summaryrefslogtreecommitdiff
path: root/SRC/sgglse.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/sgglse.f')
-rw-r--r--SRC/sgglse.f266
1 files changed, 266 insertions, 0 deletions
diff --git a/SRC/sgglse.f b/SRC/sgglse.f
new file mode 100644
index 00000000..c821782e
--- /dev/null
+++ b/SRC/sgglse.f
@@ -0,0 +1,266 @@
+ SUBROUTINE SGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
+ $ INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDB, LWORK, M, N, P
+* ..
+* .. Array Arguments ..
+ REAL A( LDA, * ), B( LDB, * ), C( * ), D( * ),
+ $ WORK( * ), X( * )
+* ..
+*
+* Purpose
+* =======
+*
+* SGGLSE solves the linear equality-constrained least squares (LSE)
+* problem:
+*
+* minimize || c - A*x ||_2 subject to B*x = d
+*
+* where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
+* M-vector, and d is a given P-vector. It is assumed that
+* P <= N <= M+P, and
+*
+* rank(B) = P and rank( (A) ) = N.
+* ( (B) )
+*
+* These conditions ensure that the LSE problem has a unique solution,
+* which is obtained using a generalized RQ factorization of the
+* matrices (B, A) given by
+*
+* B = (0 R)*Q, A = Z*T*Q.
+*
+* Arguments
+* =========
+*
+* M (input) INTEGER
+* The number of rows of the matrix A. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the matrices A and B. N >= 0.
+*
+* P (input) INTEGER
+* The number of rows of the matrix B. 0 <= P <= N <= M+P.
+*
+* A (input/output) REAL array, dimension (LDA,N)
+* On entry, the M-by-N matrix A.
+* On exit, the elements on and above the diagonal of the array
+* contain the min(M,N)-by-N upper trapezoidal matrix T.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,M).
+*
+* B (input/output) REAL array, dimension (LDB,N)
+* On entry, the P-by-N matrix B.
+* On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
+* contains the P-by-P upper triangular matrix R.
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= max(1,P).
+*
+* C (input/output) REAL array, dimension (M)
+* On entry, C contains the right hand side vector for the
+* least squares part of the LSE problem.
+* On exit, the residual sum of squares for the solution
+* is given by the sum of squares of elements N-P+1 to M of
+* vector C.
+*
+* D (input/output) REAL array, dimension (P)
+* On entry, D contains the right hand side vector for the
+* constrained equation.
+* On exit, D is destroyed.
+*
+* X (output) REAL array, dimension (N)
+* On exit, X is the solution of the LSE problem.
+*
+* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK >= max(1,M+N+P).
+* For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
+* where NB is an upper bound for the optimal blocksizes for
+* SGEQRF, SGERQF, SORMQR and SORMRQ.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit.
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+* = 1: the upper triangular factor R associated with B in the
+* generalized RQ factorization of the pair (B, A) is
+* singular, so that rank(B) < P; the least squares
+* solution could not be computed.
+* = 2: the (N-P) by (N-P) part of the upper trapezoidal factor
+* T associated with A in the generalized RQ factorization
+* of the pair (B, A) is singular, so that
+* rank( (A) ) < N; the least squares solution could not
+* ( (B) )
+* be computed.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ONE
+ PARAMETER ( ONE = 1.0E+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER LOPT, LWKMIN, LWKOPT, MN, NB, NB1, NB2, NB3,
+ $ NB4, NR
+* ..
+* .. External Subroutines ..
+ EXTERNAL SAXPY, SCOPY, SGEMV, SGGRQF, SORMQR, SORMRQ,
+ $ STRMV, STRTRS, XERBLA
+* ..
+* .. External Functions ..
