summaryrefslogtreecommitdiff
path: root/SRC/cgbbrd.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/cgbbrd.f')
-rw-r--r--SRC/cgbbrd.f465
1 files changed, 465 insertions, 0 deletions
diff --git a/SRC/cgbbrd.f b/SRC/cgbbrd.f
new file mode 100644
index 00000000..fc57ee9d
--- /dev/null
+++ b/SRC/cgbbrd.f
@@ -0,0 +1,465 @@
+ SUBROUTINE CGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
+ $ LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER VECT
+ INTEGER INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
+* ..
+* .. Array Arguments ..
+ REAL D( * ), E( * ), RWORK( * )
+ COMPLEX AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ),
+ $ Q( LDQ, * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* CGBBRD reduces a complex general m-by-n band matrix A to real upper
+* bidiagonal form B by a unitary transformation: Q' * A * P = B.
+*
+* The routine computes B, and optionally forms Q or P', or computes
+* Q'*C for a given matrix C.
+*
+* Arguments
+* =========
+*
+* VECT (input) CHARACTER*1
+* Specifies whether or not the matrices Q and P' are to be
+* formed.
+* = 'N': do not form Q or P';
+* = 'Q': form Q only;
+* = 'P': form P' only;
+* = 'B': form both.
+*
+* M (input) INTEGER
+* The number of rows of the matrix A. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the matrix A. N >= 0.
+*
+* NCC (input) INTEGER
+* The number of columns of the matrix C. NCC >= 0.
+*
+* KL (input) INTEGER
+* The number of subdiagonals of the matrix A. KL >= 0.
+*
+* KU (input) INTEGER
+* The number of superdiagonals of the matrix A. KU >= 0.
+*
+* AB (input/output) COMPLEX array, dimension (LDAB,N)
+* On entry, the m-by-n band matrix A, stored in rows 1 to
+* KL+KU+1. The j-th column of A is stored in the j-th column of
+* the array AB as follows:
+* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
+* On exit, A is overwritten by values generated during the
+* reduction.
+*
+* LDAB (input) INTEGER
+* The leading dimension of the array A. LDAB >= KL+KU+1.
+*
+* D (output) REAL array, dimension (min(M,N))
+* The diagonal elements of the bidiagonal matrix B.
+*
+* E (output) REAL array, dimension (min(M,N)-1)
+* The superdiagonal elements of the bidiagonal matrix B.
+*
+* Q (output) COMPLEX array, dimension (LDQ,M)
+* If VECT = 'Q' or 'B', the m-by-m unitary matrix Q.
+* If VECT = 'N' or 'P', the array Q is not referenced.
+*
+* LDQ (input) INTEGER
+* The leading dimension of the array Q.
+* LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
+*
+* PT (output) COMPLEX array, dimension (LDPT,N)
+* If VECT = 'P' or 'B', the n-by-n unitary matrix P'.
+* If VECT = 'N' or 'Q', the array PT is not referenced.
+*
+* LDPT (input) INTEGER
+* The leading dimension of the array PT.
+* LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
+*
+* C (input/output) COMPLEX array, dimension (LDC,NCC)
+* On entry, an m-by-ncc matrix C.
+* On exit, C is overwritten by Q'*C.
+* C is not referenced if NCC = 0.
+*
+* LDC (input) INTEGER
+* The leading dimension of the array C.
+* LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
+*
+* WORK (workspace) COMPLEX array, dimension (max(M,N))
+*
+* RWORK (workspace) REAL array, dimension (max(M,N))
+*
+* INFO (output) INTEGER
+* = 0: successful exit.
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO
+ PARAMETER ( ZERO = 0.0E+0 )
+ COMPLEX CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
+ $ CONE = ( 1.0E+0, 0.0E+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL WANTB, WANTC, WANTPT, WANTQ
+ INTEGER I, INCA, J, J1, J2, KB, KB1, KK, KLM, KLU1,
+ $ KUN, L, MINMN, ML, ML0, MU, MU0, NR, NRT
+ REAL ABST, RC
+ COMPLEX RA, RB, RS, T
+* ..
+* .. External Subroutines ..
