summaryrefslogtreecommitdiff
path: root/SRC/zheevd.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/zheevd.f')
-rw-r--r--SRC/zheevd.f305
1 files changed, 305 insertions, 0 deletions
diff --git a/SRC/zheevd.f b/SRC/zheevd.f
new file mode 100644
index 00000000..d8258374
--- /dev/null
+++ b/SRC/zheevd.f
@@ -0,0 +1,305 @@
+ SUBROUTINE ZHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
+ $ LRWORK, IWORK, LIWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBZ, UPLO
+ INTEGER INFO, LDA, LIWORK, LRWORK, LWORK, N
+* ..
+* .. Array Arguments ..
+ INTEGER IWORK( * )
+ DOUBLE PRECISION RWORK( * ), W( * )
+ COMPLEX*16 A( LDA, * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a
+* complex Hermitian matrix A. If eigenvectors are desired, it uses a
+* divide and conquer algorithm.
+*
+* The divide and conquer algorithm makes very mild assumptions about
+* floating point arithmetic. It will work on machines with a guard
+* digit in add/subtract, or on those binary machines without guard
+* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
+* Cray-2. It could conceivably fail on hexadecimal or decimal machines
+* without guard digits, but we know of none.
+*
+* Arguments
+* =========
+*
+* JOBZ (input) CHARACTER*1
+* = 'N': Compute eigenvalues only;
+* = 'V': Compute eigenvalues and eigenvectors.
+*
+* UPLO (input) CHARACTER*1
+* = 'U': Upper triangle of A is stored;
+* = 'L': Lower triangle of A is stored.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* A (input/output) COMPLEX*16 array, dimension (LDA, N)
+* On entry, the Hermitian matrix A. If UPLO = 'U', the
+* leading N-by-N upper triangular part of A contains the
+* upper triangular part of the matrix A. If UPLO = 'L',
+* the leading N-by-N lower triangular part of A contains
+* the lower triangular part of the matrix A.
+* On exit, if JOBZ = 'V', then if INFO = 0, A contains the
+* orthonormal eigenvectors of the matrix A.
+* If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
+* or the upper triangle (if UPLO='U') of A, including the
+* diagonal, is destroyed.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* W (output) DOUBLE PRECISION array, dimension (N)
+* If INFO = 0, the eigenvalues in ascending order.
+*
+* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The length of the array WORK.
+* If N <= 1, LWORK must be at least 1.
+* If JOBZ = 'N' and N > 1, LWORK must be at least N + 1.
+* If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal sizes of the WORK, RWORK and
+* IWORK arrays, returns these values as the first entries of
+* the WORK, RWORK and IWORK arrays, and no error message
+* related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*
+* RWORK (workspace/output) DOUBLE PRECISION array,
+* dimension (LRWORK)
+* On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
+*
+* LRWORK (input) INTEGER
+* The dimension of the array RWORK.
+* If N <= 1, LRWORK must be at least 1.
+* If JOBZ = 'N' and N > 1, LRWORK must be at least N.
+* If JOBZ = 'V' and N > 1, LRWORK must be at least
+* 1 + 5*N + 2*N**2.
+*
+* If LRWORK = -1, then a workspace query is assumed; the
+* routine only calculates the optimal sizes of the WORK, RWORK
+* and IWORK arrays, returns these values as the first entries
+* of the WORK, RWORK and IWORK arrays, and no error message
+* related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*
+* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
+* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
+*
+* LIWORK (input) INTEGER
+* The dimension of the array IWORK.
+* If N <= 1, LIWORK must be at least 1.
+* If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
+* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
+*
+* If LIWORK = -1, then a workspace query is assumed; the
+* routine only calculates the optimal sizes of the WORK, RWORK
+* and IWORK arrays, returns these values as the first entries
+* of the WORK, RWORK and IWORK arrays, and no error message
+* related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = i and JOBZ = 'N', then the algorithm failed
+* to converge; i off-diagonal elements of an intermediate
+* tridiagonal form did not converge to zero;
+* if INFO = i and JOBZ = 'V', then the algorithm failed
+* to compute an eigenvalue while working on the submatrix
+* lying in rows and columns INFO/(N+1) through
+* mod(INFO,N+1).
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* Jeff Rutter, Computer Science Division, University of California
+* at Berkeley, USA
+*
+* Modified description of INFO. Sven, 16 Feb 05.