+ INTEGER ILAENV
+ EXTERNAL ILAENV
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC INT, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters
+*
+ INFO = 0
+ MN = MIN( M, N )
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( P.LT.0 .OR. P.GT.N .OR. P.LT.N-M ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -5
+ ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
+ INFO = -7
+ END IF
+*
+* Calculate workspace
+*
+ IF( INFO.EQ.0) THEN
+ IF( N.EQ.0 ) THEN
+ LWKMIN = 1
+ LWKOPT = 1
+ ELSE
+ NB1 = ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
+ NB2 = ILAENV( 1, 'SGERQF', ' ', M, N, -1, -1 )
+ NB3 = ILAENV( 1, 'SORMQR', ' ', M, N, P, -1 )
+ NB4 = ILAENV( 1, 'SORMRQ', ' ', M, N, P, -1 )
+ NB = MAX( NB1, NB2, NB3, NB4 )
+ LWKMIN = M + N + P
+ LWKOPT = P + MN + MAX( M, N )*NB
+ END IF
+ WORK( 1 ) = LWKOPT
+*
+ IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -12
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SGGLSE', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* Compute the GRQ factorization of matrices B and A:
+*
+* B*Q' = ( 0 T12 ) P Z'*A*Q' = ( R11 R12 ) N-P
+* N-P P ( 0 R22 ) M+P-N
+* N-P P
+*
+* where T12 and R11 are upper triangular, and Q and Z are
+* orthogonal.
+*
+ CALL SGGRQF( P, M, N, B, LDB, WORK, A, LDA, WORK( P+1 ),
+ $ WORK( P+MN+1 ), LWORK-P-MN, INFO )
+ LOPT = WORK( P+MN+1 )
+*
+* Update c = Z'*c = ( c1 ) N-P
+* ( c2 ) M+P-N
+*
+ CALL SORMQR( 'Left', 'Transpose', M, 1, MN, A, LDA, WORK( P+1 ),
+ $ C, MAX( 1, M ), WORK( P+MN+1 ), LWORK-P-MN, INFO )
+ LOPT = MAX( LOPT, INT( WORK( P+MN+1 ) ) )
+*
+* Solve T12*x2 = d for x2
+*
+ IF( P.GT.0 ) THEN
+ CALL STRTRS( 'Upper', 'No transpose', 'Non-unit', P, 1,
+ $ B( 1, N-P+1 ), LDB, D, P, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ INFO = 1
+ RETURN
+ END IF
+*
+* Put the solution in X
+*
+ CALL SCOPY( P, D, 1, X( N-P+1 ), 1 )
+*
+* Update c1
+*
+ CALL SGEMV( 'No transpose', N-P, P, -ONE, A( 1, N-P+1 ), LDA,
+ $ D, 1, ONE, C, 1 )
+ END IF
+*
+* Solve R11*x1 = c1 for x1
+*
+ IF( N.GT.P ) THEN
+ CALL STRTRS( 'Upper', 'No transpose', 'Non-unit', N-P, 1,
+ $ A, LDA, C, N-P, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ INFO = 2
+ RETURN
+ END IF
+*
+* Put the solution in X
+*
+ CALL SCOPY( N-P, C, 1, X, 1 )
+ END IF
+*
+* Compute the residual vector:
+*
+ IF( M.LT.N ) THEN
+ NR = M + P - N
+ IF( NR.GT.0 )
+ $ CALL SGEMV( 'No transpose', NR, N-M, -ONE, A( N-P+1, M+1 ),
+ $ LDA, D( NR+1 ), 1, ONE, C( N-P+1 ), 1 )
+ ELSE
+ NR = P
+ END IF
+ IF( NR.GT.0 ) THEN
+ CALL STRMV( 'Upper', 'No transpose', 'Non unit', NR,
+ $ A( N-P+1, N-P+1 ), LDA, D, 1 )
+ CALL SAXPY( NR, -ONE, D, 1, C( N-P+1 ), 1 )
+ END IF
+*
+* Backward transformation x = Q'*x
+*
+ CALL SORMRQ( 'Left', 'Transpose', N, 1, P, B, LDB, WORK( 1 ), X,
+ $ N, WORK( P+MN+1 ), LWORK-P-MN, INFO )
+ WORK( 1 ) = P + MN + MAX( LOPT, INT( WORK( P+MN+1 ) ) )
+*
+ RETURN
+*
+* End of SGGLSE
+*
+ END