diff options
Diffstat (limited to 'SRC/slasd1.f')
-rw-r--r-- | SRC/slasd1.f | 232 |
1 files changed, 232 insertions, 0 deletions
diff --git a/SRC/slasd1.f b/SRC/slasd1.f new file mode 100644 index 00000000..86cddeeb --- /dev/null +++ b/SRC/slasd1.f @@ -0,0 +1,232 @@ + SUBROUTINE SLASD1( NL, NR, SQRE, D, ALPHA, BETA, U, LDU, VT, LDVT, + $ IDXQ, IWORK, WORK, INFO ) +* +* -- LAPACK auxiliary routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER INFO, LDU, LDVT, NL, NR, SQRE + REAL ALPHA, BETA +* .. +* .. Array Arguments .. + INTEGER IDXQ( * ), IWORK( * ) + REAL D( * ), U( LDU, * ), VT( LDVT, * ), WORK( * ) +* .. +* +* Purpose +* ======= +* +* SLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B, +* where N = NL + NR + 1 and M = N + SQRE. SLASD1 is called from SLASD0. +* +* A related subroutine SLASD7 handles the case in which the singular +* values (and the singular vectors in factored form) are desired. +* +* SLASD1 computes the SVD as follows: +* +* ( D1(in) 0 0 0 ) +* B = U(in) * ( Z1' a Z2' b ) * VT(in) +* ( 0 0 D2(in) 0 ) +* +* = U(out) * ( D(out) 0) * VT(out) +* +* where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M +* with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros +* elsewhere; and the entry b is empty if SQRE = 0. +* +* The left singular vectors of the original matrix are stored in U, and +* the transpose of the right singular vectors are stored in VT, and the +* singular values are in D. The algorithm consists of three stages: +* +* The first stage consists of deflating the size of the problem +* when there are multiple singular values or when there are zeros in +* the Z vector. For each such occurence the dimension of the +* secular equation problem is reduced by one. This stage is +* performed by the routine SLASD2. +* +* The second stage consists of calculating the updated +* singular values. This is done by finding the square roots of the +* roots of the secular equation via the routine SLASD4 (as called +* by SLASD3). This routine also calculates the singular vectors of +* the current problem. +* +* The final stage consists of computing the updated singular vectors +* directly using the updated singular values. The singular vectors +* for the current problem are multiplied with the singular vectors +* from the overall problem. +* +* Arguments +* ========= +* +* NL (input) INTEGER +* The row dimension of the upper block. NL >= 1. +* +* NR (input) INTEGER +* The row dimension of the lower block. NR >= 1. +* +* SQRE (input) INTEGER +* = 0: the lower block is an NR-by-NR square matrix. +* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. +* +* The bidiagonal matrix has row dimension N = NL + NR + 1, +* and column dimension M = N + SQRE. +* +* D (input/output) REAL array, dimension (NL+NR+1). +* N = NL+NR+1 +* On entry D(1:NL,1:NL) contains the singular values of the +* upper block; and D(NL+2:N) contains the singular values of +* the lower block. On exit D(1:N) contains the singular values +* of the modified matrix. +* +* ALPHA (input/output) REAL +* Contains the diagonal element associated with the added row. +* +* BETA (input/output) REAL +* Contains the off-diagonal element associated with the added +* row. +* +* U (input/output) REAL array, dimension (LDU,N) +* On entry U(1:NL, 1:NL) contains the left singular vectors of +* the upper block; U(NL+2:N, NL+2:N) contains the left singular +* vectors of the lower block. On