diff options
Diffstat (limited to 'SRC/cgbbrd.f')
-rw-r--r-- | SRC/cgbbrd.f | 465 |
1 files changed, 465 insertions, 0 deletions
diff --git a/SRC/cgbbrd.f b/SRC/cgbbrd.f new file mode 100644 index 00000000..fc57ee9d --- /dev/null +++ b/SRC/cgbbrd.f @@ -0,0 +1,465 @@ + SUBROUTINE CGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, + $ LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO ) +* +* -- LAPACK routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER VECT + INTEGER INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC +* .. +* .. Array Arguments .. + REAL D( * ), E( * ), RWORK( * ) + COMPLEX AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ), + $ Q( LDQ, * ), WORK( * ) +* .. +* +* Purpose +* ======= +* +* CGBBRD reduces a complex general m-by-n band matrix A to real upper +* bidiagonal form B by a unitary transformation: Q' * A * P = B. +* +* The routine computes B, and optionally forms Q or P', or computes +* Q'*C for a given matrix C. +* +* Arguments +* ========= +* +* VECT (input) CHARACTER*1 +* Specifies whether or not the matrices Q and P' are to be +* formed. +* = 'N': do not form Q or P'; +* = 'Q': form Q only; +* = 'P': form P' only; +* = 'B': form both. +* +* M (input) INTEGER +* The number of rows of the matrix A. M >= 0. +* +* N (input) INTEGER +* The number of columns of the matrix A. N >= 0. +* +* NCC (input) INTEGER +* The number of columns of the matrix C. NCC >= 0. +* +* KL (input) INTEGER +* The number of subdiagonals of the matrix A. KL >= 0. +* +* KU (input) INTEGER +* The number of superdiagonals of the matrix A. KU >= 0. +* +* AB (input/output) COMPLEX array, dimension (LDAB,N) +* On entry, the m-by-n band matrix A, stored in rows 1 to +* KL+KU+1. The j-th column of A is stored in the j-th column of +* the array AB as follows: +* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl). +* On exit, A is overwritten by values generated during the +* reduction. +* +* LDAB (input) INTEGER +* The leading dimension of the array A. LDAB >= KL+KU+1. +* +* D (output) REAL array, dimension (min(M,N)) +* The diagonal elements of the bidiagonal matrix B. +* +* E (output) REAL array, dimension (min(M,N)-1) +* The superdiagonal elements of the bidiagonal matrix B. +* +* Q (output) COMPLEX array, dimension (LDQ,M) +* If VECT = 'Q' or 'B', the m-by-m unitary matrix Q. +* If VECT = 'N' or 'P', the array Q is not referenced. +* +* LDQ (input) INTEGER +* The leading dimension of the array Q. +* LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise. +* +* PT (output) COMPLEX array, dimension (LDPT,N) +* If VECT = 'P' or 'B', the n-by-n unitary matrix P'. +* If VECT = 'N' or 'Q', the array PT is not referenced. +* +* LDPT (input) INTEGER +* The leading dimension of the array PT. +* LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise. +* +* C (input/output) COMPLEX array, dimension (LDC,NCC) +* On entry, an m-by-ncc matrix C. +* On exit, C is overwritten by Q'*C. +* C is not referenced if NCC = 0. +* +* LDC (input) INTEGER +* The leading dimension of the array C. +* LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0. +* +* WORK (workspace) COMPLEX array, dimension (max(M,N)) +* +* RWORK (workspace) REAL array, dimension (max(M,N)) +* +* INFO (output) INTEGER +* = 0: successful exit. +* < 0: if INFO = -i, the i-th argument had an illegal value. +* +* ===================================================================== +* +* .. Parameters .. + REAL ZERO + PARAMETER ( ZERO = 0.0E+0 ) + COMPLEX CZERO, CONE + PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), + $ CONE = ( 1.0E+0, 0.0E+0 ) ) +* .. +* .. Local Scalars .. + LOGICAL WANTB, WANTC, WANTPT, WANTQ + INTEGER I, INCA, J, J1, J2, KB, KB1, KK, KLM, KLU1, + $ KUN, L, MINMN, ML, ML0, MU, MU0, NR, NRT + REAL ABST, RC + COMPLEX RA, RB, RS, T +* .. +* .. External Subroutines .. + EXTERNAL CLARGV, CLARTG, CLARTV, CLASET, CROT, CSCAL, + $ XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, CONJG, MAX, MIN +* .. +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. Executable Statements .. +* +* Test the input parameters +* + WANTB = LSAME( VECT, 'B' ) + WANTQ = LSAME( VECT, 'Q' ) .OR. WANTB + WANTPT = LSAME( VECT, 'P' ) .OR. WANTB + WANTC = NCC.GT.0 + KLU1 = KL + KU + 1 + INFO = 0 + IF( .NOT.WANTQ .AND. .NOT.WANTPT .AND. .NOT.LSAME( VECT, 'N' ) ) + $ THEN + INFO = -1 + ELSE IF( M.LT.0 ) THEN + INFO = -2 + ELSE IF( N.LT.0 ) THEN + INFO = -3 + ELSE IF( NCC.LT.0 ) THEN + INFO = -4 + ELSE IF( KL.LT.0 ) THEN + INFO = -5 + ELSE IF( KU.LT.0 ) THEN + INFO = -6 + ELSE IF( LDAB.LT.KLU1 ) THEN + INFO = -8 + ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. LDQ.LT.MAX( 1, M ) ) THEN + INFO = -12 + ELSE IF( LDPT.LT.1 .OR. WANTPT .AND. LDPT.LT.MAX( 1, N ) ) THEN + INFO = -14 + ELSE IF( LDC.LT.1 .OR. WANTC .AND. LDC.LT.MAX( 1, M ) ) THEN + INFO = -16 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'CGBBRD', -INFO ) + RETURN + END IF +* +* Initialize Q and P' to the unit matrix, if needed +* + IF( WANTQ ) + $ CALL CLASET( 'Full', M, M, CZERO, CONE, Q, LDQ ) + IF( WANTPT ) + $ CALL CLASET( 'Full', N, N, CZERO, CONE, PT, LDPT ) +* +* Quick return if possible. +* + IF( M.EQ.0 .OR. N.EQ.0 ) + $ RETURN +* + MINMN = MIN( M, N ) +* + IF( KL+KU.GT.1 ) THEN +* +* Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce +* first to lower bidiagonal form and then transform to upper +* bidiagonal +* + IF( KU.GT.0 ) THEN + ML0 = 1 + MU0 = 2 + ELSE + ML0 = 2 + MU0 = 1 + END IF +* +* Wherever possible, plane rotations are generated and applied in +* vector operations of length NR over the index set J1:J2:KLU1. +* +* The complex sines of the plane rotