summaryrefslogtreecommitdiff
path: root/SRC/slar1v.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/slar1v.f')
-rw-r--r--SRC/slar1v.f50
1 files changed, 25 insertions, 25 deletions
diff --git a/SRC/slar1v.f b/SRC/slar1v.f
index 19287c6d..1c059ed0 100644
--- a/SRC/slar1v.f
+++ b/SRC/slar1v.f
@@ -25,14 +25,14 @@
*
* SLAR1V computes the (scaled) r-th column of the inverse of
* the sumbmatrix in rows B1 through BN of the tridiagonal matrix
-* L D L^T - sigma I. When sigma is close to an eigenvalue, the
+* L D L**T - sigma I. When sigma is close to an eigenvalue, the
* computed vector is an accurate eigenvector. Usually, r corresponds
* to the index where the eigenvector is largest in magnitude.
* The following steps accomplish this computation :
-* (a) Stationary qd transform, L D L^T - sigma I = L(+) D(+) L(+)^T,
-* (b) Progressive qd transform, L D L^T - sigma I = U(-) D(-) U(-)^T,
+* (a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T,
+* (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T,
* (c) Computation of the diagonal elements of the inverse of
-* L D L^T - sigma I by combining the above transforms, and choosing
+* L D L**T - sigma I by combining the above transforms, and choosing
* r as the index where the diagonal of the inverse is (one of the)
* largest in magnitude.
* (d) Computation of the (scaled) r-th column of the inverse using the
@@ -43,40 +43,40 @@
* =========
*
* N (input) INTEGER
-* The order of the matrix L D L^T.
+* The order of the matrix L D L**T.
*
* B1 (input) INTEGER
-* First index of the submatrix of L D L^T.
+* First index of the submatrix of L D L**T.
*
* BN (input) INTEGER
-* Last index of the submatrix of L D L^T.
+* Last index of the submatrix of L D L**T.
*
-* LAMBDA (input) REAL
+* LAMBDA (input) REAL
* The shift. In order to compute an accurate eigenvector,
* LAMBDA should be a good approximation to an eigenvalue
-* of L D L^T.
+* of L D L**T.
*
-* L (input) REAL array, dimension (N-1)
+* L (input) REAL array, dimension (N-1)
* The (n-1) subdiagonal elements of the unit bidiagonal matrix
* L, in elements 1 to N-1.
*
-* D (input) REAL array, dimension (N)
+* D (input) REAL array, dimension (N)
* The n diagonal elements of the diagonal matrix D.
*
-* LD (input) REAL array, dimension (N-1)
+* LD (input) REAL array, dimension (N-1)
* The n-1 elements L(i)*D(i).
*
-* LLD (input) REAL array, dimension (N-1)
+* LLD (input) REAL array, dimension (N-1)
* The n-1 elements L(i)*L(i)*D(i).
*
-* PIVMIN (input) REAL
+* PIVMIN (input) REAL
* The minimum pivot in the Sturm sequence.
*
-* GAPTOL (input) REAL
+* GAPTOL (input) REAL
* Tolerance that indicates when eigenvector entries are negligible
* w.r.t. their contribution to the residual.
*
-* Z (input/output) REAL array, dimension (N)
+* Z (input/output) REAL array, dimension (N)
* On input, all entries of Z must be set to 0.
* On output, Z contains the (scaled) r-th column of the
* inverse. The scaling is such that Z(R) equals 1.
@@ -86,20 +86,20 @@
*
* NEGCNT (output) INTEGER
* If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin
-* in the matrix factorization L D L^T, and NEGCNT = -1 otherwise.
+* in the matrix factorization L D L**T, and NEGCNT = -1 otherwise.
*
-* ZTZ (output) REAL
+* ZTZ (output) REAL
* The square of the 2-norm of Z.
*
-* MINGMA (output) REAL
+* MINGMA (output) REAL
* The reciprocal of the largest (in magnitude) diagonal
-* element of the inverse of L D L^T - sigma I.
+* element of the inverse of L D L**T - sigma I.
*
* R (input/output) INTEGER
* The twist index for the twisted factorization used to
* compute Z.
* On input, 0 <= R <= N. If R is input as 0, R is set to
-* the index where (L D L^T - sigma I)^{-1} is largest
+* the index where (L D L**T - sigma I)^{-1} is largest
* in magnitude. If 1 <= R <= N, R is unchanged.
* On output, R contains the twist index used to compute Z.
* Ideally, R designates the position of the maximum entry in the
@@ -109,18 +109,18 @@
* The support of the vector in Z, i.e., the vector Z is
* nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).
*
-* NRMINV (output) REAL
+* NRMINV (output) REAL
* NRMINV = 1/SQRT( ZTZ )
*
-* RESID (output) REAL
+* RESID (output) REAL
* The residual of the FP vector.
* RESID = ABS( MINGMA )/SQRT( ZTZ )
*
-* RQCORR (output) REAL
+* RQCORR (output) REAL
* The Rayleigh Quotient correction to LAMBDA.
* RQCORR = MINGMA*TMP
*
-* WORK (workspace) REAL array, dimension (4*N)
+* WORK (workspace) REAL array, dimension (4*N)
*
* Further Details
* ===============