summaryrefslogtreecommitdiff
path: root/BLAS/SRC/zgerc.f
blob: cf8e17d357f959017dc94013850a2e24923ef43d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
*> \brief \b ZGERC
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
*
*       .. Scalar Arguments ..
*       COMPLEX*16 ALPHA
*       INTEGER INCX,INCY,LDA,M,N
*       ..
*       .. Array Arguments ..
*       COMPLEX*16 A(LDA,*),X(*),Y(*)
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZGERC  performs the rank 1 operation
*>
*>    A := alpha*x*y**H + A,
*>
*> where alpha is a scalar, x is an m element vector, y is an n element
*> vector and A is an m by n matrix.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>           On entry, M specifies the number of rows of the matrix A.
*>           M must be at least zero.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           On entry, N specifies the number of columns of the matrix A.
*>           N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*>          ALPHA is COMPLEX*16
*>           On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is COMPLEX*16 array of dimension at least
*>           ( 1 + ( m - 1 )*abs( INCX ) ).
*>           Before entry, the incremented array X must contain the m
*>           element vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*>          INCX is INTEGER
*>           On entry, INCX specifies the increment for the elements of
*>           X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in] Y
*> \verbatim
*>          Y is COMPLEX*16 array of dimension at least
*>           ( 1 + ( n - 1 )*abs( INCY ) ).
*>           Before entry, the incremented array Y must contain the n
*>           element vector y.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*>          INCY is INTEGER
*>           On entry, INCY specifies the increment for the elements of
*>           Y. INCY must not be zero.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array of DIMENSION ( LDA, n ).
*>           Before entry, the leading m by n part of the array A must
*>           contain the matrix of coefficients. On exit, A is
*>           overwritten by the updated matrix.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>           On entry, LDA specifies the first dimension of A as declared
*>           in the calling (sub) program. LDA must be at least
*>           max( 1, m ).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16_blas_level2
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  Level 2 Blas routine.
*>
*>  -- Written on 22-October-1986.
*>     Jack Dongarra, Argonne National Lab.
*>     Jeremy Du Croz, Nag Central Office.
*>     Sven Hammarling, Nag Central Office.
*>     Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE ZGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
*
*  -- Reference BLAS level2 routine (version 3.7.0) --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      COMPLEX*16 ALPHA
      INTEGER INCX,INCY,LDA,M,N
*     ..
*     .. Array Arguments ..
      COMPLEX*16 A(LDA,*),X(*),Y(*)
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16 ZERO
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
*     ..
*     .. Local Scalars ..
      COMPLEX*16 TEMP
      INTEGER I,INFO,IX,J,JY,KX
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC DCONJG,MAX
*     ..
*
*     Test the input parameters.
*
      INFO = 0
      IF (M.LT.0) THEN
          INFO = 1
      ELSE IF (N.LT.0) THEN
          INFO = 2
      ELSE IF (INCX.EQ.0) THEN
          INFO = 5
      ELSE IF (INCY.EQ.0) THEN
          INFO = 7
      ELSE IF (LDA.LT.MAX(1,M)) THEN
          INFO = 9
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('ZGERC ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through A.
*
      IF (INCY.GT.0) THEN
          JY = 1
      ELSE
          JY = 1 - (N-1)*INCY
      END IF
      IF (INCX.EQ.1) THEN
          DO 20 J = 1,N
              IF (Y(JY).NE.ZERO) THEN
                  TEMP = ALPHA*DCONJG(Y(JY))
                  DO 10 I = 1,M
                      A(I,J) = A(I,J) + X(I)*TEMP
   10             CONTINUE
              END IF
              JY = JY + INCY
   20     CONTINUE
      ELSE
          IF (INCX.GT.0) THEN
              KX = 1
          ELSE
              KX = 1 - (M-1)*INCX
          END IF
          DO 40 J = 1,N
              IF (Y(JY).NE.ZERO) THEN
                  TEMP = ALPHA*DCONJG(Y(JY))
                  IX = KX
                  DO 30 I = 1,M
                      A(I,J) = A(I,J) + X(IX)*TEMP
                      IX = IX + INCX
   30             CONTINUE
              END IF
              JY = JY + INCY
   40     CONTINUE
      END IF
*
      RETURN
*
*     End of ZGERC .
*
      END