diff options
Diffstat (limited to 'SRC/clahqr.f')
-rw-r--r-- | SRC/clahqr.f | 469 |
1 files changed, 469 insertions, 0 deletions
diff --git a/SRC/clahqr.f b/SRC/clahqr.f new file mode 100644 index 00000000..5541ec8a --- /dev/null +++ b/SRC/clahqr.f @@ -0,0 +1,469 @@ + SUBROUTINE CLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ, + $ IHIZ, Z, LDZ, INFO ) +* +* -- LAPACK auxiliary routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N + LOGICAL WANTT, WANTZ +* .. +* .. Array Arguments .. + COMPLEX H( LDH, * ), W( * ), Z( LDZ, * ) +* .. +* +* Purpose +* ======= +* +* CLAHQR is an auxiliary routine called by CHSEQR to update the +* eigenvalues and Schur decomposition already computed by CHSEQR, by +* dealing with the Hessenberg submatrix in rows and columns ILO to +* IHI. +* +* Arguments +* ========= +* +* WANTT (input) LOGICAL +* = .TRUE. : the full Schur form T is required; +* = .FALSE.: only eigenvalues are required. +* +* WANTZ (input) LOGICAL +* = .TRUE. : the matrix of Schur vectors Z is required; +* = .FALSE.: Schur vectors are not required. +* +* N (input) INTEGER +* The order of the matrix H. N >= 0. +* +* ILO (input) INTEGER +* IHI (input) INTEGER +* It is assumed that H is already upper triangular in rows and +* columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1). +* CLAHQR works primarily with the Hessenberg submatrix in rows +* and columns ILO to IHI, but applies transformations to all of +* H if WANTT is .TRUE.. +* 1 <= ILO <= max(1,IHI); IHI <= N. +* +* H (input/output) COMPLEX array, dimension (LDH,N) +* On entry, the upper Hessenberg matrix H. +* On exit, if INFO is zero and if WANTT is .TRUE., then H +* is upper triangular in rows and columns ILO:IHI. If INFO +* is zero and if WANTT is .FALSE., then the contents of H +* are unspecified on exit. The output state of H in case +* INF is positive is below under the description of INFO. +* +* LDH (input) INTEGER +* The leading dimension of the array H. LDH >= max(1,N). +* +* W (output) COMPLEX array, dimension (N) +* The computed eigenvalues ILO to IHI are stored in the +* corresponding elements of W. If WANTT is .TRUE., the +* eigenvalues are stored in the same order as on the diagonal +* of the Schur form returned in H, with W(i) = H(i,i). +* +* ILOZ (input) INTEGER +* IHIZ (input) INTEGER +* Specify the rows of Z to which transformations must be +* applied if WANTZ is .TRUE.. +* 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. +* +* Z (input/output) COMPLEX array, dimension (LDZ,N) +* If WANTZ is .TRUE., on entry Z must contain the current +* matrix Z of transformations accumulated by CHSEQR, and on +* exit Z has been updated; transformations are applied only to +* the submatrix Z(ILOZ:IHIZ,ILO:IHI). +* If WANTZ is .FALSE., Z is not referenced. +* +* LDZ (input) INTEGER +* The leading dimension of the array Z. LDZ >= max(1,N). +* +* INFO (output) INTEGER +* = 0: successful exit +* .GT. 0: if INFO = i, CLAHQR failed to compute all the +* eigenvalues ILO to IHI in a total of 30 iterations +* per eigenvalue; elements i+1:ihi of W contain +* those eigenvalues which have been successfully +* computed. +* +* If INFO .GT. 0 and WANTT is .FALSE., then on exit, +* the remaining unconverged