summaryrefslogtreecommitdiff
path: root/SRC/claqr0.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/claqr0.f')
-rw-r--r--SRC/claqr0.f601
1 files changed, 601 insertions, 0 deletions
diff --git a/SRC/claqr0.f b/SRC/claqr0.f
new file mode 100644
index 00000000..e93f5749
--- /dev/null
+++ b/SRC/claqr0.f
@@ -0,0 +1,601 @@
+ SUBROUTINE CLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
+ $ IHIZ, Z, LDZ, WORK, LWORK, INFO )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
+ LOGICAL WANTT, WANTZ
+* ..
+* .. Array Arguments ..
+ COMPLEX H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
+* ..
+*
+* Purpose
+* =======
+*
+* CLAQR0 computes the eigenvalues of a Hessenberg matrix H
+* and, optionally, the matrices T and Z from the Schur decomposition
+* H = Z T Z**H, where T is an upper triangular matrix (the
+* Schur form), and Z is the unitary matrix of Schur vectors.
+*
+* Optionally Z may be postmultiplied into an input unitary
+* matrix Q so that this routine can give the Schur factorization
+* of a matrix A which has been reduced to the Hessenberg form H
+* by the unitary matrix Q: A = Q*H*Q**H = (QZ)*H*(QZ)**H.
+*
+* Arguments
+* =========
+*
+* WANTT (input) LOGICAL
+* = .TRUE. : the full Schur form T is required;
+* = .FALSE.: only eigenvalues are required.
+*
+* WANTZ (input) LOGICAL
+* = .TRUE. : the matrix of Schur vectors Z is required;
+* = .FALSE.: Schur vectors are not required.
+*
+* N (input) INTEGER
+* The order of the matrix H. N .GE. 0.
+*
+* ILO (input) INTEGER
+* IHI (input) INTEGER
+* It is assumed that H is already upper triangular in rows
+* and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
+* H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
+* previous call to CGEBAL, and then passed to CGEHRD when the
+* matrix output by CGEBAL is reduced to Hessenberg form.
+* Otherwise, ILO and IHI should be set to 1 and N,
+* respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
+* If N = 0, then ILO = 1 and IHI = 0.
+*
+* H (input/output) COMPLEX array, dimension (LDH,N)
+* On entry, the upper Hessenberg matrix H.
+* On exit, if INFO = 0 and WANTT is .TRUE., then H
+* contains the upper triangular matrix T from the Schur
+* decomposition (the Schur form). If INFO = 0 and WANT is
+* .FALSE., then the contents of H are unspecified on exit.
+* (The output value of H when INFO.GT.0 is given under the
+* description of INFO below.)
+*
+* This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
+* j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
+*
+* LDH (input) INTEGER
+* The leading dimension of the array H. LDH .GE. max(1,N).
+*
+* W (output) COMPLEX array, dimension (N)
+* The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored
+* in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are
+* stored in the same order as on the diagonal of the Schur
+* form returned in H, with W(i) = H(i,i).
+*
+* Z (input/output) COMPLEX array, dimension (LDZ,IHI)
+* If WANTZ is .FALSE., then Z is not referenced.
+* If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
+* replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
+* orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
+* (The output value of Z when INFO.GT.0 is given under
+* the description of INFO below.)
+*
+* LDZ (input) INTEGER
+* The leading dimension of the array Z. if WANTZ is .TRUE.
+* then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
+*
+* WORK (workspace/output) COMPLEX array, dimension LWORK
+* On exit, if LWORK = -1, WORK(1) returns an estimate of
+* the optimal value for LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK .GE. max(1,N)
+* is sufficient, but LWORK typically as large as 6*N may
+* be required for optimal performance. A workspace query
+* to determine the optimal workspace size is recommended.
+*
+* If LWORK = -1, then CLAQR0 does a workspace query.
+* In this case, CLAQR0 checks the input parameters and
+* estimates the optimal workspace size for the given
+* values of N, ILO and IHI. The estimate is returned
+* in WORK(1). No error message related to LWORK is
+* issued by XERBLA. Neither H nor Z are accessed.
+*
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* .GT. 0: if INFO = i, CLAQR0 failed to compute all of
+* the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
+* and WI contain those eigenvalues which have been
+* successfully computed. (Failures are rare.)
+*
+* If INFO .GT. 0 and WANT is .FALSE., then on exit,
+* the remaining unconverged eigenvalues are the eigen-
+* values of the upper Hessenberg matrix rows and
+* columns ILO through INFO of the final, output
+* value of H.
