summaryrefslogtreecommitdiff
path: root/BLAS/SRC/dsymm.f
blob: 6556777ee8fb0f074ba5a64fe96173df77cf8fb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
      SUBROUTINE DSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*     .. Scalar Arguments ..
      DOUBLE PRECISION ALPHA,BETA
      INTEGER LDA,LDB,LDC,M,N
      CHARACTER SIDE,UPLO
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
*     ..
*
*  Purpose
*  =======
*
*  DSYMM  performs one of the matrix-matrix operations
*
*     C := alpha*A*B + beta*C,
*
*  or
*
*     C := alpha*B*A + beta*C,
*
*  where alpha and beta are scalars,  A is a symmetric matrix and  B and
*  C are  m by n matrices.
*
*  Arguments
*  ==========
*
*  SIDE   - CHARACTER*1.
*           On entry,  SIDE  specifies whether  the  symmetric matrix  A
*           appears on the  left or right  in the  operation as follows:
*
*              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
*
*              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
*
*           Unchanged on exit.
*
*  UPLO   - CHARACTER*1.
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
*           triangular  part  of  the  symmetric  matrix   A  is  to  be
*           referenced as follows:
*
*              UPLO = 'U' or 'u'   Only the upper triangular part of the
*                                  symmetric matrix is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the lower triangular part of the
*                                  symmetric matrix is to be referenced.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry,  M  specifies the number of rows of the matrix  C.
*           M  must be at least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of the matrix C.
*           N  must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - DOUBLE PRECISION.
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
*           m  when  SIDE = 'L' or 'l'  and is  n otherwise.
*           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
*           the array  A  must contain the  symmetric matrix,  such that
*           when  UPLO = 'U' or 'u', the leading m by m upper triangular
*           part of the array  A  must contain the upper triangular part
*           of the  symmetric matrix and the  strictly  lower triangular
*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
*           the leading  m by m  lower triangular part  of the  array  A
*           must  contain  the  lower triangular part  of the  symmetric
*           matrix and the  strictly upper triangular part of  A  is not
*           referenced.
*           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
*           the array  A  must contain the  symmetric matrix,  such that
*           when  UPLO = 'U' or 'u', the leading n by n upper triangular
*           part of the array  A  must contain the upper triangular part
*           of the  symmetric matrix and the  strictly  lower triangular
*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
*           the leading  n by n  lower triangular part  of the  array  A
*           must  contain  the  lower triangular part  of the  symmetric
*           matrix and the  strictly upper triangular part of  A  is not
*           referenced.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
*           LDA must be at least  max( 1, m ), otherwise  LDA must be at
*           least  max( 1, n ).
*           Unchanged on exit.
*
*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
*           Before entry, the leading  m by n part of the array  B  must
*           contain the matrix B.
*           Unchanged on exit.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*  BETA   - DOUBLE PRECISION.
*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*           supplied as zero then C need not be set on input.
*           Unchanged on exit.
*
*  C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
*           Before entry, the leading  m by n  part of the array  C must
*           contain the matrix  C,  except when  beta  is zero, in which
*           case C need not be set on entry.
*           On exit, the array  C  is overwritten by the  m by n updated
*           matrix.
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC MAX
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION TEMP1,TEMP2
      INTEGER I,INFO,J,K,NROWA
      LOGICAL UPPER
*     ..
*     .. Parameters ..
      DOUBLE PRECISION ONE,ZERO
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
*     ..
*
*     Set NROWA as the number of rows of A.
*
      IF (LSAME(SIDE,'L')) THEN
          NROWA = M
      ELSE
          NROWA = N
      END IF
      UPPER = LSAME(UPLO,'U')
*
*     Test the input parameters.
*
      INFO = 0
      IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
          INFO = 1
      ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
          INFO = 2
      ELSE IF (M.LT.0) THEN
          INFO = 3
      ELSE IF (N.LT.0) THEN
          INFO = 4
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
          INFO = 7
      ELSE IF (LDB.LT.MAX(1,M)) THEN
          INFO = 9
      ELSE IF (LDC.LT.MAX(1,M)) THEN
          INFO = 12
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('DSYMM ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
     +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
*     And when  alpha.eq.zero.
*
      IF (ALPHA.EQ.ZERO) THEN
          IF (BETA.EQ.ZERO) THEN
              DO 20 J = 1,N
                  DO 10 I = 1,M
                      C(I,J) = ZERO
   10             CONTINUE
   20         CONTINUE
          ELSE
              DO 40 J = 1,N
                  DO 30 I = 1,M
                      C(I,J) = BETA*C(I,J)
   30             CONTINUE
   40         CONTINUE
          END IF
          RETURN
      END IF
*
*     Start the operations.
*
      IF (LSAME(SIDE,'L')) THEN
*
*        Form  C := alpha*A*B + beta*C.
*
          IF (UPPER) THEN
              DO 70 J = 1,N
                  DO 60 I = 1,M
                      TEMP1 = ALPHA*B(I,J)
                      TEMP2 = ZERO
                      DO 50 K = 1,I - 1
                          C(K,J) = C(K,J) + TEMP1*A(K,I)
                          TEMP2 = TEMP2 + B(K,J)*A(K,I)
   50                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2
                      ELSE
                          C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) +
     +                             ALPHA*TEMP2
                      END IF
   60             CONTINUE
   70         CONTINUE
          ELSE
              DO 100 J = 1,N
                  DO 90 I = M,1,-1
                      TEMP1 = ALPHA*B(I,J)
                      TEMP2 = ZERO
                      DO 80 K = I + 1,M
                          C(K,J) = C(K,J) + TEMP1*A(K,I)
                          TEMP2 = TEMP2 + B(K,J)*A(K,I)
   80                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2
                      ELSE
                          C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) +
     +                             ALPHA*TEMP2
                      END IF
   90             CONTINUE
  100         CONTINUE
          END IF
      ELSE
*
*        Form  C := alpha*B*A + beta*C.
*
          DO 170 J = 1,N
              TEMP1 = ALPHA*A(J,J)
              IF (BETA.EQ.ZERO) THEN
                  DO 110 I = 1,M
                      C(I,J) = TEMP1*B(I,J)
  110             CONTINUE
              ELSE
                  DO 120 I = 1,M
                      C(I,J) = BETA*C(I,J) + TEMP1*B(I,J)
  120             CONTINUE
              END IF
              DO 140 K = 1,J - 1
                  IF (UPPER) THEN
                      TEMP1 = ALPHA*A(K,J)
                  ELSE
                      TEMP1 = ALPHA*A(J,K)
                  END IF
                  DO 130 I = 1,M
                      C(I,J) = C(I,J) + TEMP1*B(I,K)
  130             CONTINUE
  140         CONTINUE
              DO 160 K = J + 1,N
                  IF (UPPER) THEN
                      TEMP1 = ALPHA*A(J,K)
                  ELSE
                      TEMP1 = ALPHA*A(K,J)
                  END IF
                  DO 150 I = 1,M
                      C(I,J) = C(I,J) + TEMP1*B(I,K)
  150             CONTINUE
  160         CONTINUE
  170     CONTINUE
      END IF
*
      RETURN
*
*     End of DSYMM .
*
      END