summaryrefslogtreecommitdiff
path: root/SRC/zlals0.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/zlals0.f')
-rw-r--r--SRC/zlals0.f433
1 files changed, 433 insertions, 0 deletions
diff --git a/SRC/zlals0.f b/SRC/zlals0.f
new file mode 100644
index 00000000..9d419612
--- /dev/null
+++ b/SRC/zlals0.f
@@ -0,0 +1,433 @@
+ SUBROUTINE ZLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX,
+ $ PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
+ $ POLES, DIFL, DIFR, Z, K, C, S, RWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL,
+ $ LDGNUM, NL, NR, NRHS, SQRE
+ DOUBLE PRECISION C, S
+* ..
+* .. Array Arguments ..
+ INTEGER GIVCOL( LDGCOL, * ), PERM( * )
+ DOUBLE PRECISION DIFL( * ), DIFR( LDGNUM, * ),
+ $ GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ),
+ $ RWORK( * ), Z( * )
+ COMPLEX*16 B( LDB, * ), BX( LDBX, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZLALS0 applies back the multiplying factors of either the left or the
+* right singular vector matrix of a diagonal matrix appended by a row
+* to the right hand side matrix B in solving the least squares problem
+* using the divide-and-conquer SVD approach.
+*
+* For the left singular vector matrix, three types of orthogonal
+* matrices are involved:
+*
+* (1L) Givens rotations: the number of such rotations is GIVPTR; the
+* pairs of columns/rows they were applied to are stored in GIVCOL;
+* and the C- and S-values of these rotations are stored in GIVNUM.
+*
+* (2L) Permutation. The (NL+1)-st row of B is to be moved to the first
+* row, and for J=2:N, PERM(J)-th row of B is to be moved to the
+* J-th row.
+*
+* (3L) The left singular vector matrix of the remaining matrix.
+*
+* For the right singular vector matrix, four types of orthogonal
+* matrices are involved:
+*
+* (1R) The right singular vector matrix of the remaining matrix.
+*
+* (2R) If SQRE = 1, one extra Givens rotation to generate the right
+* null space.
+*
+* (3R) The inverse transformation of (2L).
+*
+* (4R) The inverse transformation of (1L).
+*
+* Arguments
+* =========
+*
+* ICOMPQ (input) INTEGER
+* Specifies whether singular vectors are to be computed in
+* factored form:
+* = 0: Left singular vector matrix.
+* = 1: Right singular vector matrix.
+*
+* NL (input) INTEGER
+* The row dimension of the upper block. NL >= 1.
+*
+* NR (input) INTEGER
+* The row dimension of the lower block. NR >= 1.
+*
+* SQRE (input) INTEGER
+* = 0: the lower block is an NR-by-NR square matrix.
+* = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
+*
+* The bidiagonal matrix has row dimension N = NL + NR + 1,
+* and column dimension M = N + SQRE.
+*
+* NRHS (input) INTEGER
+* The number of columns of B and BX. NRHS must be at least 1.
+*
+* B (input/output) COMPLEX*16 array, dimension ( LDB, NRHS )
+* On input, B contains the right hand sides of the least
+* squares problem in rows 1 through M. On output, B contains
+* the solution X in rows 1 through N.
+*
+* LDB (input) INTEGER
+* The leading dimension of B. LDB must be at least
+* max(1,MAX( M, N ) ).
+*
+* BX (workspace) COMPLEX*16 array, dimension ( LDBX, NRHS )
+*
+* LDBX (input) INTEGER
+* The leading dimension of BX.
+*
+* PERM (input) INTEGER array, dimension ( N )
+* The permutations (from deflation and sorting) applied
+* to the two blocks.
+*
+* GIVPTR (input) INTEGER
+* The number of Givens rotations which took place in this
+* subproblem.
+*
+* GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 )
+* Each pair of numbers indicates a pair of rows/columns
+* involved in a Givens rotation.
+*
+* LDGCOL (input) INTEGER
+* The leading dimension of GIVCOL, must be at least N.
+*
+* GIVNUM (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
+* Each number indicates the C or S value used in the
+* corresponding Givens rotation.
