summaryrefslogtreecommitdiff
path: root/SRC/dbdsdc.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/dbdsdc.f')
-rw-r--r--SRC/dbdsdc.f429
1 files changed, 429 insertions, 0 deletions
diff --git a/SRC/dbdsdc.f b/SRC/dbdsdc.f
new file mode 100644
index 00000000..2bd3de62
--- /dev/null
+++ b/SRC/dbdsdc.f
@@ -0,0 +1,429 @@
+ SUBROUTINE DBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ,
+ $ WORK, IWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER COMPQ, UPLO
+ INTEGER INFO, LDU, LDVT, N
+* ..
+* .. Array Arguments ..
+ INTEGER IQ( * ), IWORK( * )
+ DOUBLE PRECISION D( * ), E( * ), Q( * ), U( LDU, * ),
+ $ VT( LDVT, * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DBDSDC computes the singular value decomposition (SVD) of a real
+* N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT,
+* using a divide and conquer method, where S is a diagonal matrix
+* with non-negative diagonal elements (the singular values of B), and
+* U and VT are orthogonal matrices of left and right singular vectors,
+* respectively. DBDSDC can be used to compute all singular values,
+* and optionally, singular vectors or singular vectors in compact form.
+*
+* This code makes very mild assumptions about floating point
+* arithmetic. It will work on machines with a guard digit in
+* add/subtract, or on those binary machines without guard digits
+* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
+* It could conceivably fail on hexadecimal or decimal machines
+* without guard digits, but we know of none. See DLASD3 for details.
+*
+* The code currently calls DLASDQ if singular values only are desired.
+* However, it can be slightly modified to compute singular values
+* using the divide and conquer method.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* = 'U': B is upper bidiagonal.
+* = 'L': B is lower bidiagonal.
+*
+* COMPQ (input) CHARACTER*1
+* Specifies whether singular vectors are to be computed
+* as follows:
+* = 'N': Compute singular values only;
+* = 'P': Compute singular values and compute singular
+* vectors in compact form;
+* = 'I': Compute singular values and singular vectors.
+*
+* N (input) INTEGER
+* The order of the matrix B. N >= 0.
+*
+* D (input/output) DOUBLE PRECISION array, dimension (N)
+* On entry, the n diagonal elements of the bidiagonal matrix B.
+* On exit, if INFO=0, the singular values of B.
+*
+* E (input/output) DOUBLE PRECISION array, dimension (N-1)
+* On entry, the elements of E contain the offdiagonal
+* elements of the bidiagonal matrix whose SVD is desired.
+* On exit, E has been destroyed.
+*
+* U (output) DOUBLE PRECISION array, dimension (LDU,N)
+* If COMPQ = 'I', then:
+* On exit, if INFO = 0, U contains the left singular vectors
+* of the bidiagonal matrix.
+* For other values of COMPQ, U is not referenced.
+*
+* LDU (input) INTEGER
+* The leading dimension of the array U. LDU >= 1.
+* If singular vectors are desired, then LDU >= max( 1, N ).
+*
+* VT (output) DOUBLE PRECISION array, dimension (LDVT,N)
+* If COMPQ = 'I', then:
+* On exit, if INFO = 0, VT' contains the right singular
+* vectors of the bidiagonal matrix.
+* For other values of COMPQ, VT is not referenced.
+*
+* LDVT (input) INTEGER
+* The leading dimension of the array VT. LDVT >= 1.
+* If singular vectors are desired, then LDVT >= max( 1, N ).
+*
+* Q (output) DOUBLE PRECISION array, dimension (LDQ)
+* If COMPQ = 'P', then:
+* On exit, if INFO = 0, Q and IQ contain the left
+* and right singular vectors in a compact form,
+* requiring O(N log N) space instead of 2*N**2.
+* In particular, Q contains all the DOUBLE PRECISION data in
+* LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))
+* words of memory, where SMLSIZ is returned by ILAENV and
+* is equal to the maximum size of the subproblems at the
+* bottom of the computation tree (usually about 25).
+* For other values of COMPQ, Q is not referenced.