+ EXTERNAL CLARGV, CLARTG, CLARTV, CLASET, CROT, CSCAL,
+ $ XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, CONJG, MAX, MIN
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters
+*
+ WANTB = LSAME( VECT, 'B' )
+ WANTQ = LSAME( VECT, 'Q' ) .OR. WANTB
+ WANTPT = LSAME( VECT, 'P' ) .OR. WANTB
+ WANTC = NCC.GT.0
+ KLU1 = KL + KU + 1
+ INFO = 0
+ IF( .NOT.WANTQ .AND. .NOT.WANTPT .AND. .NOT.LSAME( VECT, 'N' ) )
+ $ THEN
+ INFO = -1
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( NCC.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( KL.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( KU.LT.0 ) THEN
+ INFO = -6
+ ELSE IF( LDAB.LT.KLU1 ) THEN
+ INFO = -8
+ ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. LDQ.LT.MAX( 1, M ) ) THEN
+ INFO = -12
+ ELSE IF( LDPT.LT.1 .OR. WANTPT .AND. LDPT.LT.MAX( 1, N ) ) THEN
+ INFO = -14
+ ELSE IF( LDC.LT.1 .OR. WANTC .AND. LDC.LT.MAX( 1, M ) ) THEN
+ INFO = -16
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CGBBRD', -INFO )
+ RETURN
+ END IF
+*
+* Initialize Q and P' to the unit matrix, if needed
+*
+ IF( WANTQ )
+ $ CALL CLASET( 'Full', M, M, CZERO, CONE, Q, LDQ )
+ IF( WANTPT )
+ $ CALL CLASET( 'Full', N, N, CZERO, CONE, PT, LDPT )
+*
+* Quick return if possible.
+*
+ IF( M.EQ.0 .OR. N.EQ.0 )
+ $ RETURN
+*
+ MINMN = MIN( M, N )
+*
+ IF( KL+KU.GT.1 ) THEN
+*
+* Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce
+* first to lower bidiagonal form and then transform to upper
+* bidiagonal
+*
+ IF( KU.GT.0 ) THEN
+ ML0 = 1
+ MU0 = 2
+ ELSE
+ ML0 = 2
+ MU0 = 1
+ END IF
+*
+* Wherever possible, plane rotations are generated and applied in
+* vector operations of length NR over the index set J1:J2:KLU1.
+*
+* The complex sines of the plane rotations are stored in WORK,
+* and the real cosines in RWORK.
+*
+ KLM = MIN( M-1, KL )
+ KUN = MIN( N-1, KU )
+ KB = KLM + KUN
+ KB1 = KB + 1
+ INCA = KB1*LDAB
+ NR = 0
+ J1 = KLM + 2
+ J2 = 1 - KUN
+*
+ DO 90 I = 1, MINMN
+*
+* Reduce i-th column and i-th row of matrix to bidiagonal form
+*
+ ML = KLM + 1
+ MU = KUN + 1
+ DO 80 KK = 1, KB
+ J1 = J1 + KB
+ J2 = J2 + KB
+*
+* generate plane rotations to annihilate nonzero elements
+* which have been created below the band
+*
+ IF( NR.GT.0 )
+ $ CALL CLARGV( NR, AB( KLU1, J1-KLM-1 ), INCA,
+ $ WORK( J1 ), KB1, RWORK( J1 ), KB1 )
+*
+* apply plane rotations from the left
+*
+ DO 10 L = 1, KB
+ IF( J2-KLM+L-1.GT.N ) THEN
+ NRT = NR - 1
+ ELSE
+ NRT = NR
+ END IF
+ IF( NRT.GT.0 )
+ $ CALL CLARTV( NRT, AB( KLU1-L, J1-KLM+L-1 ), INCA,
