpose', 'Unit',
     $                    JB, N-J-JB+1, ONE, A( J, J ), LDA, 
     $                    A( J, J+JB ), LDA )
            END IF

   20    CONTINUE

      END IF
      RETURN
*
*     End of ZGETRF
*
      END