summaryrefslogtreecommitdiff
path: root/BLAS/SRC/dgemv.f
blob: 3cac04ada739fb229ae1a8686540f8b9f87602f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
      SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
*     .. Scalar Arguments ..
      DOUBLE PRECISION ALPHA,BETA
      INTEGER INCX,INCY,LDA,M,N
      CHARACTER TRANS
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION A(LDA,*),X(*),Y(*)
*     ..
*
*  Purpose
*  =======
*
*  DGEMV  performs one of the matrix-vector operations
*
*     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,
*
*  where alpha and beta are scalars, x and y are vectors and A is an
*  m by n matrix.
*
*  Arguments
*  ==========
*
*  TRANS  - CHARACTER*1.
*           On entry, TRANS specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
*
*              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
*
*              TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of the matrix A.
*           M must be at least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - DOUBLE PRECISION.
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
*           Before entry, the leading m by n part of the array A must
*           contain the matrix of coefficients.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           max( 1, m ).
*           Unchanged on exit.
*
*  X      - DOUBLE PRECISION array of DIMENSION at least
*           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
*           and at least
*           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
*           Before entry, the incremented array X must contain the
*           vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  BETA   - DOUBLE PRECISION.
*           On entry, BETA specifies the scalar beta. When BETA is
*           supplied as zero then Y need not be set on input.
*           Unchanged on exit.
*
*  Y      - DOUBLE PRECISION array of DIMENSION at least
*           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
*           and at least
*           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
*           Before entry with BETA non-zero, the incremented array Y
*           must contain the vector y. On exit, Y is overwritten by the
*           updated vector y.
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
      DOUBLE PRECISION ONE,ZERO
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION TEMP
      INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
*     ..
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC MAX
*     ..
*
*     Test the input parameters.
*
      INFO = 0
      IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
     +    .NOT.LSAME(TRANS,'C')) THEN
          INFO = 1
      ELSE IF (M.LT.0) THEN
          INFO = 2
      ELSE IF (N.LT.0) THEN
          INFO = 3
      ELSE IF (LDA.LT.MAX(1,M)) THEN
          INFO = 6
      ELSE IF (INCX.EQ.0) THEN
          INFO = 8
      ELSE IF (INCY.EQ.0) THEN
          INFO = 11
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('DGEMV ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
     +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
*     up the start points in  X  and  Y.
*
      IF (LSAME(TRANS,'N')) THEN
          LENX = N
          LENY = M
      ELSE
          LENX = M
          LENY = N
      END IF
      IF (INCX.GT.0) THEN
          KX = 1
      ELSE
          KX = 1 - (LENX-1)*INCX
      END IF
      IF (INCY.GT.0) THEN
          KY = 1
      ELSE
          KY = 1 - (LENY-1)*INCY
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through A.
*
*     First form  y := beta*y.
*
      IF (BETA.NE.ONE) THEN
          IF (INCY.EQ.1) THEN
              IF (BETA.EQ.ZERO) THEN
                  DO 10 I = 1,LENY
                      Y(I) = ZERO
   10             CONTINUE
              ELSE
                  DO 20 I = 1,LENY
                      Y(I) = BETA*Y(I)
   20             CONTINUE
              END IF
          ELSE
              IY = KY
              IF (BETA.EQ.ZERO) THEN
                  DO 30 I = 1,LENY
                      Y(IY) = ZERO
                      IY = IY + INCY
   30             CONTINUE
              ELSE
                  DO 40 I = 1,LENY
                      Y(IY) = BETA*Y(IY)
                      IY = IY + INCY
   40             CONTINUE
              END IF
          END IF
      END IF
      IF (ALPHA.EQ.ZERO) RETURN
      IF (LSAME(TRANS,'N')) THEN
*
*        Form  y := alpha*A*x + y.
*
          JX = KX
          IF (INCY.EQ.1) THEN
              DO 60 J = 1,N
                  IF (X(JX).NE.ZERO) THEN
                      TEMP = ALPHA*X(JX)
                      DO 50 I = 1,M
                          Y(I) = Y(I) + TEMP*A(I,J)
   50                 CONTINUE
                  END IF
                  JX = JX + INCX
   60         CONTINUE
          ELSE
              DO 80 J = 1,N
                  IF (X(JX).NE.ZERO) THEN
                      TEMP = ALPHA*X(JX)
                      IY = KY
                      DO 70 I = 1,M
                          Y(IY) = Y(IY) + TEMP*A(I,J)
                          IY = IY + INCY
   70                 CONTINUE
                  END IF
                  JX = JX + INCX
   80         CONTINUE
          END IF
      ELSE
*
*        Form  y := alpha*A'*x + y.
*
          JY = KY
          IF (INCX.EQ.1) THEN
              DO 100 J = 1,N
                  TEMP = ZERO
                  DO 90 I = 1,M
                      TEMP = TEMP + A(I,J)*X(I)
   90             CONTINUE
                  Y(JY) = Y(JY) + ALPHA*TEMP
                  JY = JY + INCY
  100         CONTINUE
          ELSE
              DO 120 J = 1,N
                  TEMP = ZERO
                  IX = KX
                  DO 110 I = 1,M
                      TEMP = TEMP + A(I,J)*X(IX)
                      IX = IX + INCX
  110             CONTINUE
                  Y(JY) = Y(JY) + ALPHA*TEMP
                  JY = JY + INCY
  120         CONTINUE
          END IF
      END IF
*
      RETURN
*
*     End of DGEMV .
*
      END