diff options
Diffstat (limited to 'SRC/chptrs.f')
-rw-r--r-- | SRC/chptrs.f | 401 |
1 files changed, 401 insertions, 0 deletions
diff --git a/SRC/chptrs.f b/SRC/chptrs.f new file mode 100644 index 00000000..9767860a --- /dev/null +++ b/SRC/chptrs.f @@ -0,0 +1,401 @@ + SUBROUTINE CHPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO ) +* +* -- LAPACK routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER UPLO + INTEGER INFO, LDB, N, NRHS +* .. +* .. Array Arguments .. + INTEGER IPIV( * ) + COMPLEX AP( * ), B( LDB, * ) +* .. +* +* Purpose +* ======= +* +* CHPTRS solves a system of linear equations A*X = B with a complex +* Hermitian matrix A stored in packed format using the factorization +* A = U*D*U**H or A = L*D*L**H computed by CHPTRF. +* +* Arguments +* ========= +* +* UPLO (input) CHARACTER*1 +* Specifies whether the details of the factorization are stored +* as an upper or lower triangular matrix. +* = 'U': Upper triangular, form is A = U*D*U**H; +* = 'L': Lower triangular, form is A = L*D*L**H. +* +* N (input) INTEGER +* The order of the matrix A. N >= 0. +* +* NRHS (input) INTEGER +* The number of right hand sides, i.e., the number of columns +* of the matrix B. NRHS >= 0. +* +* AP (input) COMPLEX array, dimension (N*(N+1)/2) +* The block diagonal matrix D and the multipliers used to +* obtain the factor U or L as computed by CHPTRF, stored as a +* packed triangular matrix. +* +* IPIV (input) INTEGER array, dimension (N) +* Details of the interchanges and the block structure of D +* as determined by CHPTRF. +* +* B (input/output) COMPLEX array, dimension (LDB,NRHS) +* On entry, the right hand side matrix B. +* On exit, the solution matrix X. +* +* LDB (input) INTEGER +* The leading dimension of the array B. LDB >= max(1,N). +* +* INFO (output) INTEGER +* = 0: successful exit +* < 0: if INFO = -i, the i-th argument had an illegal value +* +* ===================================================================== +* +* .. Parameters .. + COMPLEX ONE + PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) ) +* .. +* .. Local Scalars .. + LOGICAL UPPER + INTEGER J, K, KC, KP + REAL S + COMPLEX AK, AKM1, AKM1K, BK, BKM1, DENOM +* .. +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. External Subroutines .. + EXTERNAL CGEMV, CGERU, CLACGV, CSSCAL, CSWAP, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC CONJG, MAX, REAL +* .. +* .. Executable Statements .. +* + INFO = 0 + UPPER = LSAME( UPLO, 'U' ) + IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( NRHS.LT.0 ) THEN + INFO = -3 + ELSE IF( LDB.LT.MAX( 1, N ) ) THEN + INFO = -7 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'CHPTRS', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( N.EQ.0 .OR. NRHS.EQ.0 ) + $ RETURN +* + IF( UPPER ) THEN +* +* Solve A*X = B, where A = U*D*U'. +* +* First solve U*D*X = B, overwriting B with X. +* +* K is the main loop index, decreasing from N to 1 in steps of +* 1 or 2, depending on the size of the diagonal blocks. +* + K = N + KC = N*( N+1 ) / 2 + 1 + 10 CONTINUE +* +* If K < 1, exit from loop. +* + IF( K.LT.1 ) + $ GO TO 30 +* + KC = KC - K + IF( IPIV( K ).GT.0 ) THEN +* +* 1 x 1 diagonal block +* +* Interchange