summaryrefslogtreecommitdiff
path: root/SRC/dlantb.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/dlantb.f')
-rw-r--r--SRC/dlantb.f284
1 files changed, 284 insertions, 0 deletions
diff --git a/SRC/dlantb.f b/SRC/dlantb.f
new file mode 100644
index 00000000..1c6490e8
--- /dev/null
+++ b/SRC/dlantb.f
@@ -0,0 +1,284 @@
+ DOUBLE PRECISION FUNCTION DLANTB( NORM, UPLO, DIAG, N, K, AB,
+ $ LDAB, WORK )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER DIAG, NORM, UPLO
+ INTEGER K, LDAB, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION AB( LDAB, * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DLANTB returns the value of the one norm, or the Frobenius norm, or
+* the infinity norm, or the element of largest absolute value of an
+* n by n triangular band matrix A, with ( k + 1 ) diagonals.
+*
+* Description
+* ===========
+*
+* DLANTB returns the value
+*
+* DLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
+* (
+* ( norm1(A), NORM = '1', 'O' or 'o'
+* (
+* ( normI(A), NORM = 'I' or 'i'
+* (
+* ( normF(A), NORM = 'F', 'f', 'E' or 'e'
+*
+* where norm1 denotes the one norm of a matrix (maximum column sum),
+* normI denotes the infinity norm of a matrix (maximum row sum) and
+* normF denotes the Frobenius norm of a matrix (square root of sum of
+* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
+*
+* Arguments
+* =========
+*
+* NORM (input) CHARACTER*1
+* Specifies the value to be returned in DLANTB as described
+* above.
+*
+* UPLO (input) CHARACTER*1
+* Specifies whether the matrix A is upper or lower triangular.
+* = 'U': Upper triangular
+* = 'L': Lower triangular
+*
+* DIAG (input) CHARACTER*1
+* Specifies whether or not the matrix A is unit triangular.
+* = 'N': Non-unit triangular
+* = 'U': Unit triangular
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0. When N = 0, DLANTB is
+* set to zero.
+*
+* K (input) INTEGER
+* The number of super-diagonals of the matrix A if UPLO = 'U',
+* or the number of sub-diagonals of the matrix A if UPLO = 'L'.
+* K >= 0.
+*
+* AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
+* The upper or lower triangular band matrix A, stored in the
+* first k+1 rows of AB. The j-th column of A is stored
+* in the j-th column of the array AB as follows:
+* if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
+* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
+* Note that when DIAG = 'U', the elements of the array AB
+* corresponding to the diagonal elements of the matrix A are
+* not referenced, but are assumed to be one.
+*
+* LDAB (input) INTEGER
+* The leading dimension of the array AB. LDAB >= K+1.
+*
+* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
+* where LWORK >= N when NORM = 'I'; otherwise, WORK is not
+* referenced.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, ZERO
+ PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL UDIAG
+ INTEGER I, J, L
+ DOUBLE PRECISION SCALE, SUM, VALUE
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLASSQ
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, MIN, SQRT
+* ..
+* .. Executable Statements ..
+*
+ IF( N.EQ.0 ) THEN
+ VALUE = ZERO
+ ELSE IF( LSAME( NORM, 'M' ) ) THEN
+*
+* Find max(abs(A(i,j))).
+*
+ IF( LSAME( DIAG, 'U' ) ) THEN
+ VALUE = ONE
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 20 J = 1, N
+ DO 10 I = MAX( K+2-J, 1 ), K
+ VALUE = MAX( VALUE, ABS( AB( I, J ) ) )
+ 10 CONTINUE
+ 20 CONTINUE
+ ELSE
+ DO 40 J = 1, N
+ DO 30 I = 2, MIN( N+1-J, K+1 )
+ VALUE = MAX( VALUE, ABS( AB( I, J ) ) )
+ 30 CONTINUE
+ 40 CONTINUE
+ END IF
+ ELSE
+ VALUE = ZERO
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 60 J = 1, N
+ DO 50 I = MAX( K+2-J, 1 ), K + 1
+ VALUE = MAX( VALUE, ABS( AB( I, J ) ) )
+ 50 CONTINUE
+ 60 CONTINUE
+ ELSE
+ DO 80 J = 1, N
+ DO 70 I = 1, MIN( N+1-J, K+1 )
+ VALUE = MAX( VALUE, ABS( AB( I, J ) ) )
+ 70 CONTINUE
+ 80 CONTINUE
+ END IF
+ END IF
+ ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
+*
+* Find norm1(A).
