summaryrefslogtreecommitdiff
path: root/SRC/chetf2.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/chetf2.f')
-rw-r--r--SRC/chetf2.f24
1 files changed, 12 insertions, 12 deletions
diff --git a/SRC/chetf2.f b/SRC/chetf2.f
index 99c11509..5d41a374 100644
--- a/SRC/chetf2.f
+++ b/SRC/chetf2.f
@@ -20,10 +20,10 @@
* CHETF2 computes the factorization of a complex Hermitian matrix A
* using the Bunch-Kaufman diagonal pivoting method:
*
-* A = U*D*U' or A = L*D*L'
+* A = U*D*U**H or A = L*D*L**H
*
* where U (or L) is a product of permutation and unit upper (lower)
-* triangular matrices, U' is the conjugate transpose of U, and D is
+* triangular matrices, U**H is the conjugate transpose of U, and D is
* Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
*
* This is the unblocked version of the algorithm, calling Level 2 BLAS.
@@ -88,7 +88,7 @@
* J. Lewis, Boeing Computer Services Company
* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
-* If UPLO = 'U', then A = U*D*U', where
+* If UPLO = 'U', then A = U*D*U**H, where
* U = P(n)*U(n)* ... *P(k)U(k)* ...,
* i.e., U is a product of terms P(k)*U(k), where k decreases from n to
* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
@@ -105,7 +105,7 @@
* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
* and A(k,k), and v overwrites A(1:k-2,k-1:k).
*
-* If UPLO = 'L', then A = L*D*L', where
+* If UPLO = 'L', then A = L*D*L**H, where
* L = P(1)*L(1)* ... *P(k)*L(k)* ...,
* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
@@ -179,7 +179,7 @@
*
IF( UPPER ) THEN
*
-* Factorize A as U*D*U' using the upper triangle of A
+* Factorize A as U*D*U**H using the upper triangle of A
*
* K is the main loop index, decreasing from N to 1 in steps of
* 1 or 2
@@ -296,7 +296,7 @@
*
* Perform a rank-1 update of A(1:k-1,1:k-1) as
*
-* A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)'
+* A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H
*
R1 = ONE / REAL( A( K, K ) )
CALL CHER( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
@@ -315,8 +315,8 @@
*
* Perform a rank-2 update of A(1:k-2,1:k-2) as
*
-* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )'
-* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )'
+* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H
+* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H
*
IF( K.GT.2 ) THEN
*
@@ -361,7 +361,7 @@
*
ELSE
*
-* Factorize A as L*D*L' using the lower triangle of A
+* Factorize A as L*D*L**H using the lower triangle of A
*
* K is the main loop index, increasing from 1 to N in steps of
* 1 or 2
@@ -481,7 +481,7 @@
*
* Perform a rank-1 update of A(k+1:n,k+1:n) as
*
-* A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)'
+* A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H
*
R1 = ONE / REAL( A( K, K ) )
CALL CHER( UPLO, N-K, -R1, A( K+1, K ), 1,
@@ -499,8 +499,8 @@
*
* Perform a rank-2 update of A(k+2:n,k+2:n) as
*
-* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )'
-* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )'
+* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H
+* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H
*
* where L(k) and L(k+1) are the k-th and (k+1)-th
* columns of L