rows K and IPIV(K). +* + KP = IPIV( K ) + IF( KP.NE.K ) + $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) +* +* Multiply by inv(U(K)), where U(K) is the transformation +* stored in column K of A. +* + CALL CGERU( K-1, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB, + $ B( 1, 1 ), LDB ) +* +* Multiply by the inverse of the diagonal block. +* + S = REAL( ONE ) / REAL( AP( KC+K-1 ) ) + CALL CSSCAL( NRHS, S, B( K, 1 ), LDB ) + K = K - 1 + ELSE +* +* 2 x 2 diagonal block +* +* Interchange rows K-1 and -IPIV(K). +* + KP = -IPIV( K ) + IF( KP.NE.K-1 ) + $ CALL CSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB ) +* +* Multiply by inv(U(K)), where U(K) is the transformation +* stored in columns K-1 and K of A. +* + CALL CGERU( K-2, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB, + $ B( 1, 1 ), LDB ) + CALL CGERU( K-2, NRHS, -ONE, AP( KC-( K-1 ) ), 1, + $ B( K-1, 1 ), LDB, B( 1, 1 ), LDB ) +* +* Multiply by the inverse of the diagonal block. +* + AKM1K = AP( KC+K-2 ) + AKM1 = AP( KC-1 ) / AKM1K + AK = AP( KC+K-1 ) / CONJG( AKM1K ) + DENOM = AKM1*AK - ONE + DO 20 J = 1, NRHS + BKM1 = B( K-1, J ) / AKM1K + BK = B( K, J ) / CONJG( AKM1K ) + B( K-1, J ) = ( AK*BKM1-BK ) / DENOM + B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM + 20 CONTINUE + KC = KC - K + 1 + K = K - 2 + END IF +* + GO TO 10 + 30 CONTINUE +* +* Next solve U'*X = B, overwriting B with X. +* +* K is the main loop index, increasing from 1 to N in steps of +* 1 or 2, depending on the size of the diagonal blocks. +* + K = 1 + KC = 1 + 40 CONTINUE +* +* If K > N, exit from loop. +* + IF( K.GT.N ) + $ GO TO 50 +* + IF( IPIV( K ).GT.0 ) THEN +* +* 1 x 1 diagonal block +* +* Multiply by inv(U'(K)), where U(K) is the transformation +* stored in column K of A. +* + IF( K.GT.1 ) THEN + CALL CLACGV( NRHS, B( K, 1 ), LDB ) + CALL CGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B, + $ LDB, AP( KC ), 1, ONE, B( K, 1 ), LDB ) + CALL CLACGV( NRHS, B( K, 1 ), LDB ) + END IF +* +* Interchange rows K and IPIV(K). +* + KP = IPIV( K ) + IF( KP.NE.K ) + $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) + KC = KC + K + K = K + 1 + ELSE +* +* 2 x 2 diagonal block +* +* Multiply by inv(U'(K+1)), where U(K+1) is the transformation +* stored in columns K and K+1 of A. +* + IF( K.GT.1 ) THEN + CALL CLACGV( NRHS, B( K, 1 ), LDB ) + CALL CGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B, + $ LDB, AP( KC ), 1, ONE, B( K, 1 ), LDB ) + CALL CLACGV( NRHS, B( K, 1 ), LDB ) +* + CALL CLACGV( NRHS, B( K+1, 1 ), LDB ) + CALL CGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B, + $ LDB, AP( KC+K ), 1, ONE, B( K+1, 1 ), LDB ) + CALL CLACGV( NRHS, B( K+1, 1 ), LDB ) + END IF +* +* Interchange rows K and -IPIV(K). +* + KP = -IPIV( K ) + IF( KP.NE.K ) + $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) + KC = KC + 2*K + 1 + K = K + 2 + END IF +* + GO TO 40 + 50 CONTINUE +* + ELSE +* +* Solve A*X = B, where A = L*D*L'. +* +* First solve L*D*X = B, overwriting B with X. +* +* K is the main loop index, increasing from 1 to N in steps of +* 1 or 2, depending on the size of the diagonal blocks. +* + K = 1 + KC = 1 + 60 CONTINUE +* +* If K > N, exit