summaryrefslogtreecommitdiff
path: root/SRC/sgesdd.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/sgesdd.f')
-rw-r--r--SRC/sgesdd.f1339
1 files changed, 1339 insertions, 0 deletions
diff --git a/SRC/sgesdd.f b/SRC/sgesdd.f
new file mode 100644
index 00000000..de3683d8
--- /dev/null
+++ b/SRC/sgesdd.f
@@ -0,0 +1,1339 @@
+ SUBROUTINE SGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,
+ $ LWORK, IWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBZ
+ INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
+* ..
+* .. Array Arguments ..
+ INTEGER IWORK( * )
+ REAL A( LDA, * ), S( * ), U( LDU, * ),
+ $ VT( LDVT, * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* SGESDD computes the singular value decomposition (SVD) of a real
+* M-by-N matrix A, optionally computing the left and right singular
+* vectors. If singular vectors are desired, it uses a
+* divide-and-conquer algorithm.
+*
+* The SVD is written
+*
+* A = U * SIGMA * transpose(V)
+*
+* where SIGMA is an M-by-N matrix which is zero except for its
+* min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
+* V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
+* are the singular values of A; they are real and non-negative, and
+* are returned in descending order. The first min(m,n) columns of
+* U and V are the left and right singular vectors of A.
+*
+* Note that the routine returns VT = V**T, not V.
+*
+* The divide and conquer algorithm makes very mild assumptions about
+* floating point arithmetic. It will work on machines with a guard
+* digit in add/subtract, or on those binary machines without guard
+* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
+* Cray-2. It could conceivably fail on hexadecimal or decimal machines
+* without guard digits, but we know of none.
+*
+* Arguments
+* =========
+*
+* JOBZ (input) CHARACTER*1
+* Specifies options for computing all or part of the matrix U:
+* = 'A': all M columns of U and all N rows of V**T are
+* returned in the arrays U and VT;
+* = 'S': the first min(M,N) columns of U and the first
+* min(M,N) rows of V**T are returned in the arrays U
+* and VT;
+* = 'O': If M >= N, the first N columns of U are overwritten
+* on the array A and all rows of V**T are returned in
+* the array VT;
+* otherwise, all columns of U are returned in the
+* array U and the first M rows of V**T are overwritten
+* in the array A;
+* = 'N': no columns of U or rows of V**T are computed.
+*
+* M (input) INTEGER
+* The number of rows of the input matrix A. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the input matrix A. N >= 0.
+*
+* A (input/output) REAL array, dimension (LDA,N)
+* On entry, the M-by-N matrix A.
+* On exit,
+* if JOBZ = 'O', A is overwritten with the first N columns
+* of U (the left singular vectors, stored
+* columnwise) if M >= N;
+* A is overwritten with the first M rows
+* of V**T (the right singular vectors, stored
+* rowwise) otherwise.
+* if JOBZ .ne. 'O', the contents of A are destroyed.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,M).
+*
+* S (output) REAL array, dimension (min(M,N))
+* The singular values of A, sorted so that S(i) >= S(i+1).
+*
+* U (output) REAL array, dimension (LDU,UCOL)
+* UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
+* UCOL = min(M,N) if JOBZ = 'S'.
+* If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
+* orthogonal matrix U;
+* if JOBZ = 'S', U contains the first min(M,N) columns of U
+* (the left singular vectors, stored columnwise);
+* if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.
+*
+* LDU (input) INTEGER
+* The leading dimension of the array U. LDU >= 1; if
+* JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.
+*
+* VT (output) REAL array, dimension (LDVT,N)
+* If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the
+* N-by-N orthogonal matrix V**T;
+* if JOBZ = 'S', VT contains the first min(M,N) rows of
+* V**T (the right singular vectors, stored rowwise);
+* if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.
+*
+* LDVT (input) INTEGER
+* The leading dimension of the array VT. LDVT >= 1; if
+* JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
+* if JOBZ = 'S', LDVT >= min(M,N).
+*
+* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK >= 1.
+* If JOBZ = 'N',
+* LWORK >= 3*min(M,N) + max(max(M,N),6*min(M,N)).
+* If JOBZ = 'O',
+* LWORK >= 3*min(M,N)*min(M,N) +
+* max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)).
+* If JOBZ = 'S' or 'A'
+* LWORK >= 3*min(M,N)*min(M,N) +
+* max(max(M,N),4*min(M,N)*min(M,N)+4*min(M,N)).
+* For good performance, LWORK should generally be larger.
+* If LWORK = -1 but other input arguments are legal, WORK(1)
+* returns the optimal LWORK.
+*
+* IWORK (workspace) INTEGER array, dimension (8*min(M,N))
+*
+* INFO (output) INTEGER
+* = 0: successful exit.
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+* > 0: SBDSDC did not converge, updating process failed.
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* Ming Gu and Huan Ren, Computer Science Division, University of
+* California at Berkeley, USA
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE
+ PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, WNTQA, WNTQAS, WNTQN, WNTQO, WNTQS
+ INTEGER BDSPAC, BLK, CHUNK, I, IE, IERR, IL,
+ $ IR, ISCL, ITAU, ITAUP, ITAUQ, IU, IVT, LDWKVT,
+ $ LDWRKL, LDWRKR, LDWRKU, MAXWRK, MINMN, MINWRK,
+ $ MNTHR, NWORK, WRKBL
+ REAL ANRM, BIGNUM, EPS, SMLNUM
+* ..
+* .. Local Arrays ..
