summaryrefslogtreecommitdiff
path: root/BLAS/SRC/ztrsm.f
blob: 46a6afc77d7927b146514b7142baa519994b938d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
*> \brief \b ZTRSM
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
*
*       .. Scalar Arguments ..
*       COMPLEX*16 ALPHA
*       INTEGER LDA,LDB,M,N
*       CHARACTER DIAG,SIDE,TRANSA,UPLO
*       ..
*       .. Array Arguments ..
*       COMPLEX*16 A(LDA,*),B(LDB,*)
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZTRSM  solves one of the matrix equations
*>
*>    op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,
*>
*> where alpha is a scalar, X and B are m by n matrices, A is a unit, or
*> non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
*>
*>    op( A ) = A   or   op( A ) = A**T   or   op( A ) = A**H.
*>
*> The matrix X is overwritten on B.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] SIDE
*> \verbatim
*>          SIDE is CHARACTER*1
*>           On entry, SIDE specifies whether op( A ) appears on the left
*>           or right of X as follows:
*>
*>              SIDE = 'L' or 'l'   op( A )*X = alpha*B.
*>
*>              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>           On entry, UPLO specifies whether the matrix A is an upper or
*>           lower triangular matrix as follows:
*>
*>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*>
*>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*> \endverbatim
*>
*> \param[in] TRANSA
*> \verbatim
*>          TRANSA is CHARACTER*1
*>           On entry, TRANSA specifies the form of op( A ) to be used in
*>           the matrix multiplication as follows:
*>
*>              TRANSA = 'N' or 'n'   op( A ) = A.
*>
*>              TRANSA = 'T' or 't'   op( A ) = A**T.
*>
*>              TRANSA = 'C' or 'c'   op( A ) = A**H.
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*>          DIAG is CHARACTER*1
*>           On entry, DIAG specifies whether or not A is unit triangular
*>           as follows:
*>
*>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*>
*>              DIAG = 'N' or 'n'   A is not assumed to be unit
*>                                  triangular.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>           On entry, M specifies the number of rows of B. M must be at
*>           least zero.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           On entry, N specifies the number of columns of B.  N must be
*>           at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*>          ALPHA is COMPLEX*16
*>           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
*>           zero then  A is not referenced and  B need not be set before
*>           entry.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension ( LDA, k ),
*>           where k is m when SIDE = 'L' or 'l'
*>             and k is n when SIDE = 'R' or 'r'.
*>           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
*>           upper triangular part of the array  A must contain the upper
*>           triangular matrix  and the strictly lower triangular part of
*>           A is not referenced.
*>           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
*>           lower triangular part of the array  A must contain the lower
*>           triangular matrix  and the strictly upper triangular part of
*>           A is not referenced.
*>           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
*>           A  are not referenced either,  but are assumed to be  unity.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>           On entry, LDA specifies the first dimension of A as declared
*>           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
*>           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
*>           then LDA must be at least max( 1, n ).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension ( LDB, N )
*>           Before entry,  the leading  m by n part of the array  B must
*>           contain  the  right-hand  side  matrix  B,  and  on exit  is
*>           overwritten by the solution matrix  X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>           On entry, LDB specifies the first dimension of B as declared
*>           in  the  calling  (sub)  program.   LDB  must  be  at  least
*>           max( 1, m ).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16_blas_level3
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  Level 3 Blas routine.
*>
*>  -- Written on 8-February-1989.
*>     Jack Dongarra, Argonne National Laboratory.
*>     Iain Duff, AERE Harwell.
*>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*>     Sven Hammarling, Numerical Algorithms Group Ltd.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE ZTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
*
*  -- Reference BLAS level3 routine (version 3.7.0) --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      COMPLEX*16 ALPHA
      INTEGER LDA,LDB,M,N
      CHARACTER DIAG,SIDE,TRANSA,UPLO
*     ..
*     .. Array Arguments ..
      COMPLEX*16 A(LDA,*),B(LDB,*)
*     ..
*
*  =====================================================================
*
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC DCONJG,MAX
*     ..
*     .. Local Scalars ..
      COMPLEX*16 TEMP
      INTEGER I,INFO,J,K,NROWA
      LOGICAL LSIDE,NOCONJ,NOUNIT,UPPER
*     ..