+*
+* IQ (output) INTEGER array, dimension (LDIQ)
+* If COMPQ = 'P', then:
+* On exit, if INFO = 0, Q and IQ contain the left
+* and right singular vectors in a compact form,
+* requiring O(N log N) space instead of 2*N**2.
+* In particular, IQ contains all INTEGER data in
+* LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
+* words of memory, where SMLSIZ is returned by ILAENV and
+* is equal to the maximum size of the subproblems at the
+* bottom of the computation tree (usually about 25).
+* For other values of COMPQ, IQ is not referenced.
+*
+* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+* If COMPQ = 'N' then LWORK >= (4 * N).
+* If COMPQ = 'P' then LWORK >= (6 * N).
+* If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).
+*
+* IWORK (workspace) INTEGER array, dimension (8*N)
+*
+* INFO (output) INTEGER
+* = 0: successful exit.
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+* > 0: The algorithm failed to compute an singular value.
+* The update process of divide and conquer failed.
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* Ming Gu and Huan Ren, Computer Science Division, University of
+* California at Berkeley, USA
+*
+* =====================================================================
+* Changed dimension statement in comment describing E from (N) to
+* (N-1). Sven, 17 Feb 05.
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE, TWO
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
+* ..
+* .. Local Scalars ..
+ INTEGER DIFL, DIFR, GIVCOL, GIVNUM, GIVPTR, I, IC,
+ $ ICOMPQ, IERR, II, IS, IU, IUPLO, IVT, J, K, KK,
+ $ MLVL, NM1, NSIZE, PERM, POLES, QSTART, SMLSIZ,
+ $ SMLSZP, SQRE, START, WSTART, Z
+ DOUBLE PRECISION CS, EPS, ORGNRM, P, R, SN
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH, DLANST
+ EXTERNAL LSAME, ILAENV, DLAMCH, DLANST
+* ..
+* .. External Subroutines ..
+ EXTERNAL DCOPY, DLARTG, DLASCL, DLASD0, DLASDA, DLASDQ,
+ $ DLASET, DLASR, DSWAP, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, INT, LOG, SIGN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+*
+ IUPLO = 0
+ IF( LSAME( UPLO, 'U' ) )
+ $ IUPLO = 1
+ IF( LSAME( UPLO, 'L' ) )
+ $ IUPLO = 2
+ IF( LSAME( COMPQ, 'N' ) ) THEN
+ ICOMPQ = 0
+ ELSE IF( LSAME( COMPQ, 'P' ) ) THEN
+ ICOMPQ = 1
+ ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
+ ICOMPQ = 2
+ ELSE
+ ICOMPQ = -1
+ END IF
+ IF( IUPLO.EQ.0 ) THEN
+ INFO = -1
+ ELSE IF( ICOMPQ.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( ( LDU.LT.1 ) .OR. ( ( ICOMPQ.EQ.2 ) .AND. ( LDU.LT.
+ $ N ) ) ) THEN
+ INFO = -7
+ ELSE IF( ( LDVT.LT.1 ) .OR. ( ( ICOMPQ.EQ.2 ) .AND. ( LDVT.LT.
+ $ N ) ) ) THEN
+ INFO = -9
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DBDSDC', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+ SMLSIZ = ILAENV( 9, 'DBDSDC', ' ', 0, 0, 0, 0 )
+ IF( N.EQ.1 ) THEN
+ IF( ICOMPQ.EQ.1 ) THEN
+ Q( 1 ) = SIGN( ONE, D( 1 ) )
+ Q( 1+SMLSIZ*N ) = ONE
+ ELSE IF( ICOMPQ.EQ.2 ) THEN
+ U( 1, 1 ) = SIGN( ONE, D( 1 ) )
+ VT( 1, 1 ) = ONE
+ END IF
+ D( 1 ) = ABS( D( 1 ) )
+ RETURN
+ END IF
+ NM1 = N - 1
+*
+* If matrix lower bidiagonal, rotate to be upper bidiagonal
+* by applying Givens rotations on the left
+*
+ WSTART = 1
+ QSTART = 3
+ IF( ICOMPQ.EQ.1 ) THEN
+ CALL DCOPY( N, D, 1, Q( 1 ), 1 )
+ CALL DCOPY( N-1, E, 1, Q( N+1 ), 1 )
+ END IF
+ IF( IUPLO.EQ.2 ) THEN
+ QSTART = 5
+ WSTART = 2*N - 1
+ DO 10 I = 1, N - 1
+ CALL DLARTG( D( I ), E( I ), CS, SN, R )
+ D( I ) = R
+ E( I ) = SN*D( I+1 )
+ D( I+1 ) = CS*D( I+1 )
+ IF( ICOMPQ.EQ.1 ) THEN
+ Q( I+2*N ) = CS
+ Q( I+3*N ) = SN
+ ELSE IF( ICOMPQ.EQ.2 ) THEN
+ WORK( I ) = CS
+ WORK( NM1+I ) = -SN
+ END IF
+ 10 CONTINUE
+ END IF
+*
+* If ICOMPQ = 0, use DLASDQ to compute the singular values.