+ INTEGER IDUM( 1 )
+ REAL DUM( 1 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL SBDSDC, SGEBRD, SGELQF, SGEMM, SGEQRF, SLACPY,
+ $ SLASCL, SLASET, SORGBR, SORGLQ, SORGQR, SORMBR,
+ $ XERBLA
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ REAL SLAMCH, SLANGE
+ EXTERNAL ILAENV, LSAME, SLAMCH, SLANGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC INT, MAX, MIN, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ MINMN = MIN( M, N )
+ WNTQA = LSAME( JOBZ, 'A' )
+ WNTQS = LSAME( JOBZ, 'S' )
+ WNTQAS = WNTQA .OR. WNTQS
+ WNTQO = LSAME( JOBZ, 'O' )
+ WNTQN = LSAME( JOBZ, 'N' )
+ LQUERY = ( LWORK.EQ.-1 )
+*
+ IF( .NOT.( WNTQA .OR. WNTQS .OR. WNTQO .OR. WNTQN ) ) THEN
+ INFO = -1
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -5
+ ELSE IF( LDU.LT.1 .OR. ( WNTQAS .AND. LDU.LT.M ) .OR.
+ $ ( WNTQO .AND. M.LT.N .AND. LDU.LT.M ) ) THEN
+ INFO = -8
+ ELSE IF( LDVT.LT.1 .OR. ( WNTQA .AND. LDVT.LT.N ) .OR.
+ $ ( WNTQS .AND. LDVT.LT.MINMN ) .OR.
+ $ ( WNTQO .AND. M.GE.N .AND. LDVT.LT.N ) ) THEN
+ INFO = -10
+ END IF
+*
+* Compute workspace
+* (Note: Comments in the code beginning "Workspace:" describe the
+* minimal amount of workspace needed at that point in the code,
+* as well as the preferred amount for good performance.
+* NB refers to the optimal block size for the immediately
+* following subroutine, as returned by ILAENV.)
+*
+ IF( INFO.EQ.0 ) THEN
+ MINWRK = 1
+ MAXWRK = 1
+ IF( M.GE.N .AND. MINMN.GT.0 ) THEN
+*
+* Compute space needed for SBDSDC
+*
+ MNTHR = INT( MINMN*11.0E0 / 6.0E0 )
+ IF( WNTQN ) THEN
+ BDSPAC = 7*N
+ ELSE
+ BDSPAC = 3*N*N + 4*N
+ END IF
+ IF( M.GE.MNTHR ) THEN
+ IF( WNTQN ) THEN
+*
+* Path 1 (M much larger than N, JOBZ='N')
+*
+ WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1,
+ $ -1 )
+ WRKBL = MAX( WRKBL, 3*N+2*N*
+ $ ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
+ MAXWRK = MAX( WRKBL, BDSPAC+N )
+ MINWRK = BDSPAC + N
+ ELSE IF( WNTQO ) THEN
+*
+* Path 2 (M much larger than N, JOBZ='O')
+*
+ WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'SORGQR', ' ', M,
+ $ N, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+2*N*
+ $ ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORMBR', 'QLN', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORMBR', 'PRT', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC+3*N )
+ MAXWRK = WRKBL + 2*N*N
+ MINWRK = BDSPAC + 2*N*N + 3*N
+ ELSE IF( WNTQS ) THEN
+*
+* Path 3 (M much larger than N, JOBZ='S')
+*
+ WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'SORGQR', ' ', M,
+ $ N, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+2*N*
+ $ ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORMBR', 'QLN', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORMBR', 'PRT', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC+3*N )
+ MAXWRK = WRKBL + N*N
+ MINWRK = BDSPAC + N*N + 3*N
+ ELSE IF( WNTQA ) THEN
+*
+* Path 4 (M much larger than N, JOBZ='A')
+*
+ WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, N+M*ILAENV( 1, 'SORGQR', ' ', M,
+ $ M, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+2*N*
+ $ ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORMBR', 'QLN', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORMBR', 'PRT', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC+3*N )
+ MAXWRK = WRKBL + N*N
+ MINWRK = BDSPAC + N*N + 3*N
+ END IF
+ ELSE
+*
+* Path 5 (M at least N, but not much larger)
+*
+ WRKBL = 3*N + ( M+N )*ILAENV( 1, 'SGEBRD', ' ', M, N, -1,
+ $ -1 )
+ IF( WNTQN ) THEN
+ MAXWRK = MAX( WRKBL, BDSPAC+3*N )
+ MINWRK = 3*N + MAX( M, BDSPAC )
+ ELSE IF( WNTQO ) THEN
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORMBR', 'QLN', M, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORMBR', 'PRT', N, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC+3*N )
+ MAXWRK = WRKBL + M*N
+ MINWRK = 3*N + MAX( M, N*N+BDSPAC )
+ ELSE IF( WNTQS ) THEN
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORMBR', 'QLN', M, N, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORMBR', 'PRT', N, N, N, -1 ) )
+ MAXWRK = MAX( WRKBL, BDSPAC+3*N )
+ MINWRK = 3*N + MAX( M, BDSPAC )
+ ELSE IF( WNTQA ) THEN
+ WRKBL = MAX( WRKBL, 3*N+M*
+ $ ILAENV( 1, 'SORMBR', 'QLN', M, M, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*N+N*
+ $ ILAENV( 1, 'SORMBR', 'PRT', N, N, N, -1 ) )
+ MAXWRK = MAX( MAXWRK, BDSPAC+3*N )
+ MINWRK = 3*N + MAX( M, BDSPAC )
+ END IF
+ END IF
+ ELSE IF ( MINMN.GT.0 ) THEN
+*
+* Compute space needed for SBDSDC
+*