*     .. Parameters ..
      COMPLEX*16 ONE
      PARAMETER (ONE= (1.0D+0,0.0D+0))
      COMPLEX*16 ZERO
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
*     ..
*
*     Test the input parameters.
*
      LSIDE = LSAME(SIDE,'L')
      IF (LSIDE) THEN
          NROWA = M
      ELSE
          NROWA = N
      END IF
      NOCONJ = LSAME(TRANSA,'T')
      NOUNIT = LSAME(DIAG,'N')
      UPPER = LSAME(UPLO,'U')
*
      INFO = 0
      IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
          INFO = 1
      ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
          INFO = 2
      ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND.
     +         (.NOT.LSAME(TRANSA,'T')) .AND.
     +         (.NOT.LSAME(TRANSA,'C'))) THEN
          INFO = 3
      ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN
          INFO = 4
      ELSE IF (M.LT.0) THEN
          INFO = 5
      ELSE IF (N.LT.0) THEN
          INFO = 6
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
          INFO = 9
      ELSE IF (LDB.LT.MAX(1,M)) THEN
          INFO = 11
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('ZTRSM ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF (M.EQ.0 .OR. N.EQ.0) RETURN
*
*     And when  alpha.eq.zero.
*
      IF (ALPHA.EQ.ZERO) THEN
          DO 20 J = 1,N
              DO 10 I = 1,M
                  B(I,J) = ZERO
   10         CONTINUE
   20     CONTINUE
          RETURN
      END IF
*
*     Start the operations.
*
      IF (LSIDE) THEN
          IF (LSAME(TRANSA,'N')) THEN
*
*           Form  B := alpha*inv( A )*B.
*
              IF (UPPER) THEN
                  DO 60 J = 1,N
                      IF (ALPHA.NE.ONE) THEN
                          DO 30 I = 1,M
                              B(I,J) = ALPHA*B(I,J)
   30                     CONTINUE
                      END IF
                      DO 50 K = M,1,-1
                          IF (B(K,J).NE.ZERO) THEN
                              IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
                              DO 40 I = 1,K - 1
                                  B(I,J) = B(I,J) - B(K,J)*A(I,K)
   40                         CONTINUE
                          END IF
   50                 CONTINUE
   60             CONTINUE
              ELSE
                  DO 100 J = 1,N
                      IF (ALPHA.NE.ONE) THEN
                          DO 70 I = 1,M
                              B(I,J) = ALPHA*B(I,J)
   70                     CONTINUE
                      END IF
                      DO 90 K = 1,M
                          IF (B(K,J).NE.ZERO) THEN
                              IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
                              DO 80 I = K + 1,M
                                  B(I,J) = B(I,J) - B(K,J)*A(I,K)
   80                         CONTINUE
                          END IF
   90                 CONTINUE
  100             CONTINUE
              END IF
          ELSE
*
*           Form  B := alpha*inv( A**T )*B
*           or    B := alpha*inv( A**H )*B.
*
              IF (UPPER) THEN
                  DO 140 J = 1,N
                      DO 130 I = 1,M
                          TEMP = ALPHA*B(I,J)
                          IF (NOCONJ) THEN
                              DO 110 K = 1,I - 1
                                  TEMP = TEMP - A(K,I)*B(K,J)
  110                         CONTINUE
                              IF (NOUNIT) TEMP = TEMP/A(I,I)
                          ELSE
                              DO 120 K = 1,I - 1
                                  TEMP = TEMP - DCONJG(A(K,I))*B(K,J)
  120                         CONTINUE
                              IF (NOUNIT) TEMP = TEMP/DCONJG(A(I,I))
                          END IF
                          B(I,J) = TEMP
  130                 CONTINUE
  140             CONTINUE
              ELSE
                  DO 180 J = 1,N
                      DO 170 I = M,1,-1
                          TEMP = ALPHA*B(I,J)
                          IF (NOCONJ) THEN
                              DO 150 K = I + 1,M
                                  TEMP = TEMP - A(K,I)*B(K,J)
  150                         CONTINUE
                              IF (NOUNIT) TEMP = TEMP/A(I,I)
                          ELSE
                              DO 160 K = I + 1,M
                                  TEMP = TEMP - DCONJG(A(K,I))*B(K,J)
  160                         CONTINUE
                              IF (NOUNIT) TEMP = TEMP/DCONJG(A(I,I))
                          END IF
                          B(I,J) = TEMP
  170                 CONTINUE
  180             CONTINUE
              END IF
          END IF
      ELSE
          IF (LSAME(TRANSA,'N')) THEN
*
*           Form  B := alpha*B*inv( A ).
*
              IF (UPPER) THEN
                  DO 230 J = 1,N
                      IF (ALPHA.NE.ONE) THEN
                          DO 190 I = 1,M
                              B(I,J) = ALPHA*B(I,J)
  190                     CONTINUE
                      END IF
                      DO 210 K = 1,J - 1
                          IF (A(K,J).NE.ZERO) THEN
                              DO 200 I = 1,M
                                  B(I,J) = B(I,J) - A(K,J)*B(I,K)
  200                         CONTINUE
                          END IF
  210                 CONTINUE
                      IF (NOUNIT) THEN
                          TEMP = ONE/A(J,J)
                          DO 220 I = 1,M
                              B(I,J) = TEMP*B(I,J)
  220                     CONTINUE
                      END IF
  230             CONTINUE
              ELSE
                  DO 280 J = N,1,-1
                      IF (ALPHA.NE.ONE) THEN
                          DO 240 I = 1,M
                              B(I,J) = ALPHA*B(I,J)
  240                     CONTINUE
                      END IF
                      DO 260 K = J + 1,N
                          IF (A(K,J).NE.ZERO) THEN
                              DO 250 I = 1,M
                                  B(I,J) = B(I,J) - A(K,J)*B(I,K)
  250                         CONTINUE
                          END IF
  260                 CONTINUE
                      IF (NOUNIT) THEN
                          TEMP = ONE/A(J,J)
                          DO 270 I = 1,M
                              B(I,J) = TEMP*B(I,J)
  270                     CONTINUE
                      END IF
  280             CONTINUE
              END IF
          ELSE
*
*           Form  B := alpha*B*inv( A**T )
*           or    B := alpha*B*inv( A**H ).
*
              IF (UPPER) THEN
                  DO 330 K = N,1,-1
                      IF (NOUNIT) THEN
                          IF (NOCONJ) THEN
                              TEMP = ONE/A(K,K)
                          ELSE
                              TEMP = ONE/DCONJG(A(K,K))
                          END IF
                          DO 290 I = 1,M
                              B(I,K) = TEMP*B(I,K)
  290                     CONTINUE
                      END IF
                      DO 310 J = 1,K - 1
                          IF (A(J,K).NE.ZERO) THEN
                              IF (NOCONJ) THEN
                                  TEMP = A(J,K)
                              ELSE
                                  TEMP = DCONJG(A(J,K))
                              END IF
                              DO 300 I = 1,M
                                  B(I,J) = B(I,J) - TEMP*B(I,K)
  300                         CONTINUE
                          END IF
  310                 CONTINUE
                      IF (ALPHA.NE.ONE) THEN
                          DO 320 I = 1,M
                              B(I,K) = ALPHA*B(I,K)
  320                     CONTINUE
                      END IF
  330             CONTINUE
              ELSE
                  DO 380 K = 1,N
                      IF (NOUNIT) THEN
                          IF (NOCONJ) THEN
                              TEMP = ONE/A(K,K)
                          ELSE
                              TEMP = ONE/DCONJG(A(K,K))
                          END IF
                          DO 340 I = 1,M
                              B(I,K) = TEMP*B(I,K)
  340                     CONTINUE
                      END IF
                      DO 360 J = K + 1,N
                          IF (A(J,K).NE.ZERO) THEN
                              IF (NOCONJ) THEN
                                  TEMP = A(J,K)
                              ELSE
                                  TEMP = DCONJG(A(J,K))
                              END IF
                              DO 350 I = 1,M
                                  B(I,J) = B(I,J) - TEMP*B(I,K)
  350                         CONTINUE
                          END IF
  360                 CONTINUE
                      IF (ALPHA.NE.ONE) THEN
                          DO 370 I = 1,M
                              B(I,K) = ALPHA*B(I,K)
  370                     CONTINUE
                      END IF
  380             CONTINUE
              END IF
          END IF
      END IF
*
      RETURN
*
*     End of ZTRSM .
*
      END