summaryrefslogtreecommitdiff
path: root/SRC/ctrsna.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/ctrsna.f')
-rw-r--r--SRC/ctrsna.f8
1 files changed, 4 insertions, 4 deletions
diff --git a/SRC/ctrsna.f b/SRC/ctrsna.f
index f538b7db..6ed7f961 100644
--- a/SRC/ctrsna.f
+++ b/SRC/ctrsna.f
@@ -124,10 +124,10 @@
* The reciprocal of the condition number of an eigenvalue lambda is
* defined as
*
-* S(lambda) = |v'*u| / (norm(u)*norm(v))
+* S(lambda) = |v**H*u| / (norm(u)*norm(v))
*
* where u and v are the right and left eigenvectors of T corresponding
-* to lambda; v' denotes the conjugate transpose of v, and norm(u)
+* to lambda; v**H denotes the conjugate transpose of v, and norm(u)
* denotes the Euclidean norm. These reciprocal condition numbers always
* lie between zero (very badly conditioned) and one (very well
* conditioned). If n = 1, S(lambda) is defined to be 1.
@@ -303,7 +303,7 @@
WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 )
20 CONTINUE
*
-* Estimate a lower bound for the 1-norm of inv(C'). The 1st
+* Estimate a lower bound for the 1-norm of inv(C**H). The 1st
* and (N+1)th columns of WORK are used to store work vectors.
*
SEP( KS ) = ZERO
@@ -316,7 +316,7 @@
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.1 ) THEN
*
-* Solve C'*x = scale*b
+* Solve C**H*x = scale*b
*
CALL CLATRS( 'Upper', 'Conjugate transpose',
$ 'Nonunit', NORMIN, N-1, WORK( 2, 2 ),