+ MNTHR = INT( MINMN*11.0E0 / 6.0E0 )
+ IF( WNTQN ) THEN
+ BDSPAC = 7*M
+ ELSE
+ BDSPAC = 3*M*M + 4*M
+ END IF
+ IF( N.GE.MNTHR ) THEN
+ IF( WNTQN ) THEN
+*
+* Path 1t (N much larger than M, JOBZ='N')
+*
+ WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1,
+ $ -1 )
+ WRKBL = MAX( WRKBL, 3*M+2*M*
+ $ ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
+ MAXWRK = MAX( WRKBL, BDSPAC+M )
+ MINWRK = BDSPAC + M
+ ELSE IF( WNTQO ) THEN
+*
+* Path 2t (N much larger than M, JOBZ='O')
+*
+ WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'SORGLQ', ' ', M,
+ $ N, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+2*M*
+ $ ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+M*
+ $ ILAENV( 1, 'SORMBR', 'QLN', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+M*
+ $ ILAENV( 1, 'SORMBR', 'PRT', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC+3*M )
+ MAXWRK = WRKBL + 2*M*M
+ MINWRK = BDSPAC + 2*M*M + 3*M
+ ELSE IF( WNTQS ) THEN
+*
+* Path 3t (N much larger than M, JOBZ='S')
+*
+ WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'SORGLQ', ' ', M,
+ $ N, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+2*M*
+ $ ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+M*
+ $ ILAENV( 1, 'SORMBR', 'QLN', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+M*
+ $ ILAENV( 1, 'SORMBR', 'PRT', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC+3*M )
+ MAXWRK = WRKBL + M*M
+ MINWRK = BDSPAC + M*M + 3*M
+ ELSE IF( WNTQA ) THEN
+*
+* Path 4t (N much larger than M, JOBZ='A')
+*
+ WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
+ WRKBL = MAX( WRKBL, M+N*ILAENV( 1, 'SORGLQ', ' ', N,
+ $ N, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+2*M*
+ $ ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+M*
+ $ ILAENV( 1, 'SORMBR', 'QLN', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+M*
+ $ ILAENV( 1, 'SORMBR', 'PRT', M, M, M, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC+3*M )
+ MAXWRK = WRKBL + M*M
+ MINWRK = BDSPAC + M*M + 3*M
+ END IF
+ ELSE
+*
+* Path 5t (N greater than M, but not much larger)
+*
+ WRKBL = 3*M + ( M+N )*ILAENV( 1, 'SGEBRD', ' ', M, N, -1,
+ $ -1 )
+ IF( WNTQN ) THEN
+ MAXWRK = MAX( WRKBL, BDSPAC+3*M )
+ MINWRK = 3*M + MAX( N, BDSPAC )
+ ELSE IF( WNTQO ) THEN
+ WRKBL = MAX( WRKBL, 3*M+M*
+ $ ILAENV( 1, 'SORMBR', 'QLN', M, M, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+M*
+ $ ILAENV( 1, 'SORMBR', 'PRT', M, N, M, -1 ) )
+ WRKBL = MAX( WRKBL, BDSPAC+3*M )
+ MAXWRK = WRKBL + M*N
+ MINWRK = 3*M + MAX( N, M*M+BDSPAC )
+ ELSE IF( WNTQS ) THEN
+ WRKBL = MAX( WRKBL, 3*M+M*
+ $ ILAENV( 1, 'SORMBR', 'QLN', M, M, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+M*
+ $ ILAENV( 1, 'SORMBR', 'PRT', M, N, M, -1 ) )
+ MAXWRK = MAX( WRKBL, BDSPAC+3*M )
+ MINWRK = 3*M + MAX( N, BDSPAC )
+ ELSE IF( WNTQA ) THEN
+ WRKBL = MAX( WRKBL, 3*M+M*
+ $ ILAENV( 1, 'SORMBR', 'QLN', M, M, N, -1 ) )
+ WRKBL = MAX( WRKBL, 3*M+M*
+ $ ILAENV( 1, 'SORMBR', 'PRT', N, N, M, -1 ) )
+ MAXWRK = MAX( WRKBL, BDSPAC+3*M )
+ MINWRK = 3*M + MAX( N, BDSPAC )
+ END IF
+ END IF
+ END IF
+ MAXWRK = MAX( MAXWRK, MINWRK )
+ WORK( 1 ) = MAXWRK
+*
+ IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
+ INFO = -12
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SGESDD', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( M.EQ.0 .OR. N.EQ.0 ) THEN
+ RETURN
+ END IF
+*
+* Get machine constants
+*
+ EPS = SLAMCH( 'P' )
+ SMLNUM = SQRT( SLAMCH( 'S' ) ) / EPS
+ BIGNUM = ONE / SMLNUM
+*
+* Scale A if max element outside range [SMLNUM,BIGNUM]
+*
+ ANRM = SLANGE( 'M', M, N, A, LDA, DUM )
+ ISCL = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+ ISCL = 1
+ CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, IERR )
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+ ISCL = 1
+ CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, IERR )
+ END IF
+*
+ IF( M.GE.N ) THEN
+*
+* A has at least as many rows as columns. If A has sufficiently
+* more rows than columns, first reduce using the QR
+* decomposition (if sufficient workspace available)
+*
+ IF( M.GE.MNTHR ) THEN
+*
+ IF( WNTQN ) THEN
+*
+* Path 1 (M much larger than N, JOBZ='N')
+* No singular vectors to be computed
+*
+ ITAU = 1
+ NWORK = ITAU + N
+*
+* Compute A=Q*R
+* (Workspace: need 2*N, prefer N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+*
+* Zero out below R
+*
+ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
+ IE = 1
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ NWORK = ITAUP + N