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
+ COMPLEX*16 CONE
+ PARAMETER ( CONE = ( 1.0D0, 0.0D0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL LOWER, LQUERY, WANTZ
+ INTEGER IINFO, IMAX, INDE, INDRWK, INDTAU, INDWK2,
+ $ INDWRK, ISCALE, LIOPT, LIWMIN, LLRWK, LLWORK,
+ $ LLWRK2, LOPT, LROPT, LRWMIN, LWMIN
+ DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
+ $ SMLNUM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH, ZLANHE
+ EXTERNAL LSAME, ILAENV, DLAMCH, ZLANHE
+* ..
+* .. External Subroutines ..
+ EXTERNAL DSCAL, DSTERF, XERBLA, ZHETRD, ZLACPY, ZLASCL,
+ $ ZSTEDC, ZUNMTR
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ WANTZ = LSAME( JOBZ, 'V' )
+ LOWER = LSAME( UPLO, 'L' )
+ LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
+*
+ INFO = 0
+ IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -5
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ IF( N.LE.1 ) THEN
+ LWMIN = 1
+ LRWMIN = 1
+ LIWMIN = 1
+ LOPT = LWMIN
+ LROPT = LRWMIN
+ LIOPT = LIWMIN
+ ELSE
+ IF( WANTZ ) THEN
+ LWMIN = 2*N + N*N
+ LRWMIN = 1 + 5*N + 2*N**2
+ LIWMIN = 3 + 5*N
+ ELSE
+ LWMIN = N + 1
+ LRWMIN = N
+ LIWMIN = 1
+ END IF
+ LOPT = MAX( LWMIN, N +
+ $ ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 ) )
+ LROPT = LRWMIN
+ LIOPT = LIWMIN
+ END IF
+ WORK( 1 ) = LOPT
+ RWORK( 1 ) = LROPT
+ IWORK( 1 ) = LIOPT
+*
+ IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -8
+ ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -10
+ ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -12
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZHEEVD', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+ IF( N.EQ.1 ) THEN
+ W( 1 ) = A( 1, 1 )
+ IF( WANTZ )
+ $ A( 1, 1 ) = CONE
+ RETURN
+ END IF
+*
+* Get machine constants.
+*
+ SAFMIN = DLAMCH( 'Safe minimum' )
+ EPS = DLAMCH( 'Precision' )
+ SMLNUM = SAFMIN / EPS
+ BIGNUM = ONE / SMLNUM
+ RMIN = SQRT( SMLNUM )
+ RMAX = SQRT( BIGNUM )
+*
+* Scale matrix to allowable range, if necessary.
+*
+ ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
+ ISCALE = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
+ ISCALE = 1
+ SIGMA = RMIN / ANRM
+ ELSE IF( ANRM.GT.RMAX ) THEN
+ ISCALE = 1
+ SIGMA = RMAX / ANRM
+ END IF
+ IF( ISCALE.EQ.1 )
+ $ CALL ZLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
+*
+* Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
+*
+ INDE = 1
+ INDTAU = 1
+ INDWRK = INDTAU + N
+ INDRWK = INDE + N
+ INDWK2 = INDWRK + N*N
+ LLWORK = LWORK - INDWRK + 1
+ LLWRK2 = LWORK - INDWK2 + 1
+ LLRWK = LRWORK - INDRWK + 1
+ CALL ZHETRD( UPLO, N, A, LDA, W, RWORK( INDE ), WORK( INDTAU ),
+ $ WORK( INDWRK ), LLWORK, IINFO )
+*
+* For eigenvalues only, call DSTERF. For eigenvectors, first call
+* ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
+* tridiagonal matrix, then call ZUNMTR to multiply it to the
+* Householder transformations represented as Householder vectors in
+* A.
+*
+ IF( .NOT.WANTZ ) THEN
+ CALL DSTERF( N, W, RWORK( INDE ), INFO )
+ ELSE
+ CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK( INDWRK ), N,
+ $ WORK( INDWK2 ), LLWRK2, RWORK( INDRWK ), LLRWK,
+ $ IWORK, LIWORK, INFO )
+ CALL ZUNMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
+ $ WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
+ CALL ZLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
+ END IF
+*
+* If matrix was scaled, then rescale eigenvalues appropriately.
+*
+ IF( ISCALE.EQ.1 ) THEN
+ IF( INFO.EQ.0 ) THEN
+ IMAX = N
+ ELSE
+ IMAX = INFO - 1
+ END IF
+ CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
+ END IF
+*
+ WORK( 1 ) = LOPT
+ RWORK( 1 ) = LROPT
+ IWORK( 1 ) = LIOPT
+*
+ RETURN
+*
+* End of ZHEEVD
+*
+ END