exit U contains the left +* singular vectors of the bidiagonal matrix. +* +* LDU (input) INTEGER +* The leading dimension of the array U. LDU >= max( 1, N ). +* +* VT (input/output) REAL array, dimension (LDVT,M) +* where M = N + SQRE. +* On entry VT(1:NL+1, 1:NL+1)' contains the right singular +* vectors of the upper block; VT(NL+2:M, NL+2:M)' contains +* the right singular vectors of the lower block. On exit +* VT' contains the right singular vectors of the +* bidiagonal matrix. +* +* LDVT (input) INTEGER +* The leading dimension of the array VT. LDVT >= max( 1, M ). +* +* IDXQ (output) INTEGER array, dimension (N) +* This contains the permutation which will reintegrate the +* subproblem just solved back into sorted order, i.e. +* D( IDXQ( I = 1, N ) ) will be in ascending order. +* +* IWORK (workspace) INTEGER array, dimension (4*N) +* +* WORK (workspace) REAL array, dimension (3*M**2+2*M) +* +* INFO (output) INTEGER +* = 0: successful exit. +* < 0: if INFO = -i, the i-th argument had an illegal value. +* > 0: if INFO = 1, an singular value did not converge +* +* Further Details +* =============== +* +* Based on contributions by +* Ming Gu and Huan Ren, Computer Science Division, University of +* California at Berkeley, USA +* +* ===================================================================== +* +* .. Parameters .. +* + REAL ONE, ZERO + PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) +* .. +* .. Local Scalars .. + INTEGER COLTYP, I, IDX, IDXC, IDXP, IQ, ISIGMA, IU2, + $ IVT2, IZ, K, LDQ, LDU2, LDVT2, M, N, N1, N2 + REAL ORGNRM +* .. +* .. External Subroutines .. + EXTERNAL SLAMRG, SLASCL, SLASD2, SLASD3, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 +* + IF( NL.LT.1 ) THEN + INFO = -1 + ELSE IF( NR.LT.1 ) THEN + INFO = -2 + ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN + INFO = -3 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'SLASD1', -INFO ) + RETURN + END IF +* + N = NL + NR + 1 + M = N + SQRE +* +* The following values are for bookkeeping purposes only. They are +* integer pointers which indicate the portion of the workspace +* used by a particular array in SLASD2 and SLASD3. +* + LDU2 = N + LDVT2 = M +* + IZ = 1 + ISIGMA = IZ + M + IU2 = ISIGMA + N + IVT2 = IU2 + LDU2*N + IQ = IVT2 + LDVT2*M +* + IDX = 1 + IDXC = IDX + N + COLTYP = IDXC + N + IDXP = COLTYP + N +* +* Scale. +* + ORGNRM = MAX( ABS( ALPHA ), ABS( BETA ) ) + D( NL+1 ) = ZERO + DO 10 I = 1, N + IF( ABS( D( I ) ).GT.ORGNRM ) THEN + ORGNRM = ABS( D( I ) ) + END IF + 10 CONTINUE + CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO ) + ALPHA = ALPHA / ORGNRM + BETA = BETA / ORGNRM +* +* Deflate singular values. +* + CALL SLASD2( NL, NR, SQRE, K, D, WORK( IZ ), ALPHA, BETA, U, LDU, + $ VT, LDVT, WORK( ISIGMA ), WORK( IU2 ), LDU2, + $ WORK( IVT2 ), LDVT2, IWORK( IDXP ), IWORK( IDX ), + $ IWORK( IDXC ), IDXQ, IWORK( COLTYP ), INFO ) +* +* Solve Secular Equation and update singular vectors. +* + LDQ = K + CALL SLASD3( NL, NR, SQRE, K, D, WORK( IQ ), LDQ, WORK( ISIGMA ), + $ U, LDU, WORK( IU2 ), LDU2, VT, LDVT, WORK( IVT2 ), + $ LDVT2, IWORK( IDXC ), IWORK( COLTYP ), WORK( IZ ), + $ INFO ) + IF( INFO.NE.0 ) THEN + RETURN + END IF +* +* Unscale. +* + CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO ) +* +* Prepare the IDXQ sorting permutation. +* + N1 = K + N2 = N - K + CALL SLAMRG( N1, N2, D, 1, -1, IDXQ ) +* + RETURN +* +* End of SLASD1 +* + END |