+*
+* Bidiagonalize R in A
+* (Workspace: need 4*N, prefer 3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
+ $ IERR )
+ NWORK = IE + N
+*
+* Perform bidiagonal SVD, computing singular values only
+* (Workspace: need N+BDSPAC)
+*
+ CALL SBDSDC( 'U', 'N', N, S, WORK( IE ), DUM, 1, DUM, 1,
+ $ DUM, IDUM, WORK( NWORK ), IWORK, INFO )
+*
+ ELSE IF( WNTQO ) THEN
+*
+* Path 2 (M much larger than N, JOBZ = 'O')
+* N left singular vectors to be overwritten on A and
+* N right singular vectors to be computed in VT
+*
+ IR = 1
+*
+* WORK(IR) is LDWRKR by N
+*
+ IF( LWORK.GE.LDA*N+N*N+3*N+BDSPAC ) THEN
+ LDWRKR = LDA
+ ELSE
+ LDWRKR = ( LWORK-N*N-3*N-BDSPAC ) / N
+ END IF
+ ITAU = IR + LDWRKR*N
+ NWORK = ITAU + N
+*
+* Compute A=Q*R
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+*
+* Copy R to WORK(IR), zeroing out below it
+*
+ CALL SLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
+ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, WORK( IR+1 ),
+ $ LDWRKR )
+*
+* Generate Q in A
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*
+ CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
+ $ WORK( NWORK ), LWORK-NWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ NWORK = ITAUP + N
+*
+* Bidiagonalize R in VT, copying result to WORK(IR)
+* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, WORK( IR ), LDWRKR, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+*
+* WORK(IU) is N by N
+*
+ IU = NWORK
+ NWORK = IU + N*N
+*
+* Perform bidiagonal SVD, computing left singular vectors
+* of bidiagonal matrix in WORK(IU) and computing right
+* singular vectors of bidiagonal matrix in VT
+* (Workspace: need N+N*N+BDSPAC)
+*
+ CALL SBDSDC( 'U', 'I', N, S, WORK( IE ), WORK( IU ), N,
+ $ VT, LDVT, DUM, IDUM, WORK( NWORK ), IWORK,
+ $ INFO )
+*
+* Overwrite WORK(IU) by left singular vectors of R
+* and VT by right singular vectors of R
+* (Workspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB)
+*
+ CALL SORMBR( 'Q', 'L', 'N', N, N, N, WORK( IR ), LDWRKR,
+ $ WORK( ITAUQ ), WORK( IU ), N, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+ CALL SORMBR( 'P', 'R', 'T', N, N, N, WORK( IR ), LDWRKR,
+ $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+*
+* Multiply Q in A by left singular vectors of R in
+* WORK(IU), storing result in WORK(IR) and copying to A
+* (Workspace: need 2*N*N, prefer N*N+M*N)
+*
+ DO 10 I = 1, M, LDWRKR
+ CHUNK = MIN( M-I+1, LDWRKR )
+ CALL SGEMM( 'N', 'N', CHUNK, N, N, ONE, A( I, 1 ),
+ $ LDA, WORK( IU ), N, ZERO, WORK( IR ),
+ $ LDWRKR )
+ CALL SLACPY( 'F', CHUNK, N, WORK( IR ), LDWRKR,
+ $ A( I, 1 ), LDA )
+ 10 CONTINUE
+*
+ ELSE IF( WNTQS ) THEN
+*
+* Path 3 (M much larger than N, JOBZ='S')
+* N left singular vectors to be computed in U and
+* N right singular vectors to be computed in VT
+*
+ IR = 1
+*
+* WORK(IR) is N by N
+*
+ LDWRKR = N
+ ITAU = IR + LDWRKR*N
+ NWORK = ITAU + N
+*
+* Compute A=Q*R
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+*
+* Copy R to WORK(IR), zeroing out below it
+*
+ CALL SLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
+ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, WORK( IR+1 ),
+ $ LDWRKR )
+*
+* Generate Q in A
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*
+ CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
+ $ WORK( NWORK ), LWORK-NWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ NWORK = ITAUP + N
+*
+* Bidiagonalize R in WORK(IR)
+* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, WORK( IR ), LDWRKR, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+*
+* Perform bidiagonal SVD, computing left singular vectors
+* of bidiagoal matrix in U and computing right singular
+* vectors of bidiagonal matrix in VT
+* (Workspace: need N+BDSPAC)
+*
+ CALL SBDSDC( 'U', 'I', N, S, WORK( IE ), U, LDU, VT,
+ $ LDVT, DUM, IDUM, WORK( NWORK ), IWORK,
+ $ INFO )
+*
+* Overwrite U by left singular vectors of R and VT
+* by right singular vectors of R
+* (Workspace: need N*N+3*N, prefer N*N+2*N+N*NB)
+*
+ CALL SORMBR( 'Q', 'L', 'N', N, N, N, WORK( IR ), LDWRKR,
+ $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+*
+ CALL SORMBR( 'P', 'R', 'T', N, N, N, WORK( IR ), LDWRKR,
+ $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+*
+* Multiply Q in A by left singular vectors of R in
+* WORK(IR), storing result in U
+* (Workspace: need N*N)
+*
+ CALL SLACPY( 'F', N, N, U, LDU, WORK( IR ), LDWRKR )