+ $ AB( KLU1-L+1, J1-KLM+L-1 ), INCA,
+ $ RWORK( J1 ), WORK( J1 ), KB1 )
+ 10 CONTINUE
+*
+ IF( ML.GT.ML0 ) THEN
+ IF( ML.LE.M-I+1 ) THEN
+*
+* generate plane rotation to annihilate a(i+ml-1,i)
+* within the band, and apply rotation from the left
+*
+ CALL CLARTG( AB( KU+ML-1, I ), AB( KU+ML, I ),
+ $ RWORK( I+ML-1 ), WORK( I+ML-1 ), RA )
+ AB( KU+ML-1, I ) = RA
+ IF( I.LT.N )
+ $ CALL CROT( MIN( KU+ML-2, N-I ),
+ $ AB( KU+ML-2, I+1 ), LDAB-1,
+ $ AB( KU+ML-1, I+1 ), LDAB-1,
+ $ RWORK( I+ML-1 ), WORK( I+ML-1 ) )
+ END IF
+ NR = NR + 1
+ J1 = J1 - KB1
+ END IF
+*
+ IF( WANTQ ) THEN
+*
+* accumulate product of plane rotations in Q
+*
+ DO 20 J = J1, J2, KB1
+ CALL CROT( M, Q( 1, J-1 ), 1, Q( 1, J ), 1,
+ $ RWORK( J ), CONJG( WORK( J ) ) )
+ 20 CONTINUE
+ END IF
+*
+ IF( WANTC ) THEN
+*
+* apply plane rotations to C
+*
+ DO 30 J = J1, J2, KB1
+ CALL CROT( NCC, C( J-1, 1 ), LDC, C( J, 1 ), LDC,
+ $ RWORK( J ), WORK( J ) )
+ 30 CONTINUE
+ END IF
+*
+ IF( J2+KUN.GT.N ) THEN
+*
+* adjust J2 to keep within the bounds of the matrix
+*
+ NR = NR - 1
+ J2 = J2 - KB1
+ END IF
+*
+ DO 40 J = J1, J2, KB1
+*
+* create nonzero element a(j-1,j+ku) above the band
+* and store it in WORK(n+1:2*n)
+*
+ WORK( J+KUN ) = WORK( J )*AB( 1, J+KUN )
+ AB( 1, J+KUN ) = RWORK( J )*AB( 1, J+KUN )
+ 40 CONTINUE
+*
+* generate plane rotations to annihilate nonzero elements
+* which have been generated above the band
+*
+ IF( NR.GT.0 )
+ $ CALL CLARGV( NR, AB( 1, J1+KUN-1 ), INCA,
+ $ WORK( J1+KUN ), KB1, RWORK( J1+KUN ),
+ $ KB1 )
+*
+* apply plane rotations from the right
+*
+ DO 50 L = 1, KB
+ IF( J2+L-1.GT.M ) THEN
+ NRT = NR - 1
+ ELSE
+ NRT = NR
+ END IF
+ IF( NRT.GT.0 )
+ $ CALL CLARTV( NRT, AB( L+1, J1+KUN-1 ), INCA,
+ $ AB( L, J1+KUN ), INCA,
+ $ RWORK( J1+KUN ), WORK( J1+KUN ), KB1 )
+ 50 CONTINUE
+*
+ IF( ML.EQ.ML0 .AND. MU.GT.MU0 ) THEN
+ IF( MU.LE.N-I+1 ) THEN
+*
+* generate plane rotation to annihilate a(i,i+mu-1)
+* within the band, and apply rotation from the right
+*
+ CALL CLARTG( AB( KU-MU+3, I+MU-2 ),
+ $ AB( KU-MU+2, I+MU-1 ),
+ $ RWORK( I+MU-1 ), WORK( I+MU-1 ), RA )
+ AB( KU-MU+3, I+MU-2 ) = RA
+ CALL CROT( MIN( KL+MU-2, M-I ),
+ $ AB( KU-MU+4, I+MU-2 ), 1,
+ $ AB( KU-MU+3, I+MU-1 ), 1,
+ $ RWORK( I+MU-1 ), WORK( I+MU-1 ) )
+ END IF
+ NR = NR + 1
+ J1 = J1 - KB1
+ END IF
+*
+ IF( WANTPT ) THEN
+*
+* accumulate product of plane rotations in P'
+*
+ DO 60 J = J1, J2, KB1
+ CALL CROT( N, PT( J+KUN-1, 1 ), LDPT,
+ $ PT( J+KUN, 1 ), LDPT, RWORK( J+KUN ),
