summaryrefslogtreecommitdiff
path: root/BLAS/SRC/dspmv.f
blob: f6e121e7651cb60d425fae48f146f8e25e841651 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
      SUBROUTINE DSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
*     .. Scalar Arguments ..
      DOUBLE PRECISION ALPHA,BETA
      INTEGER INCX,INCY,N
      CHARACTER UPLO
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION AP(*),X(*),Y(*)
*     ..
*
*  Purpose
*  =======
*
*  DSPMV  performs the matrix-vector operation
*
*     y := alpha*A*x + beta*y,
*
*  where alpha and beta are scalars, x and y are n element vectors and
*  A is an n by n symmetric matrix, supplied in packed form.
*
*  Arguments
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the upper or lower
*           triangular part of the matrix A is supplied in the packed
*           array AP as follows:
*
*              UPLO = 'U' or 'u'   The upper triangular part of A is
*                                  supplied in AP.
*
*              UPLO = 'L' or 'l'   The lower triangular part of A is
*                                  supplied in AP.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - DOUBLE PRECISION.
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  AP     - DOUBLE PRECISION array of DIMENSION at least
*           ( ( n*( n + 1 ) )/2 ).
*           Before entry with UPLO = 'U' or 'u', the array AP must
*           contain the upper triangular part of the symmetric matrix
*           packed sequentially, column by column, so that AP( 1 )
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
*           and a( 2, 2 ) respectively, and so on.
*           Before entry with UPLO = 'L' or 'l', the array AP must
*           contain the lower triangular part of the symmetric matrix
*           packed sequentially, column by column, so that AP( 1 )
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
*           and a( 3, 1 ) respectively, and so on.
*           Unchanged on exit.
*
*  X      - DOUBLE PRECISION array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  BETA   - DOUBLE PRECISION.
*           On entry, BETA specifies the scalar beta. When BETA is
*           supplied as zero then Y need not be set on input.
*           Unchanged on exit.
*
*  Y      - DOUBLE PRECISION array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCY ) ).
*           Before entry, the incremented array Y must contain the n
*           element vector y. On exit, Y is overwritten by the updated
*           vector y.
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*  Further Details
*  ===============
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION ONE,ZERO
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION TEMP1,TEMP2
      INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
*     ..
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*
*     Test the input parameters.
*
      INFO = 0
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
          INFO = 1
      ELSE IF (N.LT.0) THEN
          INFO = 2
      ELSE IF (INCX.EQ.0) THEN
          INFO = 6
      ELSE IF (INCY.EQ.0) THEN
          INFO = 9
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('DSPMV ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
*     Set up the start points in  X  and  Y.
*
      IF (INCX.GT.0) THEN
          KX = 1
      ELSE
          KX = 1 - (N-1)*INCX
      END IF
      IF (INCY.GT.0) THEN
          KY = 1
      ELSE
          KY = 1 - (N-1)*INCY
      END IF
*
*     Start the operations. In this version the elements of the array AP
*     are accessed sequentially with one pass through AP.
*
*     First form  y := beta*y.
*
      IF (BETA.NE.ONE) THEN
          IF (INCY.EQ.1) THEN
              IF (BETA.EQ.ZERO) THEN
                  DO 10 I = 1,N
                      Y(I) = ZERO
   10             CONTINUE
              ELSE
                  DO 20 I = 1,N
                      Y(I) = BETA*Y(I)
   20             CONTINUE
              END IF
          ELSE
              IY = KY
              IF (BETA.EQ.ZERO) THEN
                  DO 30 I = 1,N
                      Y(IY) = ZERO
                      IY = IY + INCY
   30             CONTINUE
              ELSE
                  DO 40 I = 1,N
                      Y(IY) = BETA*Y(IY)
                      IY = IY + INCY
   40             CONTINUE
              END IF
          END IF
      END IF
      IF (ALPHA.EQ.ZERO) RETURN
      KK = 1
      IF (LSAME(UPLO,'U')) THEN
*
*        Form  y  when AP contains the upper triangle.
*
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
              DO 60 J = 1,N
                  TEMP1 = ALPHA*X(J)
                  TEMP2 = ZERO
                  K = KK
                  DO 50 I = 1,J - 1
                      Y(I) = Y(I) + TEMP1*AP(K)
                      TEMP2 = TEMP2 + AP(K)*X(I)
                      K = K + 1
   50             CONTINUE
                  Y(J) = Y(J) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2
                  KK = KK + J
   60         CONTINUE
          ELSE
              JX = KX
              JY = KY
              DO 80 J = 1,N
                  TEMP1 = ALPHA*X(JX)
                  TEMP2 = ZERO
                  IX = KX
                  IY = KY
                  DO 70 K = KK,KK + J - 2
                      Y(IY) = Y(IY) + TEMP1*AP(K)
                      TEMP2 = TEMP2 + AP(K)*X(IX)
                      IX = IX + INCX
                      IY = IY + INCY
   70             CONTINUE
                  Y(JY) = Y(JY) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2
                  JX = JX + INCX
                  JY = JY + INCY
                  KK = KK + J
   80         CONTINUE
          END IF
      ELSE
*
*        Form  y  when AP contains the lower triangle.
*
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
              DO 100 J = 1,N
                  TEMP1 = ALPHA*X(J)
                  TEMP2 = ZERO
                  Y(J) = Y(J) + TEMP1*AP(KK)
                  K = KK + 1
                  DO 90 I = J + 1,N
                      Y(I) = Y(I) + TEMP1*AP(K)
                      TEMP2 = TEMP2 + AP(K)*X(I)
                      K = K + 1
   90             CONTINUE
                  Y(J) = Y(J) + ALPHA*TEMP2
                  KK = KK + (N-J+1)
  100         CONTINUE
          ELSE
              JX = KX
              JY = KY
              DO 120 J = 1,N
                  TEMP1 = ALPHA*X(JX)
                  TEMP2 = ZERO
                  Y(JY) = Y(JY) + TEMP1*AP(KK)
                  IX = JX
                  IY = JY
                  DO 110 K = KK + 1,KK + N - J
                      IX = IX + INCX
                      IY = IY + INCY
                      Y(IY) = Y(IY) + TEMP1*AP(K)
                      TEMP2 = TEMP2 + AP(K)*X(IX)
  110             CONTINUE
                  Y(JY) = Y(JY) + ALPHA*TEMP2
                  JX = JX + INCX
                  JY = JY + INCY
                  KK = KK + (N-J+1)
  120         CONTINUE
          END IF
      END IF
*
      RETURN
*
*     End of DSPMV .
*
      END