+*
+* LDGNUM (input) INTEGER
+* The leading dimension of arrays DIFR, POLES and
+* GIVNUM, must be at least K.
+*
+* POLES (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
+* On entry, POLES(1:K, 1) contains the new singular
+* values obtained from solving the secular equation, and
+* POLES(1:K, 2) is an array containing the poles in the secular
+* equation.
+*
+* DIFL (input) DOUBLE PRECISION array, dimension ( K ).
+* On entry, DIFL(I) is the distance between I-th updated
+* (undeflated) singular value and the I-th (undeflated) old
+* singular value.
+*
+* DIFR (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ).
+* On entry, DIFR(I, 1) contains the distances between I-th
+* updated (undeflated) singular value and the I+1-th
+* (undeflated) old singular value. And DIFR(I, 2) is the
+* normalizing factor for the I-th right singular vector.
+*
+* Z (input) DOUBLE PRECISION array, dimension ( K )
+* Contain the components of the deflation-adjusted updating row
+* vector.
+*
+* K (input) INTEGER
+* Contains the dimension of the non-deflated matrix,
+* This is the order of the related secular equation. 1 <= K <=N.
+*
+* C (input) DOUBLE PRECISION
+* C contains garbage if SQRE =0 and the C-value of a Givens
+* rotation related to the right null space if SQRE = 1.
+*
+* S (input) DOUBLE PRECISION
+* S contains garbage if SQRE =0 and the S-value of a Givens
+* rotation related to the right null space if SQRE = 1.
+*
+* RWORK (workspace) DOUBLE PRECISION array, dimension
+* ( K*(1+NRHS) + 2*NRHS )
+*
+* INFO (output) INTEGER
+* = 0: successful exit.
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* Ming Gu and Ren-Cang Li, Computer Science Division, University of
+* California at Berkeley, USA
+* Osni Marques, LBNL/NERSC, USA
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, ZERO, NEGONE
+ PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0, NEGONE = -1.0D0 )
+* ..
+* .. Local Scalars ..
+ INTEGER I, J, JCOL, JROW, M, N, NLP1
+ DOUBLE PRECISION DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, TEMP
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGEMV, XERBLA, ZCOPY, ZDROT, ZDSCAL, ZLACPY,
+ $ ZLASCL
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMC3, DNRM2
+ EXTERNAL DLAMC3, DNRM2
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE, DCMPLX, DIMAG, MAX
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+*
+ IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
+ INFO = -1
+ ELSE IF( NL.LT.1 ) THEN
+ INFO = -2
+ ELSE IF( NR.LT.1 ) THEN
+ INFO = -3
+ ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
+ INFO = -4
+ END IF
+*
+ N = NL + NR + 1
+*
+ IF( NRHS.LT.1 ) THEN
+ INFO = -5
+ ELSE IF( LDB.LT.N ) THEN
+ INFO = -7
+ ELSE IF( LDBX.LT.N ) THEN
+ INFO = -9
+ ELSE IF( GIVPTR.LT.0 ) THEN
+ INFO = -11
+ ELSE IF( LDGCOL.LT.N ) THEN
+ INFO = -13
+ ELSE IF( LDGNUM.LT.N ) THEN
+ INFO = -15
+ ELSE IF( K.LT.1 ) THEN
+ INFO = -20
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZLALS0', -INFO )
+ RETURN
+ END IF
+*
+ M = N + SQRE
+ NLP1 = NL + 1
+*
+ IF( ICOMPQ.EQ.0 ) THEN
+*
+* Apply back orthogonal transformations from the left.
+*
+* Step (1L): apply back the Givens rotations performed.
+*
+ DO 10 I = 1, GIVPTR
+ CALL ZDROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,
+ $ B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),
+ $ GIVNUM( I, 1 ) )
+ 10 CONTINUE
+*
+* Step (2L): permute rows of B.
+*
+ CALL ZCOPY( NRHS, B( NLP1, 1 ), LDB, BX( 1, 1 ), LDBX )
+ DO 20 I = 2, N
+ CALL ZCOPY( NRHS, B( PERM( I ), 1 ), LDB, BX( I, 1 ), LDBX )
+ 20 CONTINUE
+*
+* Step (3L): apply the inverse of the left singular vector
+* matrix to BX.