+*
+* If INFO .GT. 0 and WANTT is .TRUE., then on exit
+*
+* (*) (initial value of H)*U = U*(final value of H)
+*
+* where U is a unitary matrix. The final
+* value of H is upper Hessenberg and triangular in
+* rows and columns INFO+1 through IHI.
+*
+* If INFO .GT. 0 and WANTZ is .TRUE., then on exit
+*
+* (final value of Z(ILO:IHI,ILOZ:IHIZ)
+* = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
+*
+* where U is the unitary matrix in (*) (regard-
+* less of the value of WANTT.)
+*
+* If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
+* accessed.
+*
+* ================================================================
+* Based on contributions by
+* Karen Braman and Ralph Byers, Department of Mathematics,
+* University of Kansas, USA
+*
+* ================================================================
+* References:
+* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
+* Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
+* Performance, SIAM Journal of Matrix Analysis, volume 23, pages
+* 929--947, 2002.
+*
+* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
+* Algorithm Part II: Aggressive Early Deflation, SIAM Journal
+* of Matrix Analysis, volume 23, pages 948--973, 2002.
+*
+* ================================================================
+* .. Parameters ..
+*
+* ==== Matrices of order NTINY or smaller must be processed by
+* . CLAHQR because of insufficient subdiagonal scratch space.
+* . (This is a hard limit.) ====
+*
+* ==== Exceptional deflation windows: try to cure rare
+* . slow convergence by increasing the size of the
+* . deflation window after KEXNW iterations. =====
+*
+* ==== Exceptional shifts: try to cure rare slow convergence
+* . with ad-hoc exceptional shifts every KEXSH iterations.
+* . The constants WILK1 and WILK2 are used to form the
+* . exceptional shifts. ====
+*
+ INTEGER NTINY
+ PARAMETER ( NTINY = 11 )
+ INTEGER KEXNW, KEXSH
+ PARAMETER ( KEXNW = 5, KEXSH = 6 )
+ REAL WILK1
+ PARAMETER ( WILK1 = 0.75e0 )
+ COMPLEX ZERO, ONE
+ PARAMETER ( ZERO = ( 0.0e0, 0.0e0 ),
+ $ ONE = ( 1.0e0, 0.0e0 ) )
+ REAL TWO
+ PARAMETER ( TWO = 2.0e0 )
+* ..
+* .. Local Scalars ..
+ COMPLEX AA, BB, CC, CDUM, DD, DET, RTDISC, SWAP, TR2
+ REAL S
+ INTEGER I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
+ $ KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
+ $ LWKOPT, NDFL, NH, NHO, NIBBLE, NMIN, NS, NSMAX,
+ $ NSR, NVE, NW, NWMAX, NWR
+ LOGICAL NWINC, SORTED
+ CHARACTER JBCMPZ*2
+* ..
+* .. External Functions ..
+ INTEGER ILAENV
+ EXTERNAL ILAENV
+* ..
+* .. Local Arrays ..
+ COMPLEX ZDUM( 1, 1 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL CLACPY, CLAHQR, CLAQR3, CLAQR4, CLAQR5
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, AIMAG, CMPLX, INT, MAX, MIN, MOD, REAL,
+ $ SQRT
+* ..
+* .. Statement Functions ..
+ REAL CABS1
+* ..
+* .. Statement Function definitions ..
+ CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
+* ..
+* .. Executable Statements ..
+ INFO = 0
+*
+* ==== Quick return for N = 0: nothing to do. ====
+*
+ IF( N.EQ.0 ) THEN
+ WORK( 1 ) = ONE
+ RETURN
+ END IF
+*
+* ==== Set up job flags for ILAENV. ====
+*
+ IF( WANTT ) THEN
+ JBCMPZ( 1: 1 ) = 'S'
+ ELSE
+ JBCMPZ( 1: 1 ) = 'E'
+ END IF
+ IF( WANTZ ) THEN
+ JBCMPZ( 2: 2 ) = 'V'
+ ELSE
+ JBCMPZ( 2: 2 ) = 'N'
+ END IF
+*
+* ==== Tiny matrices must use CLAHQR. ====
+*
+ IF( N.LE.NTINY ) THEN
+*
+* ==== Estimate optimal workspace. ====
+*
+ LWKOPT = 1
+ IF( LWORK.NE.-1 )
+ $ CALL CLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
+ $ IHIZ, Z, LDZ, INFO )
+ ELSE
+*
+* ==== Use small bulge multi-shift QR with aggressive early
+* . deflation on larger-than-tiny matrices. ====
+*
+* ==== Hope for the best. ====
+*
+ INFO = 0
+*
+* ==== NWR = recommended deflation window size. At this
+* . point, N .GT. NTINY = 11, so there is enough
+* . subdiagonal workspace for NWR.GE.2 as required.