+*
+ VALUE = ZERO
+ UDIAG = LSAME( DIAG, 'U' )
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 110 J = 1, N
+ IF( UDIAG ) THEN
+ SUM = ONE
+ DO 90 I = MAX( K+2-J, 1 ), K
+ SUM = SUM + ABS( AB( I, J ) )
+ 90 CONTINUE
+ ELSE
+ SUM = ZERO
+ DO 100 I = MAX( K+2-J, 1 ), K + 1
+ SUM = SUM + ABS( AB( I, J ) )
+ 100 CONTINUE
+ END IF
+ VALUE = MAX( VALUE, SUM )
+ 110 CONTINUE
+ ELSE
+ DO 140 J = 1, N
+ IF( UDIAG ) THEN
+ SUM = ONE
+ DO 120 I = 2, MIN( N+1-J, K+1 )
+ SUM = SUM + ABS( AB( I, J ) )
+ 120 CONTINUE
+ ELSE
+ SUM = ZERO
+ DO 130 I = 1, MIN( N+1-J, K+1 )
+ SUM = SUM + ABS( AB( I, J ) )
+ 130 CONTINUE
+ END IF
+ VALUE = MAX( VALUE, SUM )
+ 140 CONTINUE
+ END IF
+ ELSE IF( LSAME( NORM, 'I' ) ) THEN
+*
+* Find normI(A).
+*
+ VALUE = ZERO
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IF( LSAME( DIAG, 'U' ) ) THEN
+ DO 150 I = 1, N
+ WORK( I ) = ONE
+ 150 CONTINUE
+ DO 170 J = 1, N
+ L = K + 1 - J
+ DO 160 I = MAX( 1, J-K ), J - 1
+ WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
+ 160 CONTINUE
+ 170 CONTINUE
+ ELSE
+ DO 180 I = 1, N
+ WORK( I ) = ZERO
+ 180 CONTINUE
+ DO 200 J = 1, N
+ L = K + 1 - J
+ DO 190 I = MAX( 1, J-K ), J
+ WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
+ 190 CONTINUE
+ 200 CONTINUE
+ END IF
+ ELSE
+ IF( LSAME( DIAG, 'U' ) ) THEN
+ DO 210 I = 1, N
+ WORK( I ) = ONE
+ 210 CONTINUE
+ DO 230 J = 1, N
+ L = 1 - J
+ DO 220 I = J + 1, MIN( N, J+K )
+ WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
+ 220 CONTINUE
+ 230 CONTINUE
+ ELSE
+ DO 240 I = 1, N
+ WORK( I ) = ZERO
+ 240 CONTINUE
+ DO 260 J = 1, N
+ L = 1 - J
+ DO 250 I = J, MIN( N, J+K )
+ WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
+ 250 CONTINUE
+ 260 CONTINUE
+ END IF
+ END IF
+ DO 270 I = 1, N
+ VALUE = MAX( VALUE, WORK( I ) )
+ 270 CONTINUE
+ ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
+*
+* Find normF(A).
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IF( LSAME( DIAG, 'U' ) ) THEN
+ SCALE = ONE
+ SUM = N
+ IF( K.GT.0 ) THEN
+ DO 280 J = 2, N
+ CALL DLASSQ( MIN( J-1, K ),
+ $ AB( MAX( K+2-J, 1 ), J ), 1, SCALE,
+ $ SUM )
+ 280 CONTINUE
+ END IF
+ ELSE
+ SCALE = ZERO
+ SUM = ONE
+ DO 290 J = 1, N
+ CALL DLASSQ( MIN( J, K+1 ), AB( MAX( K+2-J, 1 ), J ),
+ $ 1, SCALE, SUM )
+ 290 CONTINUE
+ END IF
+ ELSE
+ IF( LSAME( DIAG, 'U' ) ) THEN
+ SCALE = ONE
+ SUM = N
+ IF( K.GT.0 ) THEN
+ DO 300 J = 1, N - 1
+ CALL DLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE,
+ $ SUM )
+ 300 CONTINUE
+ END IF
+ ELSE
+ SCALE = ZERO
+ SUM = ONE
+ DO 310 J = 1, N
+ CALL DLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1, SCALE,
+ $ SUM )
+ 310 CONTINUE
+ END IF
+ END IF
+ VALUE = SCALE*SQRT( SUM )
+ END IF
+*
+ DLANTB = VALUE
+ RETURN
+*
+* End of DLANTB
+*
+ END