diff options
Diffstat (limited to 'SRC/ctrsna.f')
-rw-r--r-- | SRC/ctrsna.f | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/SRC/ctrsna.f b/SRC/ctrsna.f index f538b7db..6ed7f961 100644 --- a/SRC/ctrsna.f +++ b/SRC/ctrsna.f @@ -124,10 +124,10 @@ * The reciprocal of the condition number of an eigenvalue lambda is * defined as * -* S(lambda) = |v'*u| / (norm(u)*norm(v)) +* S(lambda) = |v**H*u| / (norm(u)*norm(v)) * * where u and v are the right and left eigenvectors of T corresponding -* to lambda; v' denotes the conjugate transpose of v, and norm(u) +* to lambda; v**H denotes the conjugate transpose of v, and norm(u) * denotes the Euclidean norm. These reciprocal condition numbers always * lie between zero (very badly conditioned) and one (very well * conditioned). If n = 1, S(lambda) is defined to be 1. @@ -303,7 +303,7 @@ WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 ) 20 CONTINUE * -* Estimate a lower bound for the 1-norm of inv(C'). The 1st +* Estimate a lower bound for the 1-norm of inv(C**H). The 1st * and (N+1)th columns of WORK are used to store work vectors. * SEP( KS ) = ZERO @@ -316,7 +316,7 @@ IF( KASE.NE.0 ) THEN IF( KASE.EQ.1 ) THEN * -* Solve C'*x = scale*b +* Solve C**H*x = scale*b * CALL CLATRS( 'Upper', 'Conjugate transpose', $ 'Nonunit', NORMIN, N-1, WORK( 2, 2 ), |