+* . (In fact, there is enough subdiagonal space for
+* . NWR.GE.3.) ====
+*
+ NWR = ILAENV( 13, 'CLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
+ NWR = MAX( 2, NWR )
+ NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
+ NW = NWR
+*
+* ==== NSR = recommended number of simultaneous shifts.
+* . At this point N .GT. NTINY = 11, so there is at
+* . enough subdiagonal workspace for NSR to be even
+* . and greater than or equal to two as required. ====
+*
+ NSR = ILAENV( 15, 'CLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
+ NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
+ NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
+*
+* ==== Estimate optimal workspace ====
+*
+* ==== Workspace query call to CLAQR3 ====
+*
+ CALL CLAQR3( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
+ $ IHIZ, Z, LDZ, LS, LD, W, H, LDH, N, H, LDH, N, H,
+ $ LDH, WORK, -1 )
+*
+* ==== Optimal workspace = MAX(CLAQR5, CLAQR3) ====
+*
+ LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
+*
+* ==== Quick return in case of workspace query. ====
+*
+ IF( LWORK.EQ.-1 ) THEN
+ WORK( 1 ) = CMPLX( LWKOPT, 0 )
+ RETURN
+ END IF
+*
+* ==== CLAHQR/CLAQR0 crossover point ====
+*
+ NMIN = ILAENV( 12, 'CLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
+ NMIN = MAX( NTINY, NMIN )
+*
+* ==== Nibble crossover point ====
+*
+ NIBBLE = ILAENV( 14, 'CLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
+ NIBBLE = MAX( 0, NIBBLE )
+*
+* ==== Accumulate reflections during ttswp? Use block
+* . 2-by-2 structure during matrix-matrix multiply? ====
+*
+ KACC22 = ILAENV( 16, 'CLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
+ KACC22 = MAX( 0, KACC22 )
+ KACC22 = MIN( 2, KACC22 )
+*
+* ==== NWMAX = the largest possible deflation window for
+* . which there is sufficient workspace. ====
+*
+ NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
+*
+* ==== NSMAX = the Largest number of simultaneous shifts
+* . for which there is sufficient workspace. ====
+*
+ NSMAX = MIN( ( N+6 ) / 9, 2*LWORK / 3 )
+ NSMAX = NSMAX - MOD( NSMAX, 2 )
+*
+* ==== NDFL: an iteration count restarted at deflation. ====
+*
+ NDFL = 1
+*
+* ==== ITMAX = iteration limit ====
+*
+ ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
+*
+* ==== Last row and column in the active block ====
+*
+ KBOT = IHI
+*
+* ==== Main Loop ====
+*
+ DO 70 IT = 1, ITMAX
+*
+* ==== Done when KBOT falls below ILO ====
+*
+ IF( KBOT.LT.ILO )
+ $ GO TO 80
+*
+* ==== Locate active block ====
+*
+ DO 10 K = KBOT, ILO + 1, -1
+ IF( H( K, K-1 ).EQ.ZERO )
+ $ GO TO 20
+ 10 CONTINUE
+ K = ILO
+ 20 CONTINUE
+ KTOP = K
+*
+* ==== Select deflation window size ====
+*
+ NH = KBOT - KTOP + 1
+ IF( NDFL.LT.KEXNW .OR. NH.LT.NW ) THEN
+*
+* ==== Typical deflation window. If possible and
+* . advisable, nibble the entire active block.
+* . If not, use size NWR or NWR+1 depending upon
+* . which has the smaller corresponding subdiagonal
+* . entry (a heuristic). ====
+*
+ NWINC = .TRUE.
+ IF( NH.LE.MIN( NMIN, NWMAX ) ) THEN
+ NW = NH
+ ELSE
+ NW = MIN( NWR, NH, NWMAX )
+ IF( NW.LT.NWMAX ) THEN
+ IF( NW.GE.NH-1 ) THEN
+ NW = NH
+ ELSE
+ KWTOP = KBOT - NW + 1
+ IF( CABS1( H( KWTOP, KWTOP-1 ) ).GT.
