summaryrefslogtreecommitdiff
path: root/SRC/sgeqr2.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/sgeqr2.f')
-rw-r--r--SRC/sgeqr2.f133
1 files changed, 88 insertions, 45 deletions
diff --git a/SRC/sgeqr2.f b/SRC/sgeqr2.f
index 4eb385ae..0120e816 100644
--- a/SRC/sgeqr2.f
+++ b/SRC/sgeqr2.f
@@ -1,67 +1,110 @@
- SUBROUTINE SGEQR2( M, N, A, LDA, TAU, WORK, INFO )
+*> \brief \b SGEQR2
*
-* -- LAPACK routine (version 3.3.1) --
-* -- LAPACK is a software package provided by Univ. of Tennessee, --
-* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* -- April 2011 --
+* =========== DOCUMENTATION ===========
*
-* .. Scalar Arguments ..
- INTEGER INFO, LDA, M, N
-* ..
-* .. Array Arguments ..
- REAL A( LDA, * ), TAU( * ), WORK( * )
-* ..
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
*
+* Definition
+* ==========
+*
+* SUBROUTINE SGEQR2( M, N, A, LDA, TAU, WORK, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, M, N
+* ..
+* .. Array Arguments ..
+* REAL A( LDA, * ), TAU( * ), WORK( * )
+* ..
+*
* Purpose
* =======
*
-* SGEQR2 computes a QR factorization of a real m by n matrix A:
-* A = Q * R.
+*>\details \b Purpose:
+*>\verbatim
+*>
+*> SGEQR2 computes a QR factorization of a real m by n matrix A:
+*> A = Q * R.
+*>
+*>\endverbatim
*
* Arguments
* =========
*
-* M (input) INTEGER
-* The number of rows of the matrix A. M >= 0.
-*
-* N (input) INTEGER
-* The number of columns of the matrix A. N >= 0.
-*
-* A (input/output) REAL array, dimension (LDA,N)
-* On entry, the m by n matrix A.
-* On exit, the elements on and above the diagonal of the array
-* contain the min(m,n) by n upper trapezoidal matrix R (R is
-* upper triangular if m >= n); the elements below the diagonal,
-* with the array TAU, represent the orthogonal matrix Q as a
-* product of elementary reflectors (see Further Details).
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*
+* Authors
+* =======
*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,M).
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
*
-* TAU (output) REAL array, dimension (min(M,N))
-* The scalar factors of the elementary reflectors (see Further
-* Details).
+*> \date November 2011
*
-* WORK (workspace) REAL array, dimension (N)
+*> \ingroup realGEcomputational
*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
*
* Further Details
* ===============
+*>\details \b Further \b Details
+*> \verbatim
+* product of elementary reflectors (see Further Details).
+*>
+*> LDA (input) INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*>
+*> TAU (output) REAL array, dimension (min(M,N))
+*> The scalar factors of the elementary reflectors (see Further
+*> Details).
+*>
+*> WORK (workspace) REAL array, dimension (N)
+*>
+*> INFO (output) INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*>
+*>
+*> The matrix Q is represented as a product of elementary reflectors
+*>
+*> Q = H(1) H(2) . . . H(k), where k = min(m,n).
+*>
+*> Each H(i) has the form
+*>
+*> H(i) = I - tau * v * v**T
+*>
+*> where tau is a real scalar, and v is a real vector with
+*> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
+*> and tau in TAU(i).
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE SGEQR2( M, N, A, LDA, TAU, WORK, INFO )
*
-* The matrix Q is represented as a product of elementary reflectors
-*
-* Q = H(1) H(2) . . . H(k), where k = min(m,n).
-*
-* Each H(i) has the form
-*
-* H(i) = I - tau * v * v**T
+* -- LAPACK computational routine (version 3.3.1) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
*
-* where tau is a real scalar, and v is a real vector with
-* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
-* and tau in TAU(i).
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, M, N
+* ..
+* .. Array Arguments ..
+ REAL A( LDA, * ), TAU( * ), WORK( * )
+* ..
*
* =====================================================================
*