+ $ CONJG( WORK( J+KUN ) ) )
+ 60 CONTINUE
+ END IF
+*
+ IF( J2+KB.GT.M ) THEN
+*
+* adjust J2 to keep within the bounds of the matrix
+*
+ NR = NR - 1
+ J2 = J2 - KB1
+ END IF
+*
+ DO 70 J = J1, J2, KB1
+*
+* create nonzero element a(j+kl+ku,j+ku-1) below the
+* band and store it in WORK(1:n)
+*
+ WORK( J+KB ) = WORK( J+KUN )*AB( KLU1, J+KUN )
+ AB( KLU1, J+KUN ) = RWORK( J+KUN )*AB( KLU1, J+KUN )
+ 70 CONTINUE
+*
+ IF( ML.GT.ML0 ) THEN
+ ML = ML - 1
+ ELSE
+ MU = MU - 1
+ END IF
+ 80 CONTINUE
+ 90 CONTINUE
+ END IF
+*
+ IF( KU.EQ.0 .AND. KL.GT.0 ) THEN
+*
+* A has been reduced to complex lower bidiagonal form
+*
+* Transform lower bidiagonal form to upper bidiagonal by applying
+* plane rotations from the left, overwriting superdiagonal
+* elements on subdiagonal elements
+*
+ DO 100 I = 1, MIN( M-1, N )
+ CALL CLARTG( AB( 1, I ), AB( 2, I ), RC, RS, RA )
+ AB( 1, I ) = RA
+ IF( I.LT.N ) THEN
+ AB( 2, I ) = RS*AB( 1, I+1 )
+ AB( 1, I+1 ) = RC*AB( 1, I+1 )
+ END IF
+ IF( WANTQ )
+ $ CALL CROT( M, Q( 1, I ), 1, Q( 1, I+1 ), 1, RC,
+ $ CONJG( RS ) )
+ IF( WANTC )
+ $ CALL CROT( NCC, C( I, 1 ), LDC, C( I+1, 1 ), LDC, RC,
+ $ RS )
+ 100 CONTINUE
+ ELSE
+*
+* A has been reduced to complex upper bidiagonal form or is
+* diagonal
+*
+ IF( KU.GT.0 .AND. M.LT.N ) THEN
+*
+* Annihilate a(m,m+1) by applying plane rotations from the
+* right
+*
+ RB = AB( KU, M+1 )
+ DO 110 I = M, 1, -1
+ CALL CLARTG( AB( KU+1, I ), RB, RC, RS, RA )
+ AB( KU+1, I ) = RA
+ IF( I.GT.1 ) THEN
+ RB = -CONJG( RS )*AB( KU, I )
+ AB( KU, I ) = RC*AB( KU, I )
+ END IF
+ IF( WANTPT )
+ $ CALL CROT( N, PT( I, 1 ), LDPT, PT( M+1, 1 ), LDPT,
+ $ RC, CONJG( RS ) )
+ 110 CONTINUE
+ END IF
+ END IF
+*
+* Make diagonal and superdiagonal elements real, storing them in D
+* and E
+*
+ T = AB( KU+1, 1 )
+ DO 120 I = 1, MINMN
+ ABST = ABS( T )
+ D( I ) = ABST
+ IF( ABST.NE.ZERO ) THEN
+ T = T / ABST
+ ELSE
+ T = CONE
+ END IF
+ IF( WANTQ )
+ $ CALL CSCAL( M, T, Q( 1, I ), 1 )
+ IF( WANTC )
+ $ CALL CSCAL( NCC, CONJG( T ), C( I, 1 ), LDC )
+ IF( I.LT.MINMN ) THEN
+ IF( KU.EQ.0 .AND. KL.EQ.0 ) THEN
+ E( I ) = ZERO
+ T = AB( 1, I+1 )
+ ELSE
+ IF( KU.EQ.0 ) THEN
+ T = AB( 2, I )*CONJG( T )
+ ELSE
+ T = AB( KU, I+1 )*CONJG( T )
+ END IF
+ ABST = ABS( T )
+ E( I ) = ABST
+ IF( ABST.NE.ZERO ) THEN
+ T = T / ABST
+ ELSE
+ T = CONE
+ END IF
+ IF( WANTPT )
+ $ CALL CSCAL( N, T, PT( I+1, 1 ), LDPT )
+ T = AB( KU+1, I+1 )*CONJG( T )
+ END IF
+ END IF
+ 120 CONTINUE
+ RETURN
+*
+* End of CGBBRD
+*
+ END