from loop. +* + IF( K.GT.N ) + $ GO TO 80 +* + IF( IPIV( K ).GT.0 ) THEN +* +* 1 x 1 diagonal block +* +* Interchange rows K and IPIV(K). +* + KP = IPIV( K ) + IF( KP.NE.K ) + $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) +* +* Multiply by inv(L(K)), where L(K) is the transformation +* stored in column K of A. +* + IF( K.LT.N ) + $ CALL CGERU( N-K, NRHS, -ONE, AP( KC+1 ), 1, B( K, 1 ), + $ LDB, B( K+1, 1 ), LDB ) +* +* Multiply by the inverse of the diagonal block. +* + S = REAL( ONE ) / REAL( AP( KC ) ) + CALL CSSCAL( NRHS, S, B( K, 1 ), LDB ) + KC = KC + N - K + 1 + K = K + 1 + ELSE +* +* 2 x 2 diagonal block +* +* Interchange rows K+1 and -IPIV(K). +* + KP = -IPIV( K ) + IF( KP.NE.K+1 ) + $ CALL CSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB ) +* +* Multiply by inv(L(K)), where L(K) is the transformation +* stored in columns K and K+1 of A. +* + IF( K.LT.N-1 ) THEN + CALL CGERU( N-K-1, NRHS, -ONE, AP( KC+2 ), 1, B( K, 1 ), + $ LDB, B( K+2, 1 ), LDB ) + CALL CGERU( N-K-1, NRHS, -ONE, AP( KC+N-K+2 ), 1, + $ B( K+1, 1 ), LDB, B( K+2, 1 ), LDB ) + END IF +* +* Multiply by the inverse of the diagonal block. +* + AKM1K = AP( KC+1 ) + AKM1 = AP( KC ) / CONJG( AKM1K ) + AK = AP( KC+N-K+1 ) / AKM1K + DENOM = AKM1*AK - ONE + DO 70 J = 1, NRHS + BKM1 = B( K, J ) / CONJG( AKM1K ) + BK = B( K+1, J ) / AKM1K + B( K, J ) = ( AK*BKM1-BK ) / DENOM + B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM + 70 CONTINUE + KC = KC + 2*( N-K ) + 1 + K = K + 2 + END IF +* + GO TO 60 + 80 CONTINUE +* +* Next solve L'*X = B, overwriting B with X. +* +* K is the main loop index, decreasing from N to 1 in steps of +* 1 or 2, depending on the size of the diagonal blocks. +* + K = N + KC = N*( N+1 ) / 2 + 1 + 90 CONTINUE +* +* If K < 1, exit from loop. +* + IF( K.LT.1 ) + $ GO TO 100 +* + KC = KC - ( N-K+1 ) + IF( IPIV( K ).GT.0 ) THEN +* +* 1 x 1 diagonal block +* +* Multiply by inv(L'(K)), where L(K) is the transformation +* stored in column K of A. +* + IF( K.LT.N ) THEN + CALL CLACGV( NRHS, B( K, 1 ), LDB ) + CALL CGEMV( 'Conjugate transpose', N-K, NRHS, -ONE, + $ B( K+1, 1 ), LDB, AP( KC+1 ), 1, ONE, + $ B( K, 1 ), LDB ) + CALL CLACGV( NRHS, B( K, 1 ), LDB ) + END IF +* +* Interchange rows K and IPIV(K). +* + KP = IPIV( K ) + IF( KP.NE.K ) + $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) + K = K - 1 + ELSE +* +* 2 x 2 diagonal block +* +* Multiply by inv(L'(K-1)), where L(K-1) is the transformation +* stored in columns K-1 and K of A. +* + IF( K.LT.N ) THEN + CALL CLACGV( NRHS, B( K, 1 ), LDB ) + CALL CGEMV( 'Conjugate transpose', N-K, NRHS, -ONE, + $ B( K+1, 1 ), LDB, AP( KC+1 ), 1, ONE, + $ B( K, 1 ), LDB ) + CALL CLACGV( NRHS, B( K, 1 ), LDB ) +* + CALL CLACGV( NRHS, B( K-1, 1 ), LDB ) + CALL CGEMV( 'Conjugate transpose', N-K, NRHS, -ONE, + $ B( K+1, 1 ), LDB, AP( KC-( N-K ) ), 1, ONE, + $ B( K-1, 1 ), LDB ) + CALL CLACGV( NRHS, B( K-1, 1 ), LDB ) + END IF +* +* Interchange rows K and -IPIV(K). +* + KP = -IPIV( K ) + IF( KP.NE.K ) + $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) + KC = KC - ( N-K+2 ) + K = K - 2 + END IF +* + GO TO 90 + 100 CONTINUE + END IF +* + RETURN +* +* End of CHPTRS +* + END |