diff options
Diffstat (limited to 'SRC/dbdsdc.f')
-rw-r--r-- | SRC/dbdsdc.f | 429 |
1 files changed, 429 insertions, 0 deletions
diff --git a/SRC/dbdsdc.f b/SRC/dbdsdc.f new file mode 100644 index 00000000..2bd3de62 --- /dev/null +++ b/SRC/dbdsdc.f @@ -0,0 +1,429 @@ + SUBROUTINE DBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ, + $ WORK, IWORK, INFO ) +* +* -- LAPACK routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER COMPQ, UPLO + INTEGER INFO, LDU, LDVT, N +* .. +* .. Array Arguments .. + INTEGER IQ( * ), IWORK( * ) + DOUBLE PRECISION D( * ), E( * ), Q( * ), U( LDU, * ), + $ VT( LDVT, * ), WORK( * ) +* .. +* +* Purpose +* ======= +* +* DBDSDC computes the singular value decomposition (SVD) of a real +* N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT, +* using a divide and conquer method, where S is a diagonal matrix +* with non-negative diagonal elements (the singular values of B), and +* U and VT are orthogonal matrices of left and right singular vectors, +* respectively. DBDSDC can be used to compute all singular values, +* and optionally, singular vectors or singular vectors in compact form. +* +* This code makes very mild assumptions about floating point +* arithmetic. It will work on machines with a guard digit in +* add/subtract, or on those binary machines without guard digits +* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. +* It could conceivably fail on hexadecimal or decimal machines +* without guard digits, but we know of none. See DLASD3 for details. +* +* The code currently calls DLASDQ if singular values only are desired. +* However, it can be slightly modified to compute singular values +* using the divide and conquer method. +* +* Arguments +* ========= +* +* UPLO (input) CHARACTER*1 +* = 'U': B is upper bidiagonal. +* = 'L': B is lower bidiagonal. +* +* COMPQ (input) CHARACTER*1 +* Specifies whether singular vectors are to be computed +* as follows: +* = 'N': Compute singular values only; +* = 'P': Compute singular values and compute singular +* vectors in compact form; +* = 'I': Compute singular values and singular vectors. +* +* N (input) INTEGER +* The order of the matrix B. N >= 0. +* +* D (input/output) DOUBLE PRECISION array, dimension (N) +* On entry, the n diagonal elements of the bidiagonal matrix B. +* On exit, if INFO=0, the singular values of B. +* +* E (input/output) DOUBLE PRECISION array, dimension (N-1) +* On entry, the elements of E contain the offdiagonal +* elements of the bidiagonal matrix whose SVD is desired. +* On exit, E has been destroyed. +* +* U (output) DOUBLE PRECISION array, dimension (LDU,N) +* If COMPQ = 'I', then: +* On exit, if INFO = 0, U contains the left singular vectors +* of the bidiagonal matrix. +* For other values of COMPQ, U is not referenced. +* +* LDU (input) INTEGER +* The leading dimension of the array U. LDU >= 1. +* If singular vectors are desired, then LDU >= max( 1, N ). +* +* VT (output) DOUBLE PRECISION array, dimension (LDVT,N) +* If COMPQ = 'I', then: +* On exit, if INFO = 0, VT' contains the right singular +* vectors of the bidiagonal matrix. +* For other values of COMPQ, VT is not referenced. +* +* LDVT (input) INTEGER +* The leading dimension of the array VT. LDVT >= 1. +* If singular vectors are desired, then LDVT >= max( 1, N ). +* +* Q (output) DOUBLE PRECISION array, dimension (LDQ) +* If COMPQ = 'P', then: +* On exit, if INFO = 0, Q and IQ contain the left +* and right singular vectors in a compact form, +* requiring O(N log N) space instead of 2*N**2. +* In particular, Q contains all the DOUBLE PRECISION data in +* LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1)))) +* words of memory, where SMLSIZ is returned by ILAENV and +* is equal to the maximum size of the subproblems at the +* bottom of the computation tree (usually about 25). +* For other values of COMPQ, Q is not referenced. +* +* IQ (output) INTEGER array, dimension (LDIQ) +* If COMPQ = 'P', then: +* On exit, if INFO = 0, Q and IQ contain the left +* and right singular vectors in a compact form, +* requiring O(N log N) space instead of 2*N**2. +* In particular, IQ contains all INTEGER data in +* LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1)))) +* words of memory, where SMLSIZ is returned by ILAENV and +* is equal to the maximum size of the subproblems at the +* bottom of the computation tree (usually about 25). +* For other values of COMPQ, IQ is not referenced. +* +* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +* If COMPQ = 'N' then LWORK >= (4 * N). +* If COMPQ = 'P' then LWORK >= (6 * N). +* If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N). +* +* IWORK (workspace) INTEGER array, dimension (8*N) +* +* INFO (output) INTEGER +* = 0: successful exit. +* < 0: if INFO = -i, the i-th argument had an illegal value. +* > 0: The algorithm failed to compute an singular value. +* The update process of divide and conquer failed. +* +* Further Details +* =============== +* +* Based on contributions by +* Ming Gu and Huan Ren, Computer Science Division, University of +* California at Berkeley, USA +* +* ===================================================================== +* Changed dimension statement in comment describing E from (N) to +* (N-1). Sven, 17 Feb 05. +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE, TWO + PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 ) +* .. +* .. Local Scalars .. + INTEGER DIFL, DIFR, GIVCOL, GIVNUM, GIVPTR, I, IC, + $ ICOMPQ, IERR, II, IS, IU, IUPLO, IVT, J, K, KK, + $ MLVL, NM1, NSIZE, PERM, POLES, QSTART, SMLSIZ, + $ SMLSZP, SQRE, START, WSTART, Z + DOUBLE PRECISION CS, EPS, ORGNRM, P, R, SN +* .. +* .. External Functions .. + LOGICAL LSAME + INTEGER ILAENV + DOUBLE PRECISION DLAMCH, DLANST + EXTERNAL LSAME, ILAENV, DLAMCH, DLANST +* .. +* .. External Subroutines .. + EXTERNAL DCOPY, DLARTG, DLASCL, DLASD0, DLASDA, DLASDQ, + $ DLASET, DLASR, DSWAP, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, DBLE, INT, LOG, SIGN +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 +* + IUPLO = 0 + IF( LSAME( UPLO, 'U' ) ) + $ IUPLO = 1 + IF( LSAME( UPLO, 'L' ) ) + $ IUPLO = 2 + IF( LSAME( COMPQ, 'N' ) ) THEN + ICOMPQ = 0 + ELSE IF( LSAME( COMPQ, 'P' ) ) THEN + ICOMPQ = 1 + ELSE IF( LSAME( COMPQ, 'I' ) ) THEN + ICOMPQ = 2 + ELSE + ICOMPQ = -1 + END IF + IF( IUPLO.EQ.0 ) THEN + INFO = -1 + ELSE IF( ICOMPQ.LT.0 ) THEN + INFO = -2 + ELSE IF( N.LT.0 ) THEN + INFO = -3 + ELSE IF( ( LDU.LT.1 ) .OR. ( ( ICOMPQ.EQ.2 ) .AND. ( LDU.LT. + $ N ) ) ) THEN + INFO = -7 + ELSE IF( ( LDVT.LT.1 ) .OR. ( ( ICOMPQ.EQ.2 ) .AND. ( LDVT.LT. + $ N ) ) ) THEN + INFO = -9 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DBDSDC', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( N.EQ.0 ) + $ RETURN + SMLSIZ = ILAENV( 9, 'DBDSDC', ' ', 0, 0, 0, 0 ) + IF( N.EQ.1 ) THEN + IF( ICOMPQ.EQ.1 ) THEN + Q( 1 ) = SIGN( ONE, D( 1 ) ) + Q( 1+SMLSIZ*N ) = ONE + ELSE IF( ICOMPQ.EQ.2 ) THEN + U( 1, 1 ) = SIGN( ONE, D( 1 ) ) + VT( 1, 1 ) = ONE + END IF + D( 1 ) = ABS( D( 1 ) ) + RETURN + END IF + NM1 = N - 1 +* +* If matrix lower bidiagonal, rotate to be upper bidiagonal +* by applying Givens rotations on the left +* + WSTART = 1 + QSTART = 3 + IF( ICOMPQ.EQ.1 ) THEN + CALL DCOPY( N, D, 1, Q( 1 ), 1 ) + CALL DCOPY( N-1, E, 1, Q( N+1 ), 1 ) + END IF + IF( IUPLO.EQ.2 ) THEN + QSTART = 5 + WSTART = 2*N - 1 + DO 10 I = 1, N - 1 + CALL DLARTG( D( I ), E( I ), CS, SN, R ) + D( I ) = R + E( I ) = SN*D( I+1 ) + D( I+1 ) = CS*D( I+1 ) + IF( ICOMPQ.EQ.1 ) THEN + Q( I+2*N ) = CS + Q( I+3*N ) = SN + ELSE IF( ICOMPQ.EQ.2 ) THEN + WORK( I ) = CS + WORK( NM1+I ) = -SN + END IF + 10 CONTINUE + END IF +* +* If ICOMPQ = 0, use DLASDQ to compute the singular values. +* + IF( ICOMPQ.EQ.0 ) THEN + CALL DLASDQ( 'U', 0, N, 0, 0, 0, D, E, VT, LDVT, U, LDU, U, + $ LDU, WORK( WSTART ), INFO ) + GO TO 40 + END IF +* +* If N is smaller than the minimum divide size SMLSIZ, then solve +* the problem with another solver. +* + IF( N.LE.SMLSIZ ) THEN + IF( ICOMPQ.EQ.2 ) THEN + CALL DLASET( 'A', N, N, ZERO, ONE, U, LDU ) + CALL DLASET( 'A', N, N, ZERO, ONE, VT, LDVT ) + CALL DLASDQ( 'U', 0, N, N, N, 0, D, E, VT, LDVT, U, LDU, U, + $ LDU, WORK( WSTART ), INFO ) + ELSE IF( ICOMPQ.EQ.1 ) THEN + IU = 1 + IVT = IU + N + CALL DLASET( 'A', N, N, ZERO, ONE, Q( IU+( QSTART-1 )*N ), + $ N ) + CALL DLASET( 'A', N, N, ZERO, ONE, Q( IVT+( QSTART-1 )*N ), + $ N ) + CALL DLASDQ( 'U', 0, N, N, N, 0, D, E, + $ Q( IVT+( QSTART-1 )*N ), N, + $ Q( IU+( QSTART-1 )*N ), N, + $ Q( IU+( QSTART-1 )*N ), N, WORK( WSTART ), + $ INFO ) + END IF + GO TO 40 + END IF +* + IF( ICOMPQ.EQ.2 ) THEN + CALL DLASET( 'A', N, N, ZERO, ONE, U, LDU ) + CALL DLASET( 'A', N, N, ZERO, ONE, VT, LDVT ) + END IF +* +* Scale. +* + ORGNRM = DLANST( 'M', N, D, E ) + IF( ORGNRM.EQ.ZERO ) + $ RETURN + CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, IERR ) + CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, IERR ) +* + EPS = DLAMCH( 'Epsilon' ) +* + MLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1 + SMLSZP = SMLSIZ + 1 +* + IF( ICOMPQ.EQ.1 ) THEN + IU = 1 + IVT = 1 + SMLSIZ + DIFL = IVT + SMLSZP + DIFR = DIFL + MLVL + Z = DIFR + MLVL*2 + IC = Z + MLVL + IS = IC + 1 + POLES = IS + 1 + GIVNUM = POLES + 2*MLVL +* + K = 1 + GIVPTR = 2 + PERM = 3 + GIVCOL = PERM + MLVL + END IF +* + DO 20 I = 1, N + IF( ABS( D( I ) ).LT.EPS ) THEN + D( I ) = SIGN( EPS, D( I ) ) + END IF + 20 CONTINUE +* + START = 1 + SQRE = 0 +* + DO 30 I = 1, NM1 + IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN +* +* Subproblem found. First determine its size and then +* apply divide and conquer on it. +* + IF( I.LT.NM1 ) THEN +* +* A subproblem with E(I) small for I < NM1. +* + NSIZE = I - START + 1 + ELSE IF( ABS( E( I ) ).GE.EPS ) THEN +* +* A subproblem with E(NM1) not too small but I = NM1. +* + NSIZE = N - START + 1 + ELSE +* +* A subproblem with E(NM1) small. This implies an +* 1-by-1 subproblem at D(N). Solve this 1-by-1 problem +* first. +* + NSIZE = I - START + 1 + IF( ICOMPQ.EQ.2 ) THEN + U( N, N ) = SIGN( ONE, D( N ) ) + VT( N, N ) = ONE + ELSE IF( ICOMPQ.EQ.1 ) THEN + Q( N+( QSTART-1 )*N ) = SIGN( ONE, D( N ) ) + Q( N+( SMLSIZ+QSTART-1 )*N ) = ONE + END IF + D( N ) = ABS( D( N ) ) + END IF + IF( ICOMPQ.EQ.2 ) THEN + CALL DLASD0( NSIZE, SQRE, D( START ), E( START ), + $ U( START, START ), LDU, VT( START, START ), + $ LDVT, SMLSIZ, IWORK, WORK( WSTART ), INFO ) + ELSE + CALL DLASDA( ICOMPQ, SMLSIZ, NSIZE, SQRE, D( START ), + $ E( START ), Q( START+( IU+QSTART-2 )*N ), N, + $ Q( START+( IVT+QSTART-2 )*N ), + $ IQ( START+K*N ), Q( START+( DIFL+QSTART-2 )* + $ N ), Q( START+( DIFR+QSTART-2 )*N ), + $ Q( START+( Z+QSTART-2 )*N ), + $ Q( START+( POLES+QSTART-2 )*N ), + $ IQ( START+GIVPTR*N ), IQ( START+GIVCOL*N ), + $ N, IQ( START+PERM*N ), + $ Q( START+( GIVNUM+QSTART-2 )*N ), + $ Q( START+( IC+QSTART-2 )*N ), + $ Q( START+( IS+QSTART-2 )*N ), + $ WORK( WSTART ), IWORK, INFO ) + IF( INFO.NE.0 ) THEN + RETURN + END IF + END IF + START = I + 1 + END IF + 30 CONTINUE +* +* Unscale +* + CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, IERR ) + 40 CONTINUE +* +* Use Selection Sort to minimize swaps of singular vectors +* + DO 60 II = 2, N + I = II - 1 + KK = I + P = D( I ) + DO 50 J = II, N + IF( D( J ).GT.P ) THEN + KK = J + P = D( J ) + END IF + 50 CONTINUE + IF( KK.NE.I ) THEN + D( KK ) = D( I ) + D( I ) = P + IF( ICOMPQ.EQ.1 ) THEN + IQ( I ) = KK + ELSE IF( ICOMPQ.EQ.2 ) THEN + CALL DSWAP( N, U( 1, I ), 1, U( 1, KK ), 1 ) + CALL DSWAP( N, VT( I, 1 ), LDVT, VT( KK, 1 ), LDVT ) + END IF + ELSE IF( ICOMPQ.EQ.1 ) THEN + IQ( I ) = I + END IF + 60 CONTINUE +* +* If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO +* + IF( ICOMPQ.EQ.1 ) THEN + IF( IUPLO.EQ.1 ) THEN + IQ( N ) = 1 + ELSE + IQ( N ) = 0 + END IF + END IF +* +* If B is lower bidiagonal, update U by those Givens rotations +* which rotated B to be upper bidiagonal +* + IF( ( IUPLO.EQ.2 ) .AND. ( ICOMPQ.EQ.2 ) ) + $ CALL DLASR( 'L', 'V', 'B', N, N, WORK( 1 ), WORK( N ), U, LDU ) +* + RETURN +* +* End of DBDSDC +* + END |