summaryrefslogtreecommitdiff
path: root/SRC/cppequ.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/cppequ.f')
-rw-r--r--SRC/cppequ.f169
1 files changed, 169 insertions, 0 deletions
diff --git a/SRC/cppequ.f b/SRC/cppequ.f
new file mode 100644
index 00000000..369e1232
--- /dev/null
+++ b/SRC/cppequ.f
@@ -0,0 +1,169 @@
+ SUBROUTINE CPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, N
+ REAL AMAX, SCOND
+* ..
+* .. Array Arguments ..
+ REAL S( * )
+ COMPLEX AP( * )
+* ..
+*
+* Purpose
+* =======
+*
+* CPPEQU computes row and column scalings intended to equilibrate a
+* Hermitian positive definite matrix A in packed storage and reduce
+* its condition number (with respect to the two-norm). S contains the
+* scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
+* B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
+* This choice of S puts the condition number of B within a factor N of
+* the smallest possible condition number over all possible diagonal
+* scalings.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* = 'U': Upper triangle of A is stored;
+* = 'L': Lower triangle of A is stored.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* AP (input) COMPLEX array, dimension (N*(N+1)/2)
+* The upper or lower triangle of the Hermitian matrix A, packed
+* columnwise in a linear array. The j-th column of A is stored
+* in the array AP as follows:
+* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
+* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
+*
+* S (output) REAL array, dimension (N)
+* If INFO = 0, S contains the scale factors for A.
+*
+* SCOND (output) REAL
+* If INFO = 0, S contains the ratio of the smallest S(i) to
+* the largest S(i). If SCOND >= 0.1 and AMAX is neither too
+* large nor too small, it is not worth scaling by S.
+*
+* AMAX (output) REAL
+* Absolute value of largest matrix element. If AMAX is very
+* close to overflow or very close to underflow, the matrix
+* should be scaled.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = i, the i-th diagonal element is nonpositive.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ONE, ZERO
+ PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL UPPER
+ INTEGER I, JJ
+ REAL SMIN
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN, REAL, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CPPEQU', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 ) THEN
+ SCOND = ONE
+ AMAX = ZERO
+ RETURN
+ END IF
+*
+* Initialize SMIN and AMAX.
+*
+ S( 1 ) = REAL( AP( 1 ) )
+ SMIN = S( 1 )
+ AMAX = S( 1 )
+*
+ IF( UPPER ) THEN
+*
+* UPLO = 'U': Upper triangle of A is stored.
+* Find the minimum and maximum diagonal elements.
+*
+ JJ = 1
+ DO 10 I = 2, N
+ JJ = JJ + I
+ S( I ) = REAL( AP( JJ ) )
+ SMIN = MIN( SMIN, S( I ) )
+ AMAX = MAX( AMAX, S( I ) )
+ 10 CONTINUE
+*
+ ELSE
+*
+* UPLO = 'L': Lower triangle of A is stored.
+* Find the minimum and maximum diagonal elements.
+*
+ JJ = 1
+ DO 20 I = 2, N
+ JJ = JJ + N - I + 2
+ S( I ) = REAL( AP( JJ ) )
+ SMIN = MIN( SMIN, S( I ) )
+ AMAX = MAX( AMAX, S( I ) )
+ 20 CONTINUE
+ END IF
+*
+ IF( SMIN.LE.ZERO ) THEN
+*
+* Find the first non-positive diagonal element and return.
+*
+ DO 30 I = 1, N
+ IF( S( I ).LE.ZERO ) THEN
+ INFO = I
+ RETURN
+ END IF
+ 30 CONTINUE
+ ELSE
+*
+* Set the scale factors to the reciprocals
+* of the diagonal elements.
+*
+ DO 40 I = 1, N
+ S( I ) = ONE / SQRT( S( I ) )
+ 40 CONTINUE
+*
+* Compute SCOND = min(S(I)) / max(S(I))
+*
+ SCOND = SQRT( SMIN ) / SQRT( AMAX )
+ END IF
+ RETURN
+*
+* End of CPPEQU
+*
+ END