eigenvalues are the +* eigenvalues of the upper Hessenberg matrix +* rows and columns ILO thorugh INFO of the final, +* output value of H. +* +* If INFO .GT. 0 and WANTT is .TRUE., then on exit +* (*) (initial value of H)*U = U*(final value of H) +* where U is an orthognal matrix. The final +* value of H is upper Hessenberg and triangular in +* rows and columns INFO+1 through IHI. +* +* If INFO .GT. 0 and WANTZ is .TRUE., then on exit +* (final value of Z) = (initial value of Z)*U +* where U is the orthogonal matrix in (*) +* (regardless of the value of WANTT.) +* +* Further Details +* =============== +* +* 02-96 Based on modifications by +* David Day, Sandia National Laboratory, USA +* +* 12-04 Further modifications by +* Ralph Byers, University of Kansas, USA +* +* This is a modified version of CLAHQR from LAPACK version 3.0. +* It is (1) more robust against overflow and underflow and +* (2) adopts the more conservative Ahues & Tisseur stopping +* criterion (LAWN 122, 1997). +* +* ========================================================= +* +* .. Parameters .. + INTEGER ITMAX + PARAMETER ( ITMAX = 30 ) + COMPLEX ZERO, ONE + PARAMETER ( ZERO = ( 0.0e0, 0.0e0 ), + $ ONE = ( 1.0e0, 0.0e0 ) ) + REAL RZERO, RONE, HALF + PARAMETER ( RZERO = 0.0e0, RONE = 1.0e0, HALF = 0.5e0 ) + REAL DAT1 + PARAMETER ( DAT1 = 3.0e0 / 4.0e0 ) +* .. +* .. Local Scalars .. + COMPLEX CDUM, H11, H11S, H22, SC, SUM, T, T1, TEMP, U, + $ V2, X, Y + REAL AA, AB, BA, BB, H10, H21, RTEMP, S, SAFMAX, + $ SAFMIN, SMLNUM, SX, T2, TST, ULP + INTEGER I, I1, I2, ITS, J, JHI, JLO, K, L, M, NH, NZ +* .. +* .. Local Arrays .. + COMPLEX V( 2 ) +* .. +* .. External Functions .. + COMPLEX CLADIV + REAL SLAMCH + EXTERNAL CLADIV, SLAMCH +* .. +* .. External Subroutines .. + EXTERNAL CCOPY, CLARFG, CSCAL, SLABAD +* .. +* .. Statement Functions .. + REAL CABS1 +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, AIMAG, CONJG, MAX, MIN, REAL, SQRT +* .. +* .. Statement Function definitions .. + CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) ) +* .. +* .. Executable Statements .. +* + INFO = 0 +* +* Quick return if possible +* + IF( N.EQ.0 ) + $ RETURN + IF( ILO.EQ.IHI ) THEN + W( ILO ) = H( ILO, ILO ) + RETURN + END IF +* +* ==== clear out the trash ==== + DO 10 J = ILO, IHI - 3 + H( J+2, J ) = ZERO + H( J+3, J ) = ZERO + 10 CONTINUE + IF( ILO.LE.IHI-2 ) + $ H( IHI, IHI-2 ) = ZERO +* ==== ensure that subdiagonal entries are real ==== + DO 20 I = ILO + 1, IHI + IF( AIMAG( H( I, I-1 ) ).NE.RZERO ) THEN +* ==== The following redundant normalization +* . avoids problems with both gradual and +* . sudden underflow in ABS(H(I,I-1)) ==== + SC = H( I, I-1 ) / CABS1( H( I, I-1 ) ) + SC = CONJG( SC ) / ABS( SC ) + H( I, I-1 ) = ABS( H( I, I-1 ) ) + IF( WANTT ) THEN + JLO = 1 + JHI = N + ELSE + JLO = ILO + JHI = IHI + END IF + CALL CSCAL( JHI-I+1, SC, H( I, I ), LDH ) + CALL CSCAL( MIN( JHI, I+1 )-JLO+1, CONJG( SC ), H( JLO, I ), + $ 1 ) + IF( WANTZ ) + $ CALL CSCAL( IHIZ-ILOZ+1, CONJG( SC ), Z( ILOZ, I ), 1 ) + END IF + 20 CONTINUE +* + NH = IHI - ILO + 1 + NZ = IHIZ - ILOZ + 1 +* +* Set machine-dependent constants for the stopping criterion. +* + SAFMIN = SLAMCH( 'SAFE MINIMUM' ) + SAFMAX = RONE / SAFMIN + CALL