summaryrefslogtreecommitdiff
path: root/SRC/ssptri.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/ssptri.f')
-rw-r--r--SRC/ssptri.f334
1 files changed, 334 insertions, 0 deletions
diff --git a/SRC/ssptri.f b/SRC/ssptri.f
new file mode 100644
index 00000000..40aa1c80
--- /dev/null
+++ b/SRC/ssptri.f
@@ -0,0 +1,334 @@
+ SUBROUTINE SSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, N
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ REAL AP( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* SSPTRI computes the inverse of a real symmetric indefinite matrix
+* A in packed storage using the factorization A = U*D*U**T or
+* A = L*D*L**T computed by SSPTRF.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* Specifies whether the details of the factorization are stored
+* as an upper or lower triangular matrix.
+* = 'U': Upper triangular, form is A = U*D*U**T;
+* = 'L': Lower triangular, form is A = L*D*L**T.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* AP (input/output) REAL array, dimension (N*(N+1)/2)
+* On entry, the block diagonal matrix D and the multipliers
+* used to obtain the factor U or L as computed by SSPTRF,
+* stored as a packed triangular matrix.
+*
+* On exit, if INFO = 0, the (symmetric) inverse of the original
+* matrix, stored as a packed triangular matrix. The j-th column
+* of inv(A) is stored in the array AP as follows:
+* if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
+* if UPLO = 'L',
+* AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
+*
+* IPIV (input) INTEGER array, dimension (N)
+* Details of the interchanges and the block structure of D
+* as determined by SSPTRF.
+*
+* WORK (workspace) REAL array, dimension (N)
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
+* inverse could not be computed.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ONE, ZERO
+ PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL UPPER
+ INTEGER J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
+ REAL AK, AKKP1, AKP1, D, T, TEMP
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ REAL SDOT
+ EXTERNAL LSAME, SDOT
+* ..
+* .. External Subroutines ..
+ EXTERNAL SCOPY, SSPMV, SSWAP, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SSPTRI', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* Check that the diagonal matrix D is nonsingular.
+*
+ IF( UPPER ) THEN
+*
+* Upper triangular storage: examine D from bottom to top
+*
+ KP = N*( N+1 ) / 2
+ DO 10 INFO = N, 1, -1
+ IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
+ $ RETURN
+ KP = KP - INFO
+ 10 CONTINUE
+ ELSE
+*
+* Lower triangular storage: examine D from top to bottom.
+*
+ KP = 1
+ DO 20 INFO = 1, N
+ IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
+ $ RETURN
+ KP = KP + N - INFO + 1
+ 20 CONTINUE
+ END IF
+ INFO = 0
+*
+ IF( UPPER ) THEN
+*
+* Compute inv(A) from the factorization A = U*D*U'.
+*
+* K is the main loop index, increasing from 1 to N in steps of
+* 1 or 2, depending on the size of the diagonal blocks.
+*
+ K = 1
+ KC = 1
+ 30 CONTINUE
+*
+* If K > N, exit from loop.
+*
+ IF( K.GT.N )
+ $ GO TO 50
+*
+ KCNEXT = KC + K
+ IF( IPIV( K ).GT.0 ) THEN
+*
+* 1 x 1 diagonal block
+*
+* Invert the diagonal block.
+*
+ AP( KC+K-1 ) = ONE / AP( KC+K-1 )
+*
+* Compute column K of the inverse.
+*
+ IF( K.GT.1 ) THEN
+ CALL SCOPY( K-1, AP( KC ), 1, WORK, 1 )
+ CALL SSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),
+ $ 1 )
+ AP( KC+K-1 ) = AP( KC+K-1 ) -
+ $ SDOT( K-1, WORK, 1, AP( KC ), 1 )
+ END IF
+ KSTEP = 1
+ ELSE
+*
+* 2 x 2 diagonal block
+*
+* Invert the diagonal block.
+*
+ T = ABS( AP( KCNEXT+K-1 ) )
+ AK = AP( KC+K-1 ) / T
+ AKP1 = AP( KCNEXT+K ) / T
+ AKKP1 = AP( KCNEXT+K-1 ) / T
+ D = T*( AK*AKP1-ONE )
+ AP( KC+K-1 ) = AKP1 / D
+ AP( KCNEXT+K ) = AK / D
+ AP( KCNEXT+K-1 ) = -AKKP1 / D
+*
+* Compute columns K and K+1 of the inverse.