+ CALL SGEMM( 'N', 'N', M, N, N, ONE, A, LDA, WORK( IR ),
+ $ LDWRKR, ZERO, U, LDU )
+*
+ ELSE IF( WNTQA ) THEN
+*
+* Path 4 (M much larger than N, JOBZ='A')
+* M left singular vectors to be computed in U and
+* N right singular vectors to be computed in VT
+*
+ IU = 1
+*
+* WORK(IU) is N by N
+*
+ LDWRKU = N
+ ITAU = IU + LDWRKU*N
+ NWORK = ITAU + N
+*
+* Compute A=Q*R, copying result to U
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*
+ CALL SGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+ CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
+*
+* Generate Q in U
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+ CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
+ $ WORK( NWORK ), LWORK-NWORK+1, IERR )
+*
+* Produce R in A, zeroing out other entries
+*
+ CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
+ IE = ITAU
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ NWORK = ITAUP + N
+*
+* Bidiagonalize R in A
+* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
+*
+ CALL SGEBRD( N, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
+ $ IERR )
+*
+* Perform bidiagonal SVD, computing left singular vectors
+* of bidiagonal matrix in WORK(IU) and computing right
+* singular vectors of bidiagonal matrix in VT
+* (Workspace: need N+N*N+BDSPAC)
+*
+ CALL SBDSDC( 'U', 'I', N, S, WORK( IE ), WORK( IU ), N,
+ $ VT, LDVT, DUM, IDUM, WORK( NWORK ), IWORK,
+ $ INFO )
+*
+* Overwrite WORK(IU) by left singular vectors of R and VT
+* by right singular vectors of R
+* (Workspace: need N*N+3*N, prefer N*N+2*N+N*NB)
+*
+ CALL SORMBR( 'Q', 'L', 'N', N, N, N, A, LDA,
+ $ WORK( ITAUQ ), WORK( IU ), LDWRKU,
+ $ WORK( NWORK ), LWORK-NWORK+1, IERR )
+ CALL SORMBR( 'P', 'R', 'T', N, N, N, A, LDA,
+ $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+*
+* Multiply Q in U by left singular vectors of R in
+* WORK(IU), storing result in A
+* (Workspace: need N*N)
+*
+ CALL SGEMM( 'N', 'N', M, N, N, ONE, U, LDU, WORK( IU ),
+ $ LDWRKU, ZERO, A, LDA )
+*
+* Copy left singular vectors of A from A to U
+*
+ CALL SLACPY( 'F', M, N, A, LDA, U, LDU )
+*
+ END IF
+*
+ ELSE
+*
+* M .LT. MNTHR
+*
+* Path 5 (M at least N, but not much larger)
+* Reduce to bidiagonal form without QR decomposition
+*
+ IE = 1
+ ITAUQ = IE + N
+ ITAUP = ITAUQ + N
+ NWORK = ITAUP + N
+*
+* Bidiagonalize A
+* (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB)
+*
+ CALL SGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
+ $ IERR )
+ IF( WNTQN ) THEN
+*
+* Perform bidiagonal SVD, only computing singular values
+* (Workspace: need N+BDSPAC)
+*
+ CALL SBDSDC( 'U', 'N', N, S, WORK( IE ), DUM, 1, DUM, 1,
+ $ DUM, IDUM, WORK( NWORK ), IWORK, INFO )
+ ELSE IF( WNTQO ) THEN
+ IU = NWORK
+ IF( LWORK.GE.M*N+3*N+BDSPAC ) THEN
+*
+* WORK( IU ) is M by N
+*
+ LDWRKU = M
+ NWORK = IU + LDWRKU*N
+ CALL SLASET( 'F', M, N, ZERO, ZERO, WORK( IU ),
+ $ LDWRKU )
+ ELSE
+*
+* WORK( IU ) is N by N
+*
+ LDWRKU = N
+ NWORK = IU + LDWRKU*N
+*
+* WORK(IR) is LDWRKR by N
+*
+ IR = NWORK
+ LDWRKR = ( LWORK-N*N-3*N ) / N
+ END IF
+ NWORK = IU + LDWRKU*N
+*
+* Perform bidiagonal SVD, computing left singular vectors
+* of bidiagonal matrix in WORK(IU) and computing right
+* singular vectors of bidiagonal matrix in VT
+* (Workspace: need N+N*N+BDSPAC)
+*
+ CALL SBDSDC( 'U', 'I', N, S, WORK( IE ), WORK( IU ),
+ $ LDWRKU, VT, LDVT, DUM, IDUM, WORK( NWORK ),
+ $ IWORK, INFO )
+*
+* Overwrite VT by right singular vectors of A
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*
+ CALL SORMBR( 'P', 'R', 'T', N, N, N, A, LDA,
+ $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+*
+ IF( LWORK.GE.M*N+3*N+BDSPAC ) THEN
+*
+* Overwrite WORK(IU) by left singular vectors of A
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*
+ CALL SORMBR( 'Q', 'L', 'N', M, N, N, A, LDA,
+ $ WORK( ITAUQ ), WORK( IU ), LDWRKU,
+ $ WORK( NWORK ), LWORK-NWORK+1, IERR )
+*
+* Copy left singular vectors of A from WORK(IU) to A
+*
+ CALL SLACPY( 'F', M, N, WORK( IU ), LDWRKU, A, LDA )
+ ELSE
+*
+* Generate Q in A
+* (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
+*
+ CALL SORGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
+ $ WORK( NWORK ), LWORK-NWORK+1, IERR )
+*
+* Multiply Q in A by left singular vectors of
+* bidiagonal matrix in WORK(IU), storing result in
+* WORK(IR) and copying to A
+* (Workspace: need 2*N*N, prefer N*N+M*N)
+*
+ DO 20 I = 1, M, LDWRKR
+ CHUNK = MIN( M-I+1, LDWRKR )
+ CALL SGEMM( 'N', 'N', CHUNK, N, N, ONE, A( I, 1 ),