+*
+ IF( K.EQ.1 ) THEN
+ CALL ZCOPY( NRHS, BX, LDBX, B, LDB )
+ IF( Z( 1 ).LT.ZERO ) THEN
+ CALL ZDSCAL( NRHS, NEGONE, B, LDB )
+ END IF
+ ELSE
+ DO 100 J = 1, K
+ DIFLJ = DIFL( J )
+ DJ = POLES( J, 1 )
+ DSIGJ = -POLES( J, 2 )
+ IF( J.LT.K ) THEN
+ DIFRJ = -DIFR( J, 1 )
+ DSIGJP = -POLES( J+1, 2 )
+ END IF
+ IF( ( Z( J ).EQ.ZERO ) .OR. ( POLES( J, 2 ).EQ.ZERO ) )
+ $ THEN
+ RWORK( J ) = ZERO
+ ELSE
+ RWORK( J ) = -POLES( J, 2 )*Z( J ) / DIFLJ /
+ $ ( POLES( J, 2 )+DJ )
+ END IF
+ DO 30 I = 1, J - 1
+ IF( ( Z( I ).EQ.ZERO ) .OR.
+ $ ( POLES( I, 2 ).EQ.ZERO ) ) THEN
+ RWORK( I ) = ZERO
+ ELSE
+ RWORK( I ) = POLES( I, 2 )*Z( I ) /
+ $ ( DLAMC3( POLES( I, 2 ), DSIGJ )-
+ $ DIFLJ ) / ( POLES( I, 2 )+DJ )
+ END IF
+ 30 CONTINUE
+ DO 40 I = J + 1, K
+ IF( ( Z( I ).EQ.ZERO ) .OR.
+ $ ( POLES( I, 2 ).EQ.ZERO ) ) THEN
+ RWORK( I ) = ZERO
+ ELSE
+ RWORK( I ) = POLES( I, 2 )*Z( I ) /
+ $ ( DLAMC3( POLES( I, 2 ), DSIGJP )+
+ $ DIFRJ ) / ( POLES( I, 2 )+DJ )
+ END IF
+ 40 CONTINUE
+ RWORK( 1 ) = NEGONE
+ TEMP = DNRM2( K, RWORK, 1 )
+*
+* Since B and BX are complex, the following call to DGEMV
+* is performed in two steps (real and imaginary parts).
+*
+* CALL DGEMV( 'T', K, NRHS, ONE, BX, LDBX, WORK, 1, ZERO,
+* $ B( J, 1 ), LDB )
+*
+ I = K + NRHS*2
+ DO 60 JCOL = 1, NRHS
+ DO 50 JROW = 1, K
+ I = I + 1
+ RWORK( I ) = DBLE( BX( JROW, JCOL ) )
+ 50 CONTINUE
+ 60 CONTINUE
+ CALL DGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
+ $ RWORK( 1 ), 1, ZERO, RWORK( 1+K ), 1 )
+ I = K + NRHS*2
+ DO 80 JCOL = 1, NRHS
+ DO 70 JROW = 1, K
+ I = I + 1
+ RWORK( I ) = DIMAG( BX( JROW, JCOL ) )
+ 70 CONTINUE
+ 80 CONTINUE
+ CALL DGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
+ $ RWORK( 1 ), 1, ZERO, RWORK( 1+K+NRHS ), 1 )
+ DO 90 JCOL = 1, NRHS
+ B( J, JCOL ) = DCMPLX( RWORK( JCOL+K ),
+ $ RWORK( JCOL+K+NRHS ) )
+ 90 CONTINUE
+ CALL ZLASCL( 'G', 0, 0, TEMP, ONE, 1, NRHS, B( J, 1 ),
+ $ LDB, INFO )
+ 100 CONTINUE
+ END IF
+*
+* Move the deflated rows of BX to B also.
+*
+ IF( K.LT.MAX( M, N ) )
+ $ CALL ZLACPY( 'A', N-K, NRHS, BX( K+1, 1 ), LDBX,
+ $ B( K+1, 1 ), LDB )
+ ELSE
+*
+* Apply back the right orthogonal transformations.
+*
+* Step (1R): apply back the new right singular vector matrix
+* to B.