+*
+ IF( ICOMPQ.EQ.0 ) THEN
+ CALL DLASDQ( 'U', 0, N, 0, 0, 0, D, E, VT, LDVT, U, LDU, U,
+ $ LDU, WORK( WSTART ), INFO )
+ GO TO 40
+ END IF
+*
+* If N is smaller than the minimum divide size SMLSIZ, then solve
+* the problem with another solver.
+*
+ IF( N.LE.SMLSIZ ) THEN
+ IF( ICOMPQ.EQ.2 ) THEN
+ CALL DLASET( 'A', N, N, ZERO, ONE, U, LDU )
+ CALL DLASET( 'A', N, N, ZERO, ONE, VT, LDVT )
+ CALL DLASDQ( 'U', 0, N, N, N, 0, D, E, VT, LDVT, U, LDU, U,
+ $ LDU, WORK( WSTART ), INFO )
+ ELSE IF( ICOMPQ.EQ.1 ) THEN
+ IU = 1
+ IVT = IU + N
+ CALL DLASET( 'A', N, N, ZERO, ONE, Q( IU+( QSTART-1 )*N ),
+ $ N )
+ CALL DLASET( 'A', N, N, ZERO, ONE, Q( IVT+( QSTART-1 )*N ),
+ $ N )
+ CALL DLASDQ( 'U', 0, N, N, N, 0, D, E,
+ $ Q( IVT+( QSTART-1 )*N ), N,
+ $ Q( IU+( QSTART-1 )*N ), N,
+ $ Q( IU+( QSTART-1 )*N ), N, WORK( WSTART ),
+ $ INFO )
+ END IF
+ GO TO 40
+ END IF
+*
+ IF( ICOMPQ.EQ.2 ) THEN
+ CALL DLASET( 'A', N, N, ZERO, ONE, U, LDU )
+ CALL DLASET( 'A', N, N, ZERO, ONE, VT, LDVT )
+ END IF
+*
+* Scale.
+*
+ ORGNRM = DLANST( 'M', N, D, E )
+ IF( ORGNRM.EQ.ZERO )
+ $ RETURN
+ CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, IERR )
+ CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, IERR )
+*
+ EPS = DLAMCH( 'Epsilon' )
+*
+ MLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
+ SMLSZP = SMLSIZ + 1
+*
+ IF( ICOMPQ.EQ.1 ) THEN
+ IU = 1
+ IVT = 1 + SMLSIZ
+ DIFL = IVT + SMLSZP
+ DIFR = DIFL + MLVL
+ Z = DIFR + MLVL*2
+ IC = Z + MLVL
+ IS = IC + 1
+ POLES = IS + 1
+ GIVNUM = POLES + 2*MLVL
+*
+ K = 1
+ GIVPTR = 2
+ PERM = 3
+ GIVCOL = PERM + MLVL
+ END IF
+*
+ DO 20 I = 1, N
+ IF( ABS( D( I ) ).LT.EPS ) THEN
+ D( I ) = SIGN( EPS, D( I ) )
+ END IF
+ 20 CONTINUE
+*
+ START = 1
+ SQRE = 0
+*
+ DO 30 I = 1, NM1
+ IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
+*
+* Subproblem found. First determine its size and then
+* apply divide and conquer on it.
+*
+ IF( I.LT.NM1 ) THEN
+*
+* A subproblem with E(I) small for I < NM1.