+ $ CABS1( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
+ END IF
+ END IF
+ END IF
+ ELSE
+*
+* ==== Exceptional deflation window. If there have
+* . been no deflations in KEXNW or more iterations,
+* . then vary the deflation window size. At first,
+* . because, larger windows are, in general, more
+* . powerful than smaller ones, rapidly increase the
+* . window up to the maximum reasonable and possible.
+* . Then maybe try a slightly smaller window. ====
+*
+ IF( NWINC .AND. NW.LT.MIN( NWMAX, NH ) ) THEN
+ NW = MIN( NWMAX, NH, 2*NW )
+ ELSE
+ NWINC = .FALSE.
+ IF( NW.EQ.NH .AND. NH.GT.2 )
+ $ NW = NH - 1
+ END IF
+ END IF
+*
+* ==== Aggressive early deflation:
+* . split workspace under the subdiagonal into
+* . - an nw-by-nw work array V in the lower
+* . left-hand-corner,
+* . - an NW-by-at-least-NW-but-more-is-better
+* . (NW-by-NHO) horizontal work array along
+* . the bottom edge,
+* . - an at-least-NW-but-more-is-better (NHV-by-NW)
+* . vertical work array along the left-hand-edge.
+* . ====
+*
+ KV = N - NW + 1
+ KT = NW + 1
+ NHO = ( N-NW-1 ) - KT + 1
+ KWV = NW + 2
+ NVE = ( N-NW ) - KWV + 1
+*
+* ==== Aggressive early deflation ====
+*
+ CALL CLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
+ $ IHIZ, Z, LDZ, LS, LD, W, H( KV, 1 ), LDH, NHO,
+ $ H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH, WORK,
+ $ LWORK )
+*
+* ==== Adjust KBOT accounting for new deflations. ====
+*
+ KBOT = KBOT - LD
+*
+* ==== KS points to the shifts. ====
+*
+ KS = KBOT - LS + 1
+*
+* ==== Skip an expensive QR sweep if there is a (partly
+* . heuristic) reason to expect that many eigenvalues
+* . will deflate without it. Here, the QR sweep is
+* . skipped if many eigenvalues have just been deflated
+* . or if the remaining active block is small.
+*
+ IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
+ $ KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
+*
+* ==== NS = nominal number of simultaneous shifts.
+* . This may be lowered (slightly) if CLAQR3
+* . did not provide that many shifts. ====
+*
+ NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
+ NS = NS - MOD( NS, 2 )
+*
+* ==== If there have been no deflations
+* . in a multiple of KEXSH iterations,
+* . then try exceptional shifts.
+* . Otherwise use shifts provided by
+* . CLAQR3 above or from the eigenvalues
+* . of a trailing principal submatrix. ====
+*
+ IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
+ KS = KBOT - NS + 1
+ DO 30 I = KBOT, KS + 1, -2
+ W( I ) = H( I, I ) + WILK1*CABS1( H( I, I-1 ) )
+ W( I-1 ) = W( I )
+ 30 CONTINUE
+ ELSE
+*
+* ==== Got NS/2 or fewer shifts? Use CLAQR4 or
+* . CLAHQR on a trailing principal submatrix to
+* . get more. (Since NS.LE.NSMAX.LE.(N+6)/9,
+* . there is enough space below the subdiagonal
+* . to fit an NS-by-NS scratch array.) ====
+*
+ IF( KBOT-KS+1.LE.NS / 2 ) THEN
+ KS = KBOT - NS + 1
+ KT = N - NS + 1
+ CALL CLACPY( 'A', NS, NS, H( KS, KS ), LDH,
+ $ H( KT, 1 ), LDH )
+ IF( NS.GT.NMIN ) THEN
+ CALL CLAQR4( .false., .false., NS, 1, NS,
+ $ H( KT, 1 ), LDH, W( KS ), 1, 1,
+ $ ZDUM, 1, WORK, LWORK, INF )
+ ELSE
+ CALL CLAHQR( .false., .false., NS, 1, NS,
+ $ H( KT, 1 ), LDH, W( KS ), 1, 1,
+ $ ZDUM, 1, INF )
+ END IF
+ KS = KS + INF
+*
+* ==== In case of a rare QR failure use
+* . eigenvalues of the trailing 2-by-2
+* . principal submatrix. Scale to avoid
+* . overflows, underflows and subnormals.
