summaryrefslogtreecommitdiff
path: root/SRC/stbtrs.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/stbtrs.f')
-rw-r--r--SRC/stbtrs.f162
1 files changed, 162 insertions, 0 deletions
diff --git a/SRC/stbtrs.f b/SRC/stbtrs.f
new file mode 100644
index 00000000..39e47d62
--- /dev/null
+++ b/SRC/stbtrs.f
@@ -0,0 +1,162 @@
+ SUBROUTINE STBTRS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
+ $ LDB, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER DIAG, TRANS, UPLO
+ INTEGER INFO, KD, LDAB, LDB, N, NRHS
+* ..
+* .. Array Arguments ..
+ REAL AB( LDAB, * ), B( LDB, * )
+* ..
+*
+* Purpose
+* =======
+*
+* STBTRS solves a triangular system of the form
+*
+* A * X = B or A**T * X = B,
+*
+* where A is a triangular band matrix of order N, and B is an
+* N-by NRHS matrix. A check is made to verify that A is nonsingular.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* = 'U': A is upper triangular;
+* = 'L': A is lower triangular.
+*
+* TRANS (input) CHARACTER*1
+* Specifies the form the system of equations:
+* = 'N': A * X = B (No transpose)
+* = 'T': A**T * X = B (Transpose)
+* = 'C': A**H * X = B (Conjugate transpose = Transpose)
+*
+* DIAG (input) CHARACTER*1
+* = 'N': A is non-unit triangular;
+* = 'U': A is unit triangular.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* KD (input) INTEGER
+* The number of superdiagonals or subdiagonals of the
+* triangular band matrix A. KD >= 0.
+*
+* NRHS (input) INTEGER
+* The number of right hand sides, i.e., the number of columns
+* of the matrix B. NRHS >= 0.
+*
+* AB (input) REAL array, dimension (LDAB,N)
+* The upper or lower triangular band matrix A, stored in the
+* first kd+1 rows of AB. The j-th column of A is stored
+* in the j-th column of the array AB as follows:
+* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
+* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
+* If DIAG = 'U', the diagonal elements of A are not referenced
+* and are assumed to be 1.
+*
+* LDAB (input) INTEGER
+* The leading dimension of the array AB. LDAB >= KD+1.
+*
+* B (input/output) REAL array, dimension (LDB,NRHS)
+* On entry, the right hand side matrix B.
+* On exit, if INFO = 0, the solution matrix X.
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= max(1,N).
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = i, the i-th diagonal element of A is zero,
+* indicating that the matrix is singular and the
+* solutions X have not been computed.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO
+ PARAMETER ( ZERO = 0.0E+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL NOUNIT, UPPER
+ INTEGER J
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL STBSV, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ NOUNIT = LSAME( DIAG, 'N' )
+ UPPER = LSAME( UPLO, 'U' )
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.
+ $ LSAME( TRANS, 'T' ) .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
+ INFO = -2
+ ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
+ INFO = -3
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( KD.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -6
+ ELSE IF( LDAB.LT.KD+1 ) THEN
+ INFO = -8
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -10
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'STBTRS', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* Check for singularity.
+*
+ IF( NOUNIT ) THEN
+ IF( UPPER ) THEN
+ DO 10 INFO = 1, N
+ IF( AB( KD+1, INFO ).EQ.ZERO )
+ $ RETURN
+ 10 CONTINUE
+ ELSE
+ DO 20 INFO = 1, N
+ IF( AB( 1, INFO ).EQ.ZERO )
+ $ RETURN
+ 20 CONTINUE
+ END IF
+ END IF
+ INFO = 0
+*
+* Solve A * X = B or A' * X = B.
+*
+ DO 30 J = 1, NRHS
+ CALL STBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, B( 1, J ), 1 )
+ 30 CONTINUE
+*
+ RETURN
+*
+* End of STBTRS
+*
+ END