summaryrefslogtreecommitdiff
path: root/BLAS/SRC/ztpsv.f
blob: 5163a12dc4894b7613c57ca16c29e08992d3aac6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
      SUBROUTINE ZTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
*     .. Scalar Arguments ..
      INTEGER INCX,N
      CHARACTER DIAG,TRANS,UPLO
*     ..
*     .. Array Arguments ..
      DOUBLE COMPLEX AP(*),X(*)
*     ..
*
*  Purpose
*  =======
*
*  ZTPSV  solves one of the systems of equations
*
*     A*x = b,   or   A'*x = b,   or   conjg( A' )*x = b,
*
*  where b and x are n element vectors and A is an n by n unit, or
*  non-unit, upper or lower triangular matrix, supplied in packed form.
*
*  No test for singularity or near-singularity is included in this
*  routine. Such tests must be performed before calling this routine.
*
*  Arguments
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry, TRANS specifies the equations to be solved as
*           follows:
*
*              TRANS = 'N' or 'n'   A*x = b.
*
*              TRANS = 'T' or 't'   A'*x = b.
*
*              TRANS = 'C' or 'c'   conjg( A' )*x = b.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit
*           triangular as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  AP     - COMPLEX*16       array of DIMENSION at least
*           ( ( n*( n + 1 ) )/2 ).
*           Before entry with  UPLO = 'U' or 'u', the array AP must
*           contain the upper triangular matrix packed sequentially,
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
*           respectively, and so on.
*           Before entry with UPLO = 'L' or 'l', the array AP must
*           contain the lower triangular matrix packed sequentially,
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
*           respectively, and so on.
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
*           A are not referenced, but are assumed to be unity.
*           Unchanged on exit.
*
*  X      - COMPLEX*16       array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element right-hand side vector b. On exit, X is overwritten
*           with the solution vector x.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
      DOUBLE COMPLEX ZERO
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
*     ..
*     .. Local Scalars ..
      DOUBLE COMPLEX TEMP
      INTEGER I,INFO,IX,J,JX,K,KK,KX
      LOGICAL NOCONJ,NOUNIT
*     ..
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC DCONJG
*     ..
*
*     Test the input parameters.
*
      INFO = 0
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
          INFO = 1
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
     +         .NOT.LSAME(TRANS,'C')) THEN
          INFO = 2
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
          INFO = 3
      ELSE IF (N.LT.0) THEN
          INFO = 4
      ELSE IF (INCX.EQ.0) THEN
          INFO = 7
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('ZTPSV ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF (N.EQ.0) RETURN
*
      NOCONJ = LSAME(TRANS,'T')
      NOUNIT = LSAME(DIAG,'N')
*
*     Set up the start point in X if the increment is not unity. This
*     will be  ( N - 1 )*INCX  too small for descending loops.
*
      IF (INCX.LE.0) THEN
          KX = 1 - (N-1)*INCX
      ELSE IF (INCX.NE.1) THEN
          KX = 1
      END IF
*
*     Start the operations. In this version the elements of AP are
*     accessed sequentially with one pass through AP.
*
      IF (LSAME(TRANS,'N')) THEN
*
*        Form  x := inv( A )*x.