+ $ LDA, WORK( IU ), LDWRKU, ZERO,
+ $ WORK( IR ), LDWRKR )
+ CALL SLACPY( 'F', CHUNK, N, WORK( IR ), LDWRKR,
+ $ A( I, 1 ), LDA )
+ 20 CONTINUE
+ END IF
+*
+ ELSE IF( WNTQS ) THEN
+*
+* Perform bidiagonal SVD, computing left singular vectors
+* of bidiagonal matrix in U and computing right singular
+* vectors of bidiagonal matrix in VT
+* (Workspace: need N+BDSPAC)
+*
+ CALL SLASET( 'F', M, N, ZERO, ZERO, U, LDU )
+ CALL SBDSDC( 'U', 'I', N, S, WORK( IE ), U, LDU, VT,
+ $ LDVT, DUM, IDUM, WORK( NWORK ), IWORK,
+ $ INFO )
+*
+* Overwrite U by left singular vectors of A and VT
+* by right singular vectors of A
+* (Workspace: need 3*N, prefer 2*N+N*NB)
+*
+ CALL SORMBR( 'Q', 'L', 'N', M, N, N, A, LDA,
+ $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+ CALL SORMBR( 'P', 'R', 'T', N, N, N, A, LDA,
+ $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+ ELSE IF( WNTQA ) THEN
+*
+* Perform bidiagonal SVD, computing left singular vectors
+* of bidiagonal matrix in U and computing right singular
+* vectors of bidiagonal matrix in VT
+* (Workspace: need N+BDSPAC)
+*
+ CALL SLASET( 'F', M, M, ZERO, ZERO, U, LDU )
+ CALL SBDSDC( 'U', 'I', N, S, WORK( IE ), U, LDU, VT,
+ $ LDVT, DUM, IDUM, WORK( NWORK ), IWORK,
+ $ INFO )
+*
+* Set the right corner of U to identity matrix
+*
+ IF( M.GT.N ) THEN
+ CALL SLASET( 'F', M-N, M-N, ZERO, ONE, U( N+1, N+1 ),
+ $ LDU )
+ END IF
+*
+* Overwrite U by left singular vectors of A and VT
+* by right singular vectors of A
+* (Workspace: need N*N+2*N+M, prefer N*N+2*N+M*NB)
+*
+ CALL SORMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
+ $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+ CALL SORMBR( 'P', 'R', 'T', N, N, M, A, LDA,
+ $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+ END IF
+*
+ END IF
+*
+ ELSE
+*
+* A has more columns than rows. If A has sufficiently more
+* columns than rows, first reduce using the LQ decomposition (if
+* sufficient workspace available)
+*
+ IF( N.GE.MNTHR ) THEN
+*
+ IF( WNTQN ) THEN
+*
+* Path 1t (N much larger than M, JOBZ='N')
+* No singular vectors to be computed
+*
+ ITAU = 1
+ NWORK = ITAU + M
+*
+* Compute A=L*Q
+* (Workspace: need 2*M, prefer M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+*
+* Zero out above L
+*
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ), LDA )
+ IE = 1
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ NWORK = ITAUP + M
+*
+* Bidiagonalize L in A
+* (Workspace: need 4*M, prefer 3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
+ $ IERR )
+ NWORK = IE + M
+*
+* Perform bidiagonal SVD, computing singular values only
+* (Workspace: need M+BDSPAC)
+*
+ CALL SBDSDC( 'U', 'N', M, S, WORK( IE ), DUM, 1, DUM, 1,
+ $ DUM, IDUM, WORK( NWORK ), IWORK, INFO )
+*
+ ELSE IF( WNTQO ) THEN
+*
+* Path 2t (N much larger than M, JOBZ='O')
+* M right singular vectors to be overwritten on A and
+* M left singular vectors to be computed in U
+*
+ IVT = 1
+*
+* IVT is M by M
+*
+ IL = IVT + M*M
+ IF( LWORK.GE.M*N+M*M+3*M+BDSPAC ) THEN
+*
+* WORK(IL) is M by N
+*
+ LDWRKL = M
+ CHUNK = N
+ ELSE
+ LDWRKL = M
+ CHUNK = ( LWORK-M*M ) / M
+ END IF
+ ITAU = IL + LDWRKL*M
+ NWORK = ITAU + M
+*
+* Compute A=L*Q
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+*
+* Copy L to WORK(IL), zeroing about above it
+*
+ CALL SLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWRKL )
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
+ $ WORK( IL+LDWRKL ), LDWRKL )
+*
+* Generate Q in A
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
+ $ WORK( NWORK ), LWORK-NWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ NWORK = ITAUP + M
+*
+* Bidiagonalize L in WORK(IL)
+* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, WORK( IL ), LDWRKL, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+*
+* Perform bidiagonal SVD, computing left singular vectors
+* of bidiagonal matrix in U, and computing right singular
+* vectors of bidiagonal matrix in WORK(IVT)
+* (Workspace: need M+M*M+BDSPAC)
+*
+ CALL SBDSDC( 'U', 'I', M, S, WORK( IE ), U, LDU,
+ $ WORK( IVT ), M, DUM, IDUM, WORK( NWORK ),
+ $ IWORK, INFO )
+*
+* Overwrite U by left singular vectors of L and WORK(IVT)
+* by right singular vectors of L
+* (Workspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB)
+*
+ CALL SORMBR( 'Q', 'L', 'N', M, M, M, WORK( IL ), LDWRKL,
+ $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+ CALL SORMBR( 'P', 'R', 'T', M, M, M, WORK( IL ), LDWRKL,
