1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
SUBROUTINE CHER(UPLO,N,ALPHA,X,INCX,A,LDA)
* .. Scalar Arguments ..
REAL ALPHA
INTEGER INCX,LDA,N
CHARACTER UPLO
* ..
* .. Array Arguments ..
COMPLEX A(LDA,*),X(*)
* ..
*
* Purpose
* =======
*
* CHER performs the hermitian rank 1 operation
*
* A := alpha*x*conjg( x' ) + A,
*
* where alpha is a real scalar, x is an n element vector and A is an
* n by n hermitian matrix.
*
* Arguments
* ==========
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the upper or lower
* triangular part of the array A is to be referenced as
* follows:
*
* UPLO = 'U' or 'u' Only the upper triangular part of A
* is to be referenced.
*
* UPLO = 'L' or 'l' Only the lower triangular part of A
* is to be referenced.
*
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the order of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* ALPHA - REAL .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* X - COMPLEX array of dimension at least
* ( 1 + ( n - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the n
* element vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* A - COMPLEX array of DIMENSION ( LDA, n ).
* Before entry with UPLO = 'U' or 'u', the leading n by n
* upper triangular part of the array A must contain the upper
* triangular part of the hermitian matrix and the strictly
* lower triangular part of A is not referenced. On exit, the
* upper triangular part of the array A is overwritten by the
* upper triangular part of the updated matrix.
* Before entry with UPLO = 'L' or 'l', the leading n by n
* lower triangular part of the array A must contain the lower
* triangular part of the hermitian matrix and the strictly
* upper triangular part of A is not referenced. On exit, the
* lower triangular part of the array A is overwritten by the
* lower triangular part of the updated matrix.
* Note that the imaginary parts of the diagonal elements need
* not be set, they are assumed to be zero, and on exit they
* are set to zero.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* max( 1, n ).
* Unchanged on exit.
*
* Further Details
* ===============
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
* .. Local Scalars ..
COMPLEX TEMP
INTEGER I,INFO,IX,J,JX,KX
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,MAX,REAL
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
ELSE IF (LDA.LT.MAX(1,N)) THEN
INFO = 7
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CHER ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN
*
* Set the start point in X if the increment is not unity.
*
IF (INCX.LE.0) THEN
KX = 1 - (N-1)*INCX
ELSE IF (INCX.NE.1) THEN
KX = 1
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through the triangular part
* of A.
*
IF (LSAME(UPLO,'U')) THEN
*
* Form A when A is stored in upper triangle.
*
IF (INCX.EQ.1) THEN
DO 20 J = 1,N
IF (X(J).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(J))
DO 10 I = 1,J - 1
A(I,J) = A(I,J) + X(I)*TEMP
10 CONTINUE
A(J,J) = REAL(A(J,J)) + REAL(X(J)*TEMP)
ELSE
A(J,J) = REAL(A(J,J))
END IF
20 CONTINUE
ELSE
JX = KX
DO 40 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(JX))
IX = KX
DO 30 I = 1,J - 1
A(I,J) = A(I,J) + X(IX)*TEMP
IX = IX + INCX
30 CONTINUE
A(J,J) = REAL(A(J,J)) + REAL(X(JX)*TEMP)
ELSE
A(J,J) = REAL(A(J,J))
END IF
JX = JX + INCX
40 CONTINUE
END IF
ELSE
*
* Form A when A is stored in lower triangle.
*
IF (INCX.EQ.1) THEN
DO 60 J = 1,N
IF (X(J).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(J))
A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(J))
DO 50 I = J + 1,N
A(I,J) = A(I,J) + X(I)*TEMP
50 CONTINUE
ELSE
A(J,J) = REAL(A(J,J))
END IF
60 CONTINUE
ELSE
JX = KX
DO 80 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(JX))
A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(JX))
IX = JX
DO 70 I = J + 1,N
IX = IX + INCX
A(I,J) = A(I,J) + X(IX)*TEMP
70 CONTINUE
ELSE
A(J,J) = REAL(A(J,J))
END IF
JX = JX + INCX
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of CHER .
*
END
|