diff options
Diffstat (limited to 'SRC/sgglse.f')
-rw-r--r-- | SRC/sgglse.f | 266 |
1 files changed, 266 insertions, 0 deletions
diff --git a/SRC/sgglse.f b/SRC/sgglse.f new file mode 100644 index 00000000..c821782e --- /dev/null +++ b/SRC/sgglse.f @@ -0,0 +1,266 @@ + SUBROUTINE SGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK, + $ INFO ) +* +* -- LAPACK driver routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER INFO, LDA, LDB, LWORK, M, N, P +* .. +* .. Array Arguments .. + REAL A( LDA, * ), B( LDB, * ), C( * ), D( * ), + $ WORK( * ), X( * ) +* .. +* +* Purpose +* ======= +* +* SGGLSE solves the linear equality-constrained least squares (LSE) +* problem: +* +* minimize || c - A*x ||_2 subject to B*x = d +* +* where A is an M-by-N matrix, B is a P-by-N matrix, c is a given +* M-vector, and d is a given P-vector. It is assumed that +* P <= N <= M+P, and +* +* rank(B) = P and rank( (A) ) = N. +* ( (B) ) +* +* These conditions ensure that the LSE problem has a unique solution, +* which is obtained using a generalized RQ factorization of the +* matrices (B, A) given by +* +* B = (0 R)*Q, A = Z*T*Q. +* +* Arguments +* ========= +* +* M (input) INTEGER +* The number of rows of the matrix A. M >= 0. +* +* N (input) INTEGER +* The number of columns of the matrices A and B. N >= 0. +* +* P (input) INTEGER +* The number of rows of the matrix B. 0 <= P <= N <= M+P. +* +* A (input/output) REAL array, dimension (LDA,N) +* On entry, the M-by-N matrix A. +* On exit, the elements on and above the diagonal of the array +* contain the min(M,N)-by-N upper trapezoidal matrix T. +* +* LDA (input) INTEGER +* The leading dimension of the array A. LDA >= max(1,M). +* +* B (input/output) REAL array, dimension (LDB,N) +* On entry, the P-by-N matrix B. +* On exit, the upper triangle of the subarray B(1:P,N-P+1:N) +* contains the P-by-P upper triangular matrix R. +* +* LDB (input) INTEGER +* The leading dimension of the array B. LDB >= max(1,P). +* +* C (input/output) REAL array, dimension (M) +* On entry, C contains the right hand side vector for the +* least squares part of the LSE problem. +* On exit, the residual sum of squares for the solution +* is given by the sum of squares of elements N-P+1 to M of +* vector C. +* +* D (input/output) REAL array, dimension (P) +* On entry, D contains the right hand side vector for the +* constrained equation. +* On exit, D is destroyed. +* +* X (output) REAL array, dimension (N) +* On exit, X is the solution of the LSE problem. +* +* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) +* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +* +* LWORK (input) INTEGER +* The dimension of the array WORK. LWORK >= max(1,M+N+P). +* For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB, +* where NB is an upper bound for the optimal blocksizes for +* SGEQRF, SGERQF, SORMQR and SORMRQ. +* +* If LWORK = -1, then a workspace query is assumed; the routine +* only calculates the optimal size of the WORK array, returns +* this value as the first entry of the WORK array, and no error +* message related to LWORK is issued by XERBLA. +* +* INFO (output) INTEGER +* = 0: successful exit. +* < 0: if INFO = -i, the i-th argument had an illegal value. +* = 1: the upper triangular factor R associated with B in the +* generalized RQ factorization of the pair (B, A) is +* singular, so that rank(B) < P; the least squares +* solution could not be computed. +* = 2: the (N-P) by (N-P) part of the upper trapezoidal factor +* T associated with A in the generalized RQ factorization +* of the pair (B, A) is singular, so that +* rank( (A) ) < N; the least squares solution could not +* ( (B) ) +* be computed. +* +* ===================================================================== +* +* .. Parameters .. + REAL ONE + PARAMETER ( ONE = 1.0E+0 ) +* .. +* .. Local Scalars .. + LOGICAL LQUERY + INTEGER LOPT, LWKMIN, LWKOPT, MN, NB, NB1, NB2, NB3, + $ NB4, NR +* .. +* .. External Subroutines .. + EXTERNAL SAXPY, SCOPY, SGEMV, SGGRQF, SORMQR, SORMRQ, + $ STRMV, STRTRS, XERBLA +* .. +* .. External Functions .. + INTEGER ILAENV + EXTERNAL ILAENV +* .. +* .. Intrinsic Functions .. + INTRINSIC INT, MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input parameters +* + INFO = 0 + MN = MIN( M, N ) + LQUERY = ( LWORK.EQ.-1 ) + IF( M.LT.0 ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( P.LT.0 .OR. P.GT.N .OR. P.LT.N-M ) THEN + INFO = -3 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -5 + ELSE IF( LDB.LT.MAX( 1, P ) ) THEN + INFO = -7 + END IF +* +* Calculate workspace +* + IF( INFO.EQ.0) THEN + IF( N.EQ.0 ) THEN + LWKMIN = 1 + LWKOPT = 1 + ELSE + NB1 = ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 ) + NB2 = ILAENV( 1, 'SGERQF', ' ', M, N, -1, -1 ) + NB3 = ILAENV( 1, 'SORMQR', ' ', M, N, P, -1 ) + NB4 = ILAENV( 1, 'SORMRQ', ' ', M, N, P, -1 ) + NB = MAX( NB1, NB2, NB3, NB4 ) + LWKMIN = M + N + P + LWKOPT = P + MN + MAX( M, N )*NB + END IF + WORK( 1 ) = LWKOPT +* + IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN + INFO = -12 + END IF + END IF +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'SGGLSE', -INFO ) + RETURN + ELSE IF( LQUERY ) THEN + RETURN + END IF +* +* Quick return if possible +* + IF( N.EQ.0 ) + $ RETURN +* +* Compute the GRQ factorization of matrices B and A: +* +* B*Q' = ( 0 T12 ) P Z'*A*Q' = ( R11 R12 ) N-P +* N-P P ( 0 R22 ) M+P-N +* N-P P +* +* where T12 and R11 are upper triangular, and Q and Z are +* orthogonal. +* + CALL SGGRQF( P, M, N, B, LDB, WORK, A, LDA, WORK( P+1 ), + $ WORK( P+MN+1 ), LWORK-P-MN, INFO ) + LOPT = WORK( P+MN+1 ) +* +* Update c = Z'*c = ( c1 ) N-P +* ( c2 ) M+P-N +* + CALL SORMQR( 'Left', 'Transpose', M, 1, MN, A, LDA, WORK( P+1 ), + $ C, MAX( 1, M ), WORK( P+MN+1 ), LWORK-P-MN, INFO ) + LOPT = MAX( LOPT, INT( WORK( P+MN+1 ) ) ) +* +* Solve T12*x2 = d for x2 +* + IF( P.GT.0 ) THEN + CALL STRTRS( 'Upper', 'No transpose', 'Non-unit', P, 1, + $ B( 1, N-P+1 ), LDB, D, P, INFO ) +* + IF( INFO.GT.0 ) THEN + INFO = 1 + RETURN + END IF +* +* Put the solution in X +* + CALL SCOPY( P, D, 1, X( N-P+1 ), 1 ) +* +* Update c1 +* + CALL SGEMV( 'No transpose', N-P, P, -ONE, A( 1, N-P+1 ), LDA, + $ D, 1, ONE, C, 1 ) + END IF +* +* Solve R11*x1 = c1 for x1 +* + IF( N.GT.P ) THEN + CALL STRTRS( 'Upper', 'No transpose', 'Non-unit', N-P, 1, + $ A, LDA, C, N-P, INFO ) +* + IF( INFO.GT.0 ) THEN + INFO = 2 + RETURN + END IF +* +* Put the solution in X +* + CALL SCOPY( N-P, C, 1, X, 1 ) + END IF +* +* Compute the residual vector: +* + IF( M.LT.N ) THEN + NR = M + P - N + IF( NR.GT.0 ) + $ CALL SGEMV( 'No transpose', NR, N-M, -ONE, A( N-P+1, M+1 ), + $ LDA, D( NR+1 ), 1, ONE, C( N-P+1 ), 1 ) + ELSE + NR = P + END IF + IF( NR.GT.0 ) THEN + CALL STRMV( 'Upper', 'No transpose', 'Non unit', NR, + $ A( N-P+1, N-P+1 ), LDA, D, 1 ) + CALL SAXPY( NR, -ONE, D, 1, C( N-P+1 ), 1 ) + END IF +* +* Backward transformation x = Q'*x +* + CALL SORMRQ( 'Left', 'Transpose', N, 1, P, B, LDB, WORK( 1 ), X, + $ N, WORK( P+MN+1 ), LWORK-P-MN, INFO ) + WORK( 1 ) = P + MN + MAX( LOPT, INT( WORK( P+MN+1 ) ) ) +* + RETURN +* +* End of SGGLSE +* + END |