+ $ WORK( ITAUP ), WORK( IVT ), M,
+ $ WORK( NWORK ), LWORK-NWORK+1, IERR )
+*
+* Multiply right singular vectors of L in WORK(IVT) by Q
+* in A, storing result in WORK(IL) and copying to A
+* (Workspace: need 2*M*M, prefer M*M+M*N)
+*
+ DO 30 I = 1, N, CHUNK
+ BLK = MIN( N-I+1, CHUNK )
+ CALL SGEMM( 'N', 'N', M, BLK, M, ONE, WORK( IVT ), M,
+ $ A( 1, I ), LDA, ZERO, WORK( IL ), LDWRKL )
+ CALL SLACPY( 'F', M, BLK, WORK( IL ), LDWRKL,
+ $ A( 1, I ), LDA )
+ 30 CONTINUE
+*
+ ELSE IF( WNTQS ) THEN
+*
+* Path 3t (N much larger than M, JOBZ='S')
+* M right singular vectors to be computed in VT and
+* M left singular vectors to be computed in U
+*
+ IL = 1
+*
+* WORK(IL) is M by M
+*
+ LDWRKL = M
+ ITAU = IL + LDWRKL*M
+ NWORK = ITAU + M
+*
+* Compute A=L*Q
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+*
+* Copy L to WORK(IL), zeroing out above it
+*
+ CALL SLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWRKL )
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
+ $ WORK( IL+LDWRKL ), LDWRKL )
+*
+* Generate Q in A
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
+ $ WORK( NWORK ), LWORK-NWORK+1, IERR )
+ IE = ITAU
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ NWORK = ITAUP + M
+*
+* Bidiagonalize L in WORK(IU), copying result to U
+* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, WORK( IL ), LDWRKL, S, WORK( IE ),
+ $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+*
+* Perform bidiagonal SVD, computing left singular vectors
+* of bidiagonal matrix in U and computing right singular
+* vectors of bidiagonal matrix in VT
+* (Workspace: need M+BDSPAC)
+*
+ CALL SBDSDC( 'U', 'I', M, S, WORK( IE ), U, LDU, VT,
+ $ LDVT, DUM, IDUM, WORK( NWORK ), IWORK,
+ $ INFO )
+*
+* Overwrite U by left singular vectors of L and VT
+* by right singular vectors of L
+* (Workspace: need M*M+3*M, prefer M*M+2*M+M*NB)
+*
+ CALL SORMBR( 'Q', 'L', 'N', M, M, M, WORK( IL ), LDWRKL,
+ $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+ CALL SORMBR( 'P', 'R', 'T', M, M, M, WORK( IL ), LDWRKL,
+ $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+*
+* Multiply right singular vectors of L in WORK(IL) by
+* Q in A, storing result in VT
+* (Workspace: need M*M)
+*
+ CALL SLACPY( 'F', M, M, VT, LDVT, WORK( IL ), LDWRKL )
+ CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IL ), LDWRKL,
+ $ A, LDA, ZERO, VT, LDVT )
+*
+ ELSE IF( WNTQA ) THEN
+*
+* Path 4t (N much larger than M, JOBZ='A')
+* N right singular vectors to be computed in VT and
+* M left singular vectors to be computed in U
+*
+ IVT = 1
+*
+* WORK(IVT) is M by M
+*
+ LDWKVT = M
+ ITAU = IVT + LDWKVT*M
+ NWORK = ITAU + M
+*
+* Compute A=L*Q, copying result to VT
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+ CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
+*
+* Generate Q in VT
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
+ $ WORK( NWORK ), LWORK-NWORK+1, IERR )
+*
+* Produce L in A, zeroing out other entries
+*
+ CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ), LDA )
+ IE = ITAU
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ NWORK = ITAUP + M
+*
+* Bidiagonalize L in A
+* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
+*
+ CALL SGEBRD( M, M, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
+ $ IERR )
+*
+* Perform bidiagonal SVD, computing left singular vectors
+* of bidiagonal matrix in U and computing right singular
+* vectors of bidiagonal matrix in WORK(IVT)
+* (Workspace: need M+M*M+BDSPAC)
+*
+ CALL SBDSDC( 'U', 'I', M, S, WORK( IE ), U, LDU,
+ $ WORK( IVT ), LDWKVT, DUM, IDUM,
+ $ WORK( NWORK ), IWORK, INFO )
+*
+* Overwrite U by left singular vectors of L and WORK(IVT)
+* by right singular vectors of L
+* (Workspace: need M*M+3*M, prefer M*M+2*M+M*NB)
+*
+ CALL SORMBR( 'Q', 'L', 'N', M, M, M, A, LDA,
+ $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+ CALL SORMBR( 'P', 'R', 'T', M, M, M, A, LDA,
+ $ WORK( ITAUP ), WORK( IVT ), LDWKVT,
+ $ WORK( NWORK ), LWORK-NWORK+1, IERR )
+*
+* Multiply right singular vectors of L in WORK(IVT) by
+* Q in VT, storing result in A
+* (Workspace: need M*M)
+*
+ CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IVT ), LDWKVT,
+ $ VT, LDVT, ZERO, A, LDA )
+*
+* Copy right singular vectors of A from A to VT
+*
+ CALL SLACPY( 'F', M, N, A, LDA, VT, LDVT )
+*
+ END IF
+*
+ ELSE
+*
+* N .LT. MNTHR
+*
+* Path 5t (N greater than M, but not much larger)
+* Reduce to bidiagonal form without LQ decomposition