+*
+ NSIZE = I - START + 1
+ ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
+*
+* A subproblem with E(NM1) not too small but I = NM1.
+*
+ NSIZE = N - START + 1
+ ELSE
+*
+* A subproblem with E(NM1) small. This implies an
+* 1-by-1 subproblem at D(N). Solve this 1-by-1 problem
+* first.
+*
+ NSIZE = I - START + 1
+ IF( ICOMPQ.EQ.2 ) THEN
+ U( N, N ) = SIGN( ONE, D( N ) )
+ VT( N, N ) = ONE
+ ELSE IF( ICOMPQ.EQ.1 ) THEN
+ Q( N+( QSTART-1 )*N ) = SIGN( ONE, D( N ) )
+ Q( N+( SMLSIZ+QSTART-1 )*N ) = ONE
+ END IF
+ D( N ) = ABS( D( N ) )
+ END IF
+ IF( ICOMPQ.EQ.2 ) THEN
+ CALL DLASD0( NSIZE, SQRE, D( START ), E( START ),
+ $ U( START, START ), LDU, VT( START, START ),
+ $ LDVT, SMLSIZ, IWORK, WORK( WSTART ), INFO )
+ ELSE
+ CALL DLASDA( ICOMPQ, SMLSIZ, NSIZE, SQRE, D( START ),
+ $ E( START ), Q( START+( IU+QSTART-2 )*N ), N,
+ $ Q( START+( IVT+QSTART-2 )*N ),
+ $ IQ( START+K*N ), Q( START+( DIFL+QSTART-2 )*
+ $ N ), Q( START+( DIFR+QSTART-2 )*N ),
+ $ Q( START+( Z+QSTART-2 )*N ),
+ $ Q( START+( POLES+QSTART-2 )*N ),
+ $ IQ( START+GIVPTR*N ), IQ( START+GIVCOL*N ),
+ $ N, IQ( START+PERM*N ),
+ $ Q( START+( GIVNUM+QSTART-2 )*N ),
+ $ Q( START+( IC+QSTART-2 )*N ),
+ $ Q( START+( IS+QSTART-2 )*N ),
+ $ WORK( WSTART ), IWORK, INFO )
+ IF( INFO.NE.0 ) THEN
+ RETURN
+ END IF
+ END IF
+ START = I + 1
+ END IF
+ 30 CONTINUE
+*
+* Unscale
+*
+ CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, IERR )
+ 40 CONTINUE
+*
+* Use Selection Sort to minimize swaps of singular vectors
+*
+ DO 60 II = 2, N
+ I = II - 1
+ KK = I
+ P = D( I )
+ DO 50 J = II, N
+ IF( D( J ).GT.P ) THEN
+ KK = J
+ P = D( J )
+ END IF
+ 50 CONTINUE
+ IF( KK.NE.I ) THEN
+ D( KK ) = D( I )
+ D( I ) = P
+ IF( ICOMPQ.EQ.1 ) THEN
+ IQ( I ) = KK
+ ELSE IF( ICOMPQ.EQ.2 ) THEN
+ CALL DSWAP( N, U( 1, I ), 1, U( 1, KK ), 1 )
+ CALL DSWAP( N, VT( I, 1 ), LDVT, VT( KK, 1 ), LDVT )
+ END IF
+ ELSE IF( ICOMPQ.EQ.1 ) THEN
+ IQ( I ) = I
+ END IF
+ 60 CONTINUE
+*
+* If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO
+*
+ IF( ICOMPQ.EQ.1 ) THEN
+ IF( IUPLO.EQ.1 ) THEN
+ IQ( N ) = 1
+ ELSE
+ IQ( N ) = 0
+ END IF
+ END IF
+*
+* If B is lower bidiagonal, update U by those Givens rotations
+* which rotated B to be upper bidiagonal
+*
+ IF( ( IUPLO.EQ.2 ) .AND. ( ICOMPQ.EQ.2 ) )
+ $ CALL DLASR( 'L', 'V', 'B', N, N, WORK( 1 ), WORK( N ), U, LDU )
+*
+ RETURN
+*
+* End of DBDSDC
+*
+ END