summaryrefslogtreecommitdiff
path: root/SRC/zpbtf2.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/zpbtf2.f')
-rw-r--r--SRC/zpbtf2.f200
1 files changed, 200 insertions, 0 deletions
diff --git a/SRC/zpbtf2.f b/SRC/zpbtf2.f
new file mode 100644
index 00000000..13b58a8c
--- /dev/null
+++ b/SRC/zpbtf2.f
@@ -0,0 +1,200 @@
+ SUBROUTINE ZPBTF2( UPLO, N, KD, AB, LDAB, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, KD, LDAB, N
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 AB( LDAB, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZPBTF2 computes the Cholesky factorization of a complex Hermitian
+* positive definite band matrix A.
+*
+* The factorization has the form
+* A = U' * U , if UPLO = 'U', or
+* A = L * L', if UPLO = 'L',
+* where U is an upper triangular matrix, U' is the conjugate transpose
+* of U, and L is lower triangular.
+*
+* This is the unblocked version of the algorithm, calling Level 2 BLAS.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* Specifies whether the upper or lower triangular part of the
+* Hermitian matrix A is stored:
+* = 'U': Upper triangular
+* = 'L': Lower triangular
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* KD (input) INTEGER
+* The number of super-diagonals of the matrix A if UPLO = 'U',
+* or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
+*
+* AB (input/output) COMPLEX*16 array, dimension (LDAB,N)
+* On entry, the upper or lower triangle of the Hermitian band
+* matrix A, stored in the first KD+1 rows of the array. The
+* j-th column of A is stored in the j-th column of the array AB
+* as follows:
+* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
+* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
+*
+* On exit, if INFO = 0, the triangular factor U or L from the
+* Cholesky factorization A = U'*U or A = L*L' of the band
+* matrix A, in the same storage format as A.
+*
+* LDAB (input) INTEGER
+* The leading dimension of the array AB. LDAB >= KD+1.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -k, the k-th argument had an illegal value
+* > 0: if INFO = k, the leading minor of order k is not
+* positive definite, and the factorization could not be
+* completed.
+*
+* Further Details
+* ===============
+*
+* The band storage scheme is illustrated by the following example, when
+* N = 6, KD = 2, and UPLO = 'U':
+*
+* On entry: On exit:
+*
+* * * a13 a24 a35 a46 * * u13 u24 u35 u46
+* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
+* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
+*
+* Similarly, if UPLO = 'L' the format of A is as follows:
+*
+* On entry: On exit:
+*
+* a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
+* a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
+* a31 a42 a53 a64 * * l31 l42 l53 l64 * *
+*
+* Array elements marked * are not used by the routine.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, ZERO
+ PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL UPPER
+ INTEGER J, KLD, KN
+ DOUBLE PRECISION AJJ
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, ZDSCAL, ZHER, ZLACGV
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE, MAX, MIN, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( KD.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDAB.LT.KD+1 ) THEN
+ INFO = -5
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZPBTF2', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+ KLD = MAX( 1, LDAB-1 )
+*
+ IF( UPPER ) THEN
+*
+* Compute the Cholesky factorization A = U'*U.
+*
+ DO 10 J = 1, N
+*
+* Compute U(J,J) and test for non-positive-definiteness.
+*
+ AJJ = DBLE( AB( KD+1, J ) )
+ IF( AJJ.LE.ZERO ) THEN
+ AB( KD+1, J ) = AJJ
+ GO TO 30
+ END IF
+ AJJ = SQRT( AJJ )
+ AB( KD+1, J ) = AJJ
+*
+* Compute elements J+1:J+KN of row J and update the
+* trailing submatrix within the band.
+*
+ KN = MIN( KD, N-J )
+ IF( KN.GT.0 ) THEN
+ CALL ZDSCAL( KN, ONE / AJJ, AB( KD, J+1 ), KLD )
+ CALL ZLACGV( KN, AB( KD, J+1 ), KLD )
+ CALL ZHER( 'Upper', KN, -ONE, AB( KD, J+1 ), KLD,
+ $ AB( KD+1, J+1 ), KLD )
+ CALL ZLACGV( KN, AB( KD, J+1 ), KLD )
+ END IF
+ 10 CONTINUE
+ ELSE
+*
+* Compute the Cholesky factorization A = L*L'.
+*
+ DO 20 J = 1, N
+*
+* Compute L(J,J) and test for non-positive-definiteness.
+*
+ AJJ = DBLE( AB( 1, J ) )
+ IF( AJJ.LE.ZERO ) THEN
+ AB( 1, J ) = AJJ
+ GO TO 30
+ END IF
+ AJJ = SQRT( AJJ )
+ AB( 1, J ) = AJJ
+*
+* Compute elements J+1:J+KN of column J and update the
+* trailing submatrix within the band.
+*
+ KN = MIN( KD, N-J )
+ IF( KN.GT.0 ) THEN
+ CALL ZDSCAL( KN, ONE / AJJ, AB( 2, J ), 1 )
+ CALL ZHER( 'Lower', KN, -ONE, AB( 2, J ), 1,
+ $ AB( 1, J+1 ), KLD )
+ END IF
+ 20 CONTINUE
+ END IF
+ RETURN
+*
+ 30 CONTINUE
+ INFO = J
+ RETURN
+*
+* End of ZPBTF2
+*
+ END