+* . (The scale factor S can not be zero,
+* . because H(KBOT,KBOT-1) is nonzero.) ====
+*
+ IF( KS.GE.KBOT ) THEN
+ S = CABS1( H( KBOT-1, KBOT-1 ) ) +
+ $ CABS1( H( KBOT, KBOT-1 ) ) +
+ $ CABS1( H( KBOT-1, KBOT ) ) +
+ $ CABS1( H( KBOT, KBOT ) )
+ AA = H( KBOT-1, KBOT-1 ) / S
+ CC = H( KBOT, KBOT-1 ) / S
+ BB = H( KBOT-1, KBOT ) / S
+ DD = H( KBOT, KBOT ) / S
+ TR2 = ( AA+DD ) / TWO
+ DET = ( AA-TR2 )*( DD-TR2 ) - BB*CC
+ RTDISC = SQRT( -DET )
+ W( KBOT-1 ) = ( TR2+RTDISC )*S
+ W( KBOT ) = ( TR2-RTDISC )*S
+*
+ KS = KBOT - 1
+ END IF
+ END IF
+*
+ IF( KBOT-KS+1.GT.NS ) THEN
+*
+* ==== Sort the shifts (Helps a little) ====
+*
+ SORTED = .false.
+ DO 50 K = KBOT, KS + 1, -1
+ IF( SORTED )
+ $ GO TO 60
+ SORTED = .true.
+ DO 40 I = KS, K - 1
+ IF( CABS1( W( I ) ).LT.CABS1( W( I+1 ) ) )
+ $ THEN
+ SORTED = .false.
+ SWAP = W( I )
+ W( I ) = W( I+1 )
+ W( I+1 ) = SWAP
+ END IF
+ 40 CONTINUE
+ 50 CONTINUE
+ 60 CONTINUE
+ END IF
+ END IF
+*
+* ==== If there are only two shifts, then use
+* . only one. ====
+*
+ IF( KBOT-KS+1.EQ.2 ) THEN
+ IF( CABS1( W( KBOT )-H( KBOT, KBOT ) ).LT.
+ $ CABS1( W( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
+ W( KBOT-1 ) = W( KBOT )
+ ELSE
+ W( KBOT ) = W( KBOT-1 )
+ END IF
+ END IF
+*
+* ==== Use up to NS of the the smallest magnatiude
+* . shifts. If there aren't NS shifts available,
+* . then use them all, possibly dropping one to
+* . make the number of shifts even. ====
+*
+ NS = MIN( NS, KBOT-KS+1 )
+ NS = NS - MOD( NS, 2 )
+ KS = KBOT - NS + 1
+*
+* ==== Small-bulge multi-shift QR sweep:
+* . split workspace under the subdiagonal into
+* . - a KDU-by-KDU work array U in the lower
+* . left-hand-corner,
+* . - a KDU-by-at-least-KDU-but-more-is-better
+* . (KDU-by-NHo) horizontal work array WH along
+* . the bottom edge,
+* . - and an at-least-KDU-but-more-is-better-by-KDU
+* . (NVE-by-KDU) vertical work WV arrow along
+* . the left-hand-edge. ====
+*
+ KDU = 3*NS - 3
+ KU = N - KDU + 1
+ KWH = KDU + 1
+ NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
+ KWV = KDU + 4
+ NVE = N - KDU - KWV + 1
+*
+* ==== Small-bulge multi-shift QR sweep ====
+*
+ CALL CLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
+ $ W( KS ), H, LDH, ILOZ, IHIZ, Z, LDZ, WORK,
+ $ 3, H( KU, 1 ), LDH, NVE, H( KWV, 1 ), LDH,
+ $ NHO, H( KU, KWH ), LDH )
+ END IF
+*
+* ==== Note progress (or the lack of it). ====
+*
+ IF( LD.GT.0 ) THEN
+ NDFL = 1
+ ELSE
+ NDFL = NDFL + 1
+ END IF
+*
+* ==== End of main loop ====
+ 70 CONTINUE
+*
+* ==== Iteration limit exceeded. Set INFO to show where
+* . the problem occurred and exit. ====
+*
+ INFO = KBOT
+ 80 CONTINUE
+ END IF
+*
+* ==== Return the optimal value of LWORK. ====
+*
+ WORK( 1 ) = CMPLX( LWKOPT, 0 )
+*
+* ==== End of CLAQR0 ====
+*
+ END