diff options
Diffstat (limited to 'SRC/dlantb.f')
-rw-r--r-- | SRC/dlantb.f | 284 |
1 files changed, 284 insertions, 0 deletions
diff --git a/SRC/dlantb.f b/SRC/dlantb.f new file mode 100644 index 00000000..1c6490e8 --- /dev/null +++ b/SRC/dlantb.f @@ -0,0 +1,284 @@ + DOUBLE PRECISION FUNCTION DLANTB( NORM, UPLO, DIAG, N, K, AB, + $ LDAB, WORK ) +* +* -- LAPACK auxiliary routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER DIAG, NORM, UPLO + INTEGER K, LDAB, N +* .. +* .. Array Arguments .. + DOUBLE PRECISION AB( LDAB, * ), WORK( * ) +* .. +* +* Purpose +* ======= +* +* DLANTB returns the value of the one norm, or the Frobenius norm, or +* the infinity norm, or the element of largest absolute value of an +* n by n triangular band matrix A, with ( k + 1 ) diagonals. +* +* Description +* =========== +* +* DLANTB returns the value +* +* DLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm' +* ( +* ( norm1(A), NORM = '1', 'O' or 'o' +* ( +* ( normI(A), NORM = 'I' or 'i' +* ( +* ( normF(A), NORM = 'F', 'f', 'E' or 'e' +* +* where norm1 denotes the one norm of a matrix (maximum column sum), +* normI denotes the infinity norm of a matrix (maximum row sum) and +* normF denotes the Frobenius norm of a matrix (square root of sum of +* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. +* +* Arguments +* ========= +* +* NORM (input) CHARACTER*1 +* Specifies the value to be returned in DLANTB as described +* above. +* +* UPLO (input) CHARACTER*1 +* Specifies whether the matrix A is upper or lower triangular. +* = 'U': Upper triangular +* = 'L': Lower triangular +* +* DIAG (input) CHARACTER*1 +* Specifies whether or not the matrix A is unit triangular. +* = 'N': Non-unit triangular +* = 'U': Unit triangular +* +* N (input) INTEGER +* The order of the matrix A. N >= 0. When N = 0, DLANTB is +* set to zero. +* +* K (input) INTEGER +* The number of super-diagonals of the matrix A if UPLO = 'U', +* or the number of sub-diagonals of the matrix A if UPLO = 'L'. +* K >= 0. +* +* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) +* The upper or lower triangular band matrix A, stored in the +* first k+1 rows of AB. The j-th column of A is stored +* in the j-th column of the array AB as follows: +* if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; +* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k). +* Note that when DIAG = 'U', the elements of the array AB +* corresponding to the diagonal elements of the matrix A are +* not referenced, but are assumed to be one. +* +* LDAB (input) INTEGER +* The leading dimension of the array AB. LDAB >= K+1. +* +* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), +* where LWORK >= N when NORM = 'I'; otherwise, WORK is not +* referenced. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ONE, ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. +* .. Local Scalars .. + LOGICAL UDIAG + INTEGER I, J, L + DOUBLE PRECISION SCALE, SUM, VALUE +* .. +* .. External Subroutines .. + EXTERNAL DLASSQ +* .. +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX, MIN, SQRT +* .. +* .. Executable Statements .. +* + IF( N.EQ.0 ) THEN + VALUE = ZERO + ELSE IF( LSAME( NORM, 'M' ) ) THEN +* +* Find max(abs(A(i,j))). +* + IF( LSAME( DIAG, 'U' ) ) THEN + VALUE = ONE + IF( LSAME( UPLO, 'U' ) ) THEN + DO 20 J = 1, N + DO 10 I = MAX( K+2-J, 1 ), K + VALUE = MAX( VALUE, ABS( AB( I, J ) ) ) + 10 CONTINUE + 20 CONTINUE + ELSE + DO 40 J = 1, N + DO 30 I = 2, MIN( N+1-J, K+1 ) + VALUE = MAX( VALUE, ABS( AB( I, J ) ) ) + 30 CONTINUE + 40 CONTINUE + END IF + ELSE + VALUE = ZERO + IF( LSAME( UPLO, 'U' ) ) THEN + DO 60 J = 1, N + DO 50 I = MAX( K+2-J, 1 ), K + 1 + VALUE = MAX( VALUE, ABS( AB( I, J ) ) ) + 50 CONTINUE + 60 CONTINUE + ELSE + DO 80 J = 1, N + DO 70 I = 1, MIN( N+1-J, K+1 ) + VALUE = MAX( VALUE, ABS( AB( I, J ) ) ) + 70 CONTINUE + 80 CONTINUE + END IF + END IF + ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN +* +* Find norm1(A). +* + VALUE = ZERO + UDIAG = LSAME( DIAG, 'U' ) + IF( LSAME( UPLO, 'U' ) ) THEN + DO 110 J = 1, N + IF( UDIAG ) THEN + SUM = ONE + DO 90 I = MAX( K+2-J, 1 ), K + SUM = SUM + ABS( AB( I, J ) ) + 90 CONTINUE + ELSE + SUM = ZERO + DO 100 I = MAX( K+2-J, 1 ), K + 1 + SUM = SUM + ABS( AB( I, J ) ) + 100 CONTINUE + END IF + VALUE = MAX( VALUE, SUM ) + 110 CONTINUE + ELSE + DO 140 J = 1, N + IF( UDIAG ) THEN + SUM = ONE + DO 120 I = 2, MIN( N+1-J, K+1 ) + SUM = SUM + ABS( AB( I, J ) ) + 120 CONTINUE + ELSE + SUM = ZERO + DO 130 I = 1, MIN( N+1-J, K+1 ) + SUM = SUM + ABS( AB( I, J ) ) + 130 CONTINUE + END IF + VALUE = MAX( VALUE, SUM ) + 140 CONTINUE + END IF + ELSE IF( LSAME( NORM, 'I' ) ) THEN +* +* Find normI(A). +* + VALUE = ZERO + IF( LSAME( UPLO, 'U' ) ) THEN + IF( LSAME( DIAG, 'U' ) ) THEN + DO 150 I = 1, N + WORK( I ) = ONE + 150 CONTINUE + DO 170 J = 1, N + L = K + 1 - J + DO 160 I = MAX( 1, J-K ), J - 1 + WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) ) + 160 CONTINUE + 170 CONTINUE + ELSE + DO 180 I = 1, N + WORK( I ) = ZERO + 180 CONTINUE + DO 200 J = 1, N + L = K + 1 - J + DO 190 I = MAX( 1, J-K ), J + WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) ) + 190 CONTINUE + 200 CONTINUE + END IF + ELSE + IF( LSAME( DIAG, 'U' ) ) THEN + DO 210 I = 1, N + WORK( I ) = ONE + 210 CONTINUE + DO 230 J = 1, N + L = 1 - J + DO 220 I = J + 1, MIN( N, J+K ) + WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) ) + 220 CONTINUE + 230 CONTINUE + ELSE + DO 240 I = 1, N + WORK( I ) = ZERO + 240 CONTINUE + DO 260 J = 1, N + L = 1 - J + DO 250 I = J, MIN( N, J+K ) + WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) ) + 250 CONTINUE + 260 CONTINUE + END IF + END IF + DO 270 I = 1, N + VALUE = MAX( VALUE, WORK( I ) ) + 270 CONTINUE + ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN +* +* Find normF(A). +* + IF( LSAME( UPLO, 'U' ) ) THEN + IF( LSAME( DIAG, 'U' ) ) THEN + SCALE = ONE + SUM = N + IF( K.GT.0 ) THEN + DO 280 J = 2, N + CALL DLASSQ( MIN( J-1, K ), + $ AB( MAX( K+2-J, 1 ), J ), 1, SCALE, + $ SUM ) + 280 CONTINUE + END IF + ELSE + SCALE = ZERO + SUM = ONE + DO 290 J = 1, N + CALL DLASSQ( MIN( J, K+1 ), AB( MAX( K+2-J, 1 ), J ), + $ 1, SCALE, SUM ) + 290 CONTINUE + END IF + ELSE + IF( LSAME( DIAG, 'U' ) ) THEN + SCALE = ONE + SUM = N + IF( K.GT.0 ) THEN + DO 300 J = 1, N - 1 + CALL DLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE, + $ SUM ) + 300 CONTINUE + END IF + ELSE + SCALE = ZERO + SUM = ONE + DO 310 J = 1, N + CALL DLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1, SCALE, + $ SUM ) + 310 CONTINUE + END IF + END IF + VALUE = SCALE*SQRT( SUM ) + END IF +* + DLANTB = VALUE + RETURN +* +* End of DLANTB +* + END |