SLABAD( SAFMIN, SAFMAX ) + ULP = SLAMCH( 'PRECISION' ) + SMLNUM = SAFMIN*( REAL( NH ) / ULP ) +* +* I1 and I2 are the indices of the first row and last column of H +* to which transformations must be applied. If eigenvalues only are +* being computed, I1 and I2 are set inside the main loop. +* + IF( WANTT ) THEN + I1 = 1 + I2 = N + END IF +* +* The main loop begins here. I is the loop index and decreases from +* IHI to ILO in steps of 1. Each iteration of the loop works +* with the active submatrix in rows and columns L to I. +* Eigenvalues I+1 to IHI have already converged. Either L = ILO, or +* H(L,L-1) is negligible so that the matrix splits. +* + I = IHI + 30 CONTINUE + IF( I.LT.ILO ) + $ GO TO 150 +* +* Perform QR iterations on rows and columns ILO to I until a +* submatrix of order 1 splits off at the bottom because a +* subdiagonal element has become negligible. +* + L = ILO + DO 130 ITS = 0, ITMAX +* +* Look for a single small subdiagonal element. +* + DO 40 K = I, L + 1, -1 + IF( CABS1( H( K, K-1 ) ).LE.SMLNUM ) + $ GO TO 50 + TST = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) ) + IF( TST.EQ.ZERO ) THEN + IF( K-2.GE.ILO ) + $ TST = TST + ABS( REAL( H( K-1, K-2 ) ) ) + IF( K+1.LE.IHI ) + $ TST = TST + ABS( REAL( H( K+1, K ) ) ) + END IF +* ==== The following is a conservative small subdiagonal +* . deflation criterion due to Ahues & Tisseur (LAWN 122, +* . 1997). It has better mathematical foundation and +* . improves accuracy in some examples. ==== + IF( ABS( REAL( H( K, K-1 ) ) ).LE.ULP*TST ) THEN + AB = MAX( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) ) + BA = MIN( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) ) + AA = MAX( CABS1( H( K, K ) ), + $ CABS1( H( K-1, K-1 )-H( K, K ) ) ) + BB = MIN( CABS1( H( K, K ) ), + $ CABS1( H( K-1, K-1 )-H( K, K ) ) ) + S = AA + AB + IF( BA*( AB / S ).LE.MAX( SMLNUM, + $ ULP*( BB*( AA / S ) ) ) )GO TO 50 + END IF + 40 CONTINUE + 50 CONTINUE + L = K + IF( L.GT.ILO ) THEN +* +* H(L,L-1) is negligible +* + H( L, L-1 ) = ZERO + END IF +* +* Exit from loop if a submatrix of order 1 has split off. +* + IF( L.GE.I ) + $ GO TO 140 +* +* Now the active submatrix is in rows and columns L to I. If +* eigenvalues only are being computed, only the active submatrix +* need be transformed. +* + IF( .NOT.WANTT ) THEN + I1 = L + I2 = I + END IF +* + IF( ITS.EQ.10 .OR. ITS.EQ.20 ) THEN +* +* Exceptional shift. +* + S = DAT1*ABS( REAL( H( I, I-1 ) ) ) + T = S + H( I, I ) + ELSE +* +* Wilkinson's shift. +* + T = H( I, I ) + U = SQRT( H( I-1, I ) )*SQRT( H( I, I-1 ) ) + S = CABS1( U ) + IF( S.NE.RZERO ) THEN + X = HALF*( H( I-1, I-1 )-T ) + SX = CABS1( X ) + S = MAX( S, CABS1( X ) ) + Y = S*SQRT( ( X / S )**2+( U / S )**2 ) + IF( SX.GT.RZERO ) THEN + IF( REAL( X / SX )*REAL( Y )+AIMAG( X / SX )* + $ AIMAG( Y ).LT.RZERO )Y = -Y + END IF + T = T - U*CLADIV( U, ( X+Y ) ) + END IF + END IF +* +* Look for two consecutive small subdiagonal elements. +* + DO 60 M = I - 1, L + 1, -1 +* +* Determine the effect of starting the single-shift QR +* iteration at row M, and see if this would make H(M,M-1) +* negligible. +* + H11 = H( M, M ) + H22 = H( M+1, M+1 ) + H11S = H11 - T + H21 = H( M+1, M ) + S = CABS1( H11S ) + ABS( H21 ) + H11S = H11S / S + H21 = H21 / S + V( 1 ) = H11S + V( 2 ) = H21 + H10 = H( M, M-1 ) + IF( ABS( H10 )*ABS( H21 ).LE.ULP* + $ ( CABS1( H11S )*( CABS1( H11 )+CABS1( H22 ) ) ) ) + $ GO TO 70 + 60 CONTINUE + H11 = H( L, L ) + H22 = H( L+1, L+1 ) + H11S = H11 - T + H21 = H( L+1, L ) + S = CABS1( H11S ) + ABS( H21 ) + H11S = H11S / S + H21 = H21 / S + V( 1 ) = H11S + V( 2 ) = H21 + 70 CONTINUE +* +* Single-shift QR step +* + DO 120 K = M, I - 1 +* +* The first iteration of this loop determines a reflection G +* from the vector V and applies it from left and right to H, +* thus creating a nonzero bulge below the subdiagonal. +* +* Each subsequent iteration determines a reflection G to +* restore the Hessenberg form in the (K-1)th column, and thus +* chases the bulge one step toward the bottom of the active +* submatrix. +* +* V(2) is always real before the call to CLARFG, and hence +* after the call T2 ( = T1*V(2) ) is also real. +* + IF( K.GT.M ) + $ CALL CCOPY( 2, H( K, K-1 ), 1, V, 1 ) + CALL CLARFG( 2, V( 1 ), V( 2 ), 1, T1 ) + IF( K.GT.M ) THEN + H( K, K-1 ) = V( 1 ) + H( K+1, K-1 ) = ZERO + END IF + V2 = V( 2 ) + T2 = REAL( T1*V2 ) +* +* Apply G from the left to transform the rows of the matrix +* in columns K to I2. +* + DO 80 J = K, I2 + SUM = CONJG( T1 )*H( K, J ) + T2*H( K+1, J ) + H( K, J ) = H( K, J ) - SUM + H( K+1, J ) = H( K+1, J ) - SUM*V2 + 80 CONTINUE +* +* Apply G from the right to transform the columns of the +* matrix in rows I1 to min(K+2,I). +* + DO 90 J = I1, MIN( K+2, I ) + SUM = T1*H( J, K ) + T2*H( J, K+1 ) + H( J, K ) = H( J, K ) - SUM + H( J, K+1 ) = H( J, K+1 ) - SUM*CONJG( V2 ) + 90 CONTINUE +* + IF( WANTZ ) THEN +* +* Accumulate transformations in the matrix Z +* + DO 100 J = ILOZ, IHIZ + SUM = T1*Z( J, K ) + T2*Z( J, K+1 ) + Z( J, K ) = Z( J, K ) - SUM + Z( J, K+1 ) = Z( J, K+1 ) - SUM*CONJG( V2 ) + 100 CONTINUE + END IF +* + IF( K.EQ.M .AND. M.GT.L ) THEN +* +* If the QR step was started at row M > L because two +* consecutive small subdiagonals were found, then extra +* scaling must be performed to ensure that H(M,M-1) remains +* real. +* + TEMP = ONE - T1 + TEMP = TEMP / ABS( TEMP ) + H( M+1, M ) = H( M+1, M )*CONJG( TEMP ) + IF( M+2.LE.I ) + $ H( M+2, M+1 ) = H( M+2, M+1 )*TEMP + DO 110 J = M, I + IF( J.NE.M+1 ) THEN + IF( I2.GT.J ) + $ CALL CSCAL( I2-J, TEMP, H( J, J+1 ), LDH ) + CALL CSCAL( J-I1, CONJG( TEMP ), H( I1, J ), 1 ) + IF( WANTZ ) THEN + CALL CSCAL( NZ, CONJG( TEMP ), Z( ILOZ, J ), 1 ) + END IF + END IF + 110 CONTINUE + END IF + 120 CONTINUE +* +* Ensure that H(I,I-1) is real. +* + TEMP = H( I, I-1 ) + IF( AIMAG( TEMP ).NE.RZERO ) THEN + RTEMP = ABS( TEMP ) + H( I, I-1 ) = RTEMP + TEMP = TEMP / RTEMP + IF( I2.GT.I ) + $ CALL CSCAL( I2-I, CONJG( TEMP ), H( I, I+1 ), LDH ) + CALL CSCAL( I-I1, TEMP, H( I1, I ), 1 ) + IF( WANTZ ) THEN + CALL CSCAL( NZ, TEMP, Z( ILOZ, I ), 1 ) + END IF + END IF +* + 130 CONTINUE +* +* Failure to converge in remaining number of iterations +* + INFO = I + RETURN +* + 140 CONTINUE +* +* H(I,I-1) is negligible: one eigenvalue has converged. +* + W( I ) = H( I, I ) +* +* return to start of the main loop with new value of I. +* + I = L - 1 + GO TO 30 +* + 150 CONTINUE + RETURN +* +* End of CLAHQR +* + END |