+*
+ IF( K.GT.1 ) THEN
+ CALL SCOPY( K-1, AP( KC ), 1, WORK, 1 )
+ CALL SSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),
+ $ 1 )
+ AP( KC+K-1 ) = AP( KC+K-1 ) -
+ $ SDOT( K-1, WORK, 1, AP( KC ), 1 )
+ AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
+ $ SDOT( K-1, AP( KC ), 1, AP( KCNEXT ),
+ $ 1 )
+ CALL SCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
+ CALL SSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO,
+ $ AP( KCNEXT ), 1 )
+ AP( KCNEXT+K ) = AP( KCNEXT+K ) -
+ $ SDOT( K-1, WORK, 1, AP( KCNEXT ), 1 )
+ END IF
+ KSTEP = 2
+ KCNEXT = KCNEXT + K + 1
+ END IF
+*
+ KP = ABS( IPIV( K ) )
+ IF( KP.NE.K ) THEN
+*
+* Interchange rows and columns K and KP in the leading
+* submatrix A(1:k+1,1:k+1)
+*
+ KPC = ( KP-1 )*KP / 2 + 1
+ CALL SSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
+ KX = KPC + KP - 1
+ DO 40 J = KP + 1, K - 1
+ KX = KX + J - 1
+ TEMP = AP( KC+J-1 )
+ AP( KC+J-1 ) = AP( KX )
+ AP( KX ) = TEMP
+ 40 CONTINUE
+ TEMP = AP( KC+K-1 )
+ AP( KC+K-1 ) = AP( KPC+KP-1 )
+ AP( KPC+KP-1 ) = TEMP
+ IF( KSTEP.EQ.2 ) THEN
+ TEMP = AP( KC+K+K-1 )
+ AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
+ AP( KC+K+KP-1 ) = TEMP
+ END IF
+ END IF
+*
+ K = K + KSTEP
+ KC = KCNEXT
+ GO TO 30
+ 50 CONTINUE
+*
+ ELSE
+*
+* Compute inv(A) from the factorization A = L*D*L'.
+*
+* K is the main loop index, increasing from 1 to N in steps of
+* 1 or 2, depending on the size of the diagonal blocks.
+*
+ NPP = N*( N+1 ) / 2
+ K = N
+ KC = NPP
+ 60 CONTINUE
+*
+* If K < 1, exit from loop.
+*
+ IF( K.LT.1 )
+ $ GO TO 80
+*
+ KCNEXT = KC - ( N-K+2 )
+ IF( IPIV( K ).GT.0 ) THEN
+*
+* 1 x 1 diagonal block
+*
+* Invert the diagonal block.
+*
+ AP( KC ) = ONE / AP( KC )
+*
+* Compute column K of the inverse.
+*
+ IF( K.LT.N ) THEN
+ CALL SCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
+ CALL SSPMV( UPLO, N-K, -ONE, AP( KC+N-K+1 ), WORK, 1,
+ $ ZERO, AP( KC+1 ), 1 )
+ AP( KC ) = AP( KC ) - SDOT( N-K, WORK, 1, AP( KC+1 ), 1 )
+ END IF
+ KSTEP = 1
+ ELSE
+*
+* 2 x 2 diagonal block
+*
+* Invert the diagonal block.
+*
+ T = ABS( AP( KCNEXT+1 ) )
+ AK = AP( KCNEXT ) / T
+ AKP1 = AP( KC ) / T
+ AKKP1 = AP( KCNEXT+1 ) / T
+ D = T*( AK*AKP1-ONE )
+ AP( KCNEXT ) = AKP1 / D
+ AP( KC ) = AK / D
+ AP( KCNEXT+1 ) = -AKKP1 / D
+*
+* Compute columns K-1 and K of the inverse.
+*
+ IF( K.LT.N ) THEN
+ CALL SCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
+ CALL SSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
+ $ ZERO, AP( KC+1 ), 1 )
+ AP( KC ) = AP( KC ) - SDOT( N-K, WORK, 1, AP( KC+1 ), 1 )
+ AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
+ $ SDOT( N-K, AP( KC+1 ), 1,
+ $ AP( KCNEXT+2 ), 1 )
+ CALL SCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
+ CALL SSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
+ $ ZERO, AP( KCNEXT+2 ), 1 )
+ AP( KCNEXT ) = AP( KCNEXT ) -
+ $ SDOT( N-K, WORK, 1, AP( KCNEXT+2 ), 1 )
+ END IF
+ KSTEP = 2
+ KCNEXT = KCNEXT - ( N-K+3 )
+ END IF
+*
+ KP = ABS( IPIV( K ) )
+ IF( KP.NE.K ) THEN
+*
+* Interchange rows and columns K and KP in the trailing
+* submatrix A(k-1:n,k-1:n)
+*
+ KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
+ IF( KP.LT.N )
+ $ CALL SSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
+ KX = KC + KP - K
+ DO 70 J = K + 1, KP - 1
+ KX = KX + N - J + 1
+ TEMP = AP( KC+J-K )
+ AP( KC+J-K ) = AP( KX )
+ AP( KX ) = TEMP
+ 70 CONTINUE
+ TEMP = AP( KC )
+ AP( KC ) = AP( KPC )
+ AP( KPC ) = TEMP
+ IF( KSTEP.EQ.2 ) THEN
+ TEMP = AP( KC-N+K-1 )
+ AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
+ AP( KC-N+KP-1 ) = TEMP
+ END IF
+ END IF
+*
+ K = K - KSTEP
+ KC = KCNEXT
+ GO TO 60
+ 80 CONTINUE
+ END IF
+*
+ RETURN
+*
+* End of SSPTRI
+*
+ END