+*
+ IF( K.EQ.1 ) THEN
+ CALL ZCOPY( NRHS, B, LDB, BX, LDBX )
+ ELSE
+ DO 180 J = 1, K
+ DSIGJ = POLES( J, 2 )
+ IF( Z( J ).EQ.ZERO ) THEN
+ RWORK( J ) = ZERO
+ ELSE
+ RWORK( J ) = -Z( J ) / DIFL( J ) /
+ $ ( DSIGJ+POLES( J, 1 ) ) / DIFR( J, 2 )
+ END IF
+ DO 110 I = 1, J - 1
+ IF( Z( J ).EQ.ZERO ) THEN
+ RWORK( I ) = ZERO
+ ELSE
+ RWORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, -POLES( I+1,
+ $ 2 ) )-DIFR( I, 1 ) ) /
+ $ ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
+ END IF
+ 110 CONTINUE
+ DO 120 I = J + 1, K
+ IF( Z( J ).EQ.ZERO ) THEN
+ RWORK( I ) = ZERO
+ ELSE
+ RWORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, -POLES( I,
+ $ 2 ) )-DIFL( I ) ) /
+ $ ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
+ END IF
+ 120 CONTINUE
+*
+* Since B and BX are complex, the following call to DGEMV
+* is performed in two steps (real and imaginary parts).
+*
+* CALL DGEMV( 'T', K, NRHS, ONE, B, LDB, WORK, 1, ZERO,
+* $ BX( J, 1 ), LDBX )
+*
+ I = K + NRHS*2
+ DO 140 JCOL = 1, NRHS
+ DO 130 JROW = 1, K
+ I = I + 1
+ RWORK( I ) = DBLE( B( JROW, JCOL ) )
+ 130 CONTINUE
+ 140 CONTINUE
+ CALL DGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
+ $ RWORK( 1 ), 1, ZERO, RWORK( 1+K ), 1 )
+ I = K + NRHS*2
+ DO 160 JCOL = 1, NRHS
+ DO 150 JROW = 1, K
+ I = I + 1
+ RWORK( I ) = DIMAG( B( JROW, JCOL ) )
+ 150 CONTINUE
+ 160 CONTINUE
+ CALL DGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
+ $ RWORK( 1 ), 1, ZERO, RWORK( 1+K+NRHS ), 1 )
+ DO 170 JCOL = 1, NRHS
+ BX( J, JCOL ) = DCMPLX( RWORK( JCOL+K ),
+ $ RWORK( JCOL+K+NRHS ) )
+ 170 CONTINUE
+ 180 CONTINUE
+ END IF
+*
+* Step (2R): if SQRE = 1, apply back the rotation that is
+* related to the right null space of the subproblem.
+*
+ IF( SQRE.EQ.1 ) THEN
+ CALL ZCOPY( NRHS, B( M, 1 ), LDB, BX( M, 1 ), LDBX )
+ CALL ZDROT( NRHS, BX( 1, 1 ), LDBX, BX( M, 1 ), LDBX, C, S )
+ END IF
+ IF( K.LT.MAX( M, N ) )
+ $ CALL ZLACPY( 'A', N-K, NRHS, B( K+1, 1 ), LDB, BX( K+1, 1 ),
+ $ LDBX )
+*
+* Step (3R): permute rows of B.
+*
+ CALL ZCOPY( NRHS, BX( 1, 1 ), LDBX, B( NLP1, 1 ), LDB )
+ IF( SQRE.EQ.1 ) THEN
+ CALL ZCOPY( NRHS, BX( M, 1 ), LDBX, B( M, 1 ), LDB )
+ END IF
+ DO 190 I = 2, N
+ CALL ZCOPY( NRHS, BX( I, 1 ), LDBX, B( PERM( I ), 1 ), LDB )
+ 190 CONTINUE
+*
+* Step (4R): apply back the Givens rotations performed.
+*
+ DO 200 I = GIVPTR, 1, -1
+ CALL ZDROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,
+ $ B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),
+ $ -GIVNUM( I, 1 ) )
+ 200 CONTINUE
+ END IF
+*
+ RETURN
+*
+* End of ZLALS0
+*
+ END