summaryrefslogtreecommitdiff
path: root/SRC/ssytd2.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/ssytd2.f')
-rw-r--r--SRC/ssytd2.f18
1 files changed, 9 insertions, 9 deletions
diff --git a/SRC/ssytd2.f b/SRC/ssytd2.f
index 576450d0..e15280ee 100644
--- a/SRC/ssytd2.f
+++ b/SRC/ssytd2.f
@@ -17,7 +17,7 @@
* =======
*
* SSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
-* form T by an orthogonal similarity transformation: Q' * A * Q = T.
+* form T by an orthogonal similarity transformation: Q**T * A * Q = T.
*
* Arguments
* =========
@@ -79,7 +79,7 @@
*
* Each H(i) has the form
*
-* H(i) = I - tau * v * v'
+* H(i) = I - tau * v * v**T
*
* where tau is a real scalar, and v is a real vector with
* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
@@ -92,7 +92,7 @@
*
* Each H(i) has the form
*
-* H(i) = I - tau * v * v'
+* H(i) = I - tau * v * v**T
*
* where tau is a real scalar, and v is a real vector with
* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
@@ -163,7 +163,7 @@
*
DO 10 I = N - 1, 1, -1
*
-* Generate elementary reflector H(i) = I - tau * v * v'
+* Generate elementary reflector H(i) = I - tau * v * v**T
* to annihilate A(1:i-1,i+1)
*
CALL SLARFG( I, A( I, I+1 ), A( 1, I+1 ), 1, TAUI )
@@ -180,13 +180,13 @@
CALL SSYMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
$ TAU, 1 )
*
-* Compute w := x - 1/2 * tau * (x'*v) * v
+* Compute w := x - 1/2 * tau * (x**T * v) * v
*
ALPHA = -HALF*TAUI*SDOT( I, TAU, 1, A( 1, I+1 ), 1 )
CALL SAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
*
* Apply the transformation as a rank-2 update:
-* A := A - v * w' - w * v'
+* A := A - v * w**T - w * v**T
*
CALL SSYR2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
$ LDA )
@@ -203,7 +203,7 @@
*
DO 20 I = 1, N - 1
*
-* Generate elementary reflector H(i) = I - tau * v * v'
+* Generate elementary reflector H(i) = I - tau * v * v**T
* to annihilate A(i+2:n,i)
*
CALL SLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
@@ -221,14 +221,14 @@
CALL SSYMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
$ A( I+1, I ), 1, ZERO, TAU( I ), 1 )
*
-* Compute w := x - 1/2 * tau * (x'*v) * v
+* Compute w := x - 1/2 * tau * (x**T * v) * v
*
ALPHA = -HALF*TAUI*SDOT( N-I, TAU( I ), 1, A( I+1, I ),
$ 1 )
CALL SAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
*
* Apply the transformation as a rank-2 update:
-* A := A - v * w' - w * v'
+* A := A - v * w' - w * v**T
*
CALL SSYR2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
$ A( I+1, I+1 ), LDA )