summaryrefslogtreecommitdiff
path: root/BLAS/SRC/zherk.f
blob: d181ca0a8c2922b659207e0cb80ac892405a62eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
*> \brief \b ZHERK
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
*
*       .. Scalar Arguments ..
*       DOUBLE PRECISION ALPHA,BETA
*       INTEGER K,LDA,LDC,N
*       CHARACTER TRANS,UPLO
*       ..
*       .. Array Arguments ..
*       COMPLEX*16 A(LDA,*),C(LDC,*)
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZHERK  performs one of the hermitian rank k operations
*>
*>    C := alpha*A*A**H + beta*C,
*>
*> or
*>
*>    C := alpha*A**H*A + beta*C,
*>
*> where  alpha and beta  are  real scalars,  C is an  n by n  hermitian
*> matrix and  A  is an  n by k  matrix in the  first case and a  k by n
*> matrix in the second case.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
*>           triangular  part  of the  array  C  is to be  referenced  as
*>           follows:
*>
*>              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
*>                                  is to be referenced.
*>
*>              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
*>                                  is to be referenced.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>           On entry,  TRANS  specifies the operation to be performed as
*>           follows:
*>
*>              TRANS = 'N' or 'n'   C := alpha*A*A**H + beta*C.
*>
*>              TRANS = 'C' or 'c'   C := alpha*A**H*A + beta*C.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           On entry,  N specifies the order of the matrix C.  N must be
*>           at least zero.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
*>           of  columns   of  the   matrix   A,   and  on   entry   with
*>           TRANS = 'C' or 'c',  K  specifies  the number of rows of the
*>           matrix A.  K must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*>          ALPHA is DOUBLE PRECISION .
*>           On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
*>           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
*>           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
*>           part of the array  A  must contain the matrix  A,  otherwise
*>           the leading  k by n  part of the array  A  must contain  the
*>           matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>           On entry, LDA specifies the first dimension of A as declared
*>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
*>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
*>           be at least  max( 1, k ).
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*>          BETA is DOUBLE PRECISION.
*>           On entry, BETA specifies the scalar beta.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is COMPLEX*16 array of DIMENSION ( LDC, n ).
*>           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
*>           upper triangular part of the array C must contain the upper
*>           triangular part  of the  hermitian matrix  and the strictly
*>           lower triangular part of C is not referenced.  On exit, the
*>           upper triangular part of the array  C is overwritten by the
*>           upper triangular part of the updated matrix.
*>           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
*>           lower triangular part of the array C must contain the lower
*>           triangular part  of the  hermitian matrix  and the strictly
*>           upper triangular part of C is not referenced.  On exit, the
*>           lower triangular part of the array  C is overwritten by the
*>           lower triangular part of the updated matrix.
*>           Note that the imaginary parts of the diagonal elements need
*>           not be set,  they are assumed to be zero,  and on exit they
*>           are set to zero.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>           On entry, LDC specifies the first dimension of C as declared
*>           in  the  calling  (sub)  program.   LDC  must  be  at  least
*>           max( 1, n ).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16_blas_level3
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  Level 3 Blas routine.
*>
*>  -- Written on 8-February-1989.
*>     Jack Dongarra, Argonne National Laboratory.
*>     Iain Duff, AERE Harwell.
*>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*>     Sven Hammarling, Numerical Algorithms Group Ltd.
*>
*>  -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1.
*>     Ed Anderson, Cray Research Inc.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE ZHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
*
*  -- Reference BLAS level3 routine (version 3.7.0) --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      DOUBLE PRECISION ALPHA,BETA
      INTEGER K,LDA,LDC,N
      CHARACTER TRANS,UPLO
*     ..
*     .. Array Arguments ..
      COMPLEX*16 A(LDA,*),C(LDC,*)
*     ..
*
*  =====================================================================
*
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC DBLE,DCMPLX,DCONJG,MAX
*     ..
*     .. Local Scalars ..
      COMPLEX*16 TEMP
      DOUBLE PRECISION RTEMP
      INTEGER I,INFO,J,L,NROWA
      LOGICAL UPPER
*     ..
*     .. Parameters ..
      DOUBLE PRECISION ONE,ZERO
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
*     ..
*
*     Test the input parameters.
*
      IF (LSAME(TRANS,'N')) THEN
          NROWA = N
      ELSE
          NROWA = K
      END IF
      UPPER = LSAME(UPLO,'U')
*
      INFO = 0
      IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
          INFO = 1
      ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND.
     +         (.NOT.LSAME(TRANS,'C'))) THEN
          INFO = 2
      ELSE IF (N.LT.0) THEN
          INFO = 3
      ELSE IF (K.LT.0) THEN
          INFO = 4
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
          INFO = 7
      ELSE IF (LDC.LT.MAX(1,N)) THEN
          INFO = 10
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('ZHERK ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR.
     +    (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
*
*     And when  alpha.eq.zero.
*
      IF (ALPHA.EQ.ZERO) THEN
          IF (UPPER) THEN
              IF (BETA.EQ.ZERO) THEN
                  DO 20 J = 1,N
                      DO 10 I = 1,J
                          C(I,J) = ZERO
   10                 CONTINUE
   20             CONTINUE
              ELSE
                  DO 40 J = 1,N
                      DO 30 I = 1,J - 1
                          C(I,J) = BETA*C(I,J)
   30                 CONTINUE
                      C(J,J) = BETA*DBLE(C(J,J))
   40             CONTINUE
              END IF
          ELSE
              IF (BETA.EQ.ZERO) THEN
                  DO 60 J = 1,N
                      DO 50 I = J,N
                          C(I,J) = ZERO
   50                 CONTINUE
   60             CONTINUE
              ELSE
                  DO 80 J = 1,N
                      C(J,J) = BETA*DBLE(C(J,J))
                      DO 70 I = J + 1,N
                          C(I,J) = BETA*C(I,J)
   70                 CONTINUE
   80             CONTINUE
              END IF
          END IF
          RETURN
      END IF
*
*     Start the operations.
*
      IF (LSAME(TRANS,'N')) THEN
*
*        Form  C := alpha*A*A**H + beta*C.
*
          IF (UPPER) THEN
              DO 130 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 90 I = 1,J
                          C(I,J) = ZERO
   90                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 100 I = 1,J - 1
                          C(I,J) = BETA*C(I,J)
  100                 CONTINUE
                      C(J,J) = BETA*DBLE(C(J,J))
                  ELSE
                      C(J,J) = DBLE(C(J,J))
                  END IF
                  DO 120 L = 1,K
                      IF (A(J,L).NE.DCMPLX(ZERO)) THEN
                          TEMP = ALPHA*DCONJG(A(J,L))
                          DO 110 I = 1,J - 1
                              C(I,J) = C(I,J) + TEMP*A(I,L)
  110                     CONTINUE
                          C(J,J) = DBLE(C(J,J)) + DBLE(TEMP*A(I,L))
                      END IF
  120             CONTINUE
  130         CONTINUE
          ELSE
              DO 180 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 140 I = J,N
                          C(I,J) = ZERO
  140                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      C(J,J) = BETA*DBLE(C(J,J))
                      DO 150 I = J + 1,N
                          C(I,J) = BETA*C(I,J)
  150                 CONTINUE
                  ELSE
                      C(J,J) = DBLE(C(J,J))
                  END IF
                  DO 170 L = 1,K
                      IF (A(J,L).NE.DCMPLX(ZERO)) THEN
                          TEMP = ALPHA*DCONJG(A(J,L))
                          C(J,J) = DBLE(C(J,J)) + DBLE(TEMP*A(J,L))
                          DO 160 I = J + 1,N
                              C(I,J) = C(I,J) + TEMP*A(I,L)
  160                     CONTINUE
                      END IF
  170             CONTINUE
  180         CONTINUE
          END IF
      ELSE
*
*        Form  C := alpha*A**H*A + beta*C.
*
          IF (UPPER) THEN
              DO 220 J = 1,N
                  DO 200 I = 1,J - 1
                      TEMP = ZERO
                      DO 190 L = 1,K
                          TEMP = TEMP + DCONJG(A(L,I))*A(L,J)
  190                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  200             CONTINUE
                  RTEMP = ZERO
                  DO 210 L = 1,K
                      RTEMP = RTEMP + DCONJG(A(L,J))*A(L,J)
  210             CONTINUE
                  IF (BETA.EQ.ZERO) THEN
                      C(J,J) = ALPHA*RTEMP
                  ELSE
                      C(J,J) = ALPHA*RTEMP + BETA*DBLE(C(J,J))
                  END IF
  220         CONTINUE
          ELSE
              DO 260 J = 1,N
                  RTEMP = ZERO
                  DO 230 L = 1,K
                      RTEMP = RTEMP + DCONJG(A(L,J))*A(L,J)
  230             CONTINUE
                  IF (BETA.EQ.ZERO) THEN
                      C(J,J) = ALPHA*RTEMP
                  ELSE
                      C(J,J) = ALPHA*RTEMP + BETA*DBLE(C(J,J))
                  END IF
                  DO 250 I = J + 1,N
                      TEMP = ZERO
                      DO 240 L = 1,K
                          TEMP = TEMP + DCONJG(A(L,I))*A(L,J)
  240                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  250             CONTINUE
  260         CONTINUE
          END IF
      END IF
*
      RETURN
*
*     End of ZHERK .
*
      END