summaryrefslogtreecommitdiff
path: root/SRC/ssbev.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/ssbev.f')
-rw-r--r--SRC/ssbev.f205
1 files changed, 205 insertions, 0 deletions
diff --git a/SRC/ssbev.f b/SRC/ssbev.f
new file mode 100644
index 00000000..064b2dce
--- /dev/null
+++ b/SRC/ssbev.f
@@ -0,0 +1,205 @@
+ SUBROUTINE SSBEV( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
+ $ INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBZ, UPLO
+ INTEGER INFO, KD, LDAB, LDZ, N
+* ..
+* .. Array Arguments ..
+ REAL AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
+* ..
+*
+* Purpose
+* =======
+*
+* SSBEV computes all the eigenvalues and, optionally, eigenvectors of
+* a real symmetric band matrix A.
+*
+* Arguments
+* =========
+*
+* JOBZ (input) CHARACTER*1
+* = 'N': Compute eigenvalues only;
+* = 'V': Compute eigenvalues and eigenvectors.
+*
+* UPLO (input) CHARACTER*1
+* = 'U': Upper triangle of A is stored;
+* = 'L': Lower triangle of A is stored.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* KD (input) INTEGER
+* The number of superdiagonals of the matrix A if UPLO = 'U',
+* or the number of subdiagonals if UPLO = 'L'. KD >= 0.
+*
+* AB (input/output) REAL array, dimension (LDAB, N)
+* On entry, the upper or lower triangle of the symmetric band
+* matrix A, stored in the first KD+1 rows of the array. The
+* j-th column of A is stored in the j-th column of the array AB
+* as follows:
+* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
+* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
+*
+* On exit, AB is overwritten by values generated during the
+* reduction to tridiagonal form. If UPLO = 'U', the first
+* superdiagonal and the diagonal of the tridiagonal matrix T
+* are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
+* the diagonal and first subdiagonal of T are returned in the
+* first two rows of AB.
+*
+* LDAB (input) INTEGER
+* The leading dimension of the array AB. LDAB >= KD + 1.
+*
+* W (output) REAL array, dimension (N)
+* If INFO = 0, the eigenvalues in ascending order.
+*
+* Z (output) REAL array, dimension (LDZ, N)
+* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
+* eigenvectors of the matrix A, with the i-th column of Z
+* holding the eigenvector associated with W(i).
+* If JOBZ = 'N', then Z is not referenced.
+*
+* LDZ (input) INTEGER
+* The leading dimension of the array Z. LDZ >= 1, and if
+* JOBZ = 'V', LDZ >= max(1,N).
+*
+* WORK (workspace) REAL array, dimension (max(1,3*N-2))
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = i, the algorithm failed to converge; i
+* off-diagonal elements of an intermediate tridiagonal
+* form did not converge to zero.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE
+ PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LOWER, WANTZ
+ INTEGER IINFO, IMAX, INDE, INDWRK, ISCALE
+ REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
+ $ SMLNUM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ REAL SLAMCH, SLANSB
+ EXTERNAL LSAME, SLAMCH, SLANSB
+* ..
+* .. External Subroutines ..
+ EXTERNAL SLASCL, SSBTRD, SSCAL, SSTEQR, SSTERF, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ WANTZ = LSAME( JOBZ, 'V' )
+ LOWER = LSAME( UPLO, 'L' )
+*
+ INFO = 0
+ IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( KD.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDAB.LT.KD+1 ) THEN
+ INFO = -6
+ ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
+ INFO = -9
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SSBEV ', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+ IF( N.EQ.1 ) THEN
+ IF( LOWER ) THEN
+ W( 1 ) = AB( 1, 1 )
+ ELSE
+ W( 1 ) = AB( KD+1, 1 )
+ END IF
+ IF( WANTZ )
+ $ Z( 1, 1 ) = ONE
+ RETURN
+ END IF
+*
+* Get machine constants.
+*
+ SAFMIN = SLAMCH( 'Safe minimum' )
+ EPS = SLAMCH( 'Precision' )
+ SMLNUM = SAFMIN / EPS
+ BIGNUM = ONE / SMLNUM
+ RMIN = SQRT( SMLNUM )
+ RMAX = SQRT( BIGNUM )
+*
+* Scale matrix to allowable range, if necessary.
+*
+ ANRM = SLANSB( 'M', UPLO, N, KD, AB, LDAB, WORK )
+ ISCALE = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
+ ISCALE = 1
+ SIGMA = RMIN / ANRM
+ ELSE IF( ANRM.GT.RMAX ) THEN
+ ISCALE = 1
+ SIGMA = RMAX / ANRM
+ END IF
+ IF( ISCALE.EQ.1 ) THEN
+ IF( LOWER ) THEN
+ CALL SLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
+ ELSE
+ CALL SLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
+ END IF
+ END IF
+*
+* Call SSBTRD to reduce symmetric band matrix to tridiagonal form.
+*
+ INDE = 1
+ INDWRK = INDE + N
+ CALL SSBTRD( JOBZ, UPLO, N, KD, AB, LDAB, W, WORK( INDE ), Z, LDZ,
+ $ WORK( INDWRK ), IINFO )
+*
+* For eigenvalues only, call SSTERF. For eigenvectors, call SSTEQR.
+*
+ IF( .NOT.WANTZ ) THEN
+ CALL SSTERF( N, W, WORK( INDE ), INFO )
+ ELSE
+ CALL SSTEQR( JOBZ, N, W, WORK( INDE ), Z, LDZ, WORK( INDWRK ),
+ $ INFO )
+ END IF
+*
+* If matrix was scaled, then rescale eigenvalues appropriately.
+*
+ IF( ISCALE.EQ.1 ) THEN
+ IF( INFO.EQ.0 ) THEN
+ IMAX = N
+ ELSE
+ IMAX = INFO - 1
+ END IF
+ CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
+ END IF
+*
+ RETURN
+*
+* End of SSBEV
+*
+ END