+*
+ IE = 1
+ ITAUQ = IE + M
+ ITAUP = ITAUQ + M
+ NWORK = ITAUP + M
+*
+* Bidiagonalize A
+* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
+*
+ CALL SGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
+ $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
+ $ IERR )
+ IF( WNTQN ) THEN
+*
+* Perform bidiagonal SVD, only computing singular values
+* (Workspace: need M+BDSPAC)
+*
+ CALL SBDSDC( 'L', 'N', M, S, WORK( IE ), DUM, 1, DUM, 1,
+ $ DUM, IDUM, WORK( NWORK ), IWORK, INFO )
+ ELSE IF( WNTQO ) THEN
+ LDWKVT = M
+ IVT = NWORK
+ IF( LWORK.GE.M*N+3*M+BDSPAC ) THEN
+*
+* WORK( IVT ) is M by N
+*
+ CALL SLASET( 'F', M, N, ZERO, ZERO, WORK( IVT ),
+ $ LDWKVT )
+ NWORK = IVT + LDWKVT*N
+ ELSE
+*
+* WORK( IVT ) is M by M
+*
+ NWORK = IVT + LDWKVT*M
+ IL = NWORK
+*
+* WORK(IL) is M by CHUNK
+*
+ CHUNK = ( LWORK-M*M-3*M ) / M
+ END IF
+*
+* Perform bidiagonal SVD, computing left singular vectors
+* of bidiagonal matrix in U and computing right singular
+* vectors of bidiagonal matrix in WORK(IVT)
+* (Workspace: need M*M+BDSPAC)
+*
+ CALL SBDSDC( 'L', 'I', M, S, WORK( IE ), U, LDU,
+ $ WORK( IVT ), LDWKVT, DUM, IDUM,
+ $ WORK( NWORK ), IWORK, INFO )
+*
+* Overwrite U by left singular vectors of A
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SORMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
+ $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+*
+ IF( LWORK.GE.M*N+3*M+BDSPAC ) THEN
+*
+* Overwrite WORK(IVT) by left singular vectors of A
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SORMBR( 'P', 'R', 'T', M, N, M, A, LDA,
+ $ WORK( ITAUP ), WORK( IVT ), LDWKVT,
+ $ WORK( NWORK ), LWORK-NWORK+1, IERR )
+*
+* Copy right singular vectors of A from WORK(IVT) to A
+*
+ CALL SLACPY( 'F', M, N, WORK( IVT ), LDWKVT, A, LDA )
+ ELSE
+*
+* Generate P**T in A
+* (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
+*
+ CALL SORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
+ $ WORK( NWORK ), LWORK-NWORK+1, IERR )
+*
+* Multiply Q in A by right singular vectors of
+* bidiagonal matrix in WORK(IVT), storing result in
+* WORK(IL) and copying to A
+* (Workspace: need 2*M*M, prefer M*M+M*N)
+*
+ DO 40 I = 1, N, CHUNK
+ BLK = MIN( N-I+1, CHUNK )
+ CALL SGEMM( 'N', 'N', M, BLK, M, ONE, WORK( IVT ),
+ $ LDWKVT, A( 1, I ), LDA, ZERO,
+ $ WORK( IL ), M )
+ CALL SLACPY( 'F', M, BLK, WORK( IL ), M, A( 1, I ),
+ $ LDA )
+ 40 CONTINUE
+ END IF
+ ELSE IF( WNTQS ) THEN
+*
+* Perform bidiagonal SVD, computing left singular vectors
+* of bidiagonal matrix in U and computing right singular
+* vectors of bidiagonal matrix in VT
+* (Workspace: need M+BDSPAC)
+*
+ CALL SLASET( 'F', M, N, ZERO, ZERO, VT, LDVT )
+ CALL SBDSDC( 'L', 'I', M, S, WORK( IE ), U, LDU, VT,
+ $ LDVT, DUM, IDUM, WORK( NWORK ), IWORK,
+ $ INFO )
+*
+* Overwrite U by left singular vectors of A and VT
+* by right singular vectors of A
+* (Workspace: need 3*M, prefer 2*M+M*NB)
+*
+ CALL SORMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
+ $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+ CALL SORMBR( 'P', 'R', 'T', M, N, M, A, LDA,
+ $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+ ELSE IF( WNTQA ) THEN
+*
+* Perform bidiagonal SVD, computing left singular vectors
+* of bidiagonal matrix in U and computing right singular
+* vectors of bidiagonal matrix in VT
+* (Workspace: need M+BDSPAC)
+*
+ CALL SLASET( 'F', N, N, ZERO, ZERO, VT, LDVT )
+ CALL SBDSDC( 'L', 'I', M, S, WORK( IE ), U, LDU, VT,
+ $ LDVT, DUM, IDUM, WORK( NWORK ), IWORK,
+ $ INFO )
+*
+* Set the right corner of VT to identity matrix
+*
+ IF( N.GT.M ) THEN
+ CALL SLASET( 'F', N-M, N-M, ZERO, ONE, VT( M+1, M+1 ),
+ $ LDVT )
+ END IF
+*
+* Overwrite U by left singular vectors of A and VT
+* by right singular vectors of A
+* (Workspace: need 2*M+N, prefer 2*M+N*NB)
+*
+ CALL SORMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
+ $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+ CALL SORMBR( 'P', 'R', 'T', N, N, M, A, LDA,
+ $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
+ $ LWORK-NWORK+1, IERR )
+ END IF
+*
+ END IF
+*
+ END IF
+*
+* Undo scaling if necessary
+*
+ IF( ISCL.EQ.1 ) THEN
+ IF( ANRM.GT.BIGNUM )
+ $ CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
+ $ IERR )
+ IF( ANRM.LT.SMLNUM )
+ $ CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
+ $ IERR )
+ END IF
+*
+* Return optimal workspace in WORK(1)
+*
+ WORK( 1 ) = MAXWRK
+*
+ RETURN
+*
+* End of SGESDD
+*
+ END