*
          IF (LSAME(UPLO,'U')) THEN
              KK = (N* (N+1))/2
              IF (INCX.EQ.1) THEN
                  DO 20 J = N,1,-1
                      IF (X(J).NE.ZERO) THEN
                          IF (NOUNIT) X(J) = X(J)/AP(KK)
                          TEMP = X(J)
                          K = KK - 1
                          DO 10 I = J - 1,1,-1
                              X(I) = X(I) - TEMP*AP(K)
                              K = K - 1
   10                     CONTINUE
                      END IF
                      KK = KK - J
   20             CONTINUE
              ELSE
                  JX = KX + (N-1)*INCX
                  DO 40 J = N,1,-1
                      IF (X(JX).NE.ZERO) THEN
                          IF (NOUNIT) X(JX) = X(JX)/AP(KK)
                          TEMP = X(JX)
                          IX = JX
                          DO 30 K = KK - 1,KK - J + 1,-1
                              IX = IX - INCX
                              X(IX) = X(IX) - TEMP*AP(K)
   30                     CONTINUE
                      END IF
                      JX = JX - INCX
                      KK = KK - J
   40             CONTINUE
              END IF
          ELSE
              KK = 1
              IF (INCX.EQ.1) THEN
                  DO 60 J = 1,N
                      IF (X(J).NE.ZERO) THEN
                          IF (NOUNIT) X(J) = X(J)/AP(KK)
                          TEMP = X(J)
                          K = KK + 1
                          DO 50 I = J + 1,N
                              X(I) = X(I) - TEMP*AP(K)
                              K = K + 1
   50                     CONTINUE
                      END IF
                      KK = KK + (N-J+1)
   60             CONTINUE
              ELSE
                  JX = KX
                  DO 80 J = 1,N
                      IF (X(JX).NE.ZERO) THEN
                          IF (NOUNIT) X(JX) = X(JX)/AP(KK)
                          TEMP = X(JX)
                          IX = JX
                          DO 70 K = KK + 1,KK + N - J
                              IX = IX + INCX
                              X(IX) = X(IX) - TEMP*AP(K)
   70                     CONTINUE
                      END IF
                      JX = JX + INCX
                      KK = KK + (N-J+1)
   80             CONTINUE
              END IF
          END IF
      ELSE
*
*        Form  x := inv( A' )*x  or  x := inv( conjg( A' ) )*x.
*
          IF (LSAME(UPLO,'U')) THEN
              KK = 1
              IF (INCX.EQ.1) THEN
                  DO 110 J = 1,N
                      TEMP = X(J)
                      K = KK
                      IF (NOCONJ) THEN
                          DO 90 I = 1,J - 1
                              TEMP = TEMP - AP(K)*X(I)
                              K = K + 1
   90                     CONTINUE
                          IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
                      ELSE
                          DO 100 I = 1,J - 1
                              TEMP = TEMP - DCONJG(AP(K))*X(I)
                              K = K + 1
  100                     CONTINUE
                          IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK+J-1))
                      END IF
                      X(J) = TEMP
                      KK = KK + J
  110             CONTINUE
              ELSE
                  JX = KX
                  DO 140 J = 1,N
                      TEMP = X(JX)
                      IX = KX
                      IF (NOCONJ) THEN
                          DO 120 K = KK,KK + J - 2
                              TEMP = TEMP - AP(K)*X(IX)
                              IX = IX + INCX
  120                     CONTINUE
                          IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
                      ELSE
                          DO 130 K = KK,KK + J - 2
                              TEMP = TEMP - DCONJG(AP(K))*X(IX)
                              IX = IX + INCX
  130                     CONTINUE
                          IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK+J-1))
                      END IF
                      X(JX) = TEMP
                      JX = JX + INCX
                      KK = KK + J
  140             CONTINUE
              END IF
          ELSE
              KK = (N* (N+1))/2
              IF (INCX.EQ.1) THEN
                  DO 170 J = N,1,-1
                      TEMP = X(J)
                      K = KK
                      IF (NOCONJ) THEN
                          DO 150 I = N,J + 1,-1
                              TEMP = TEMP - AP(K)*X(I)
                              K = K - 1
  150                     CONTINUE
                          IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
                      ELSE
                          DO 160 I = N,J + 1,-1
                              TEMP = TEMP - DCONJG(AP(K))*X(I)
                              K = K - 1
  160                     CONTINUE
                          IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK-N+J))
                      END IF
                      X(J) = TEMP
                      KK = KK - (N-J+1)
  170             CONTINUE
              ELSE
                  KX = KX + (N-1)*INCX
                  JX = KX
                  DO 200 J = N,1,-1
                      TEMP = X(JX)
                      IX = KX
                      IF (NOCONJ) THEN
                          DO 180 K = KK,KK - (N- (J+1)),-1
                              TEMP = TEMP - AP(K)*X(IX)
                              IX = IX - INCX
  180                     CONTINUE
                          IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
                      ELSE
                          DO 190 K = KK,KK - (N- (J+1)),-1
                              TEMP = TEMP - DCONJG(AP(K))*X(IX)
                              IX = IX - INCX
  190                     CONTINUE
                          IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK-N+J))
                      END IF
                      X(JX) = TEMP
                      JX = JX - INCX
                      KK = KK - (N-J+1)
  200             CONTINUE
              END IF
          END IF
      END IF
*
      RETURN
*
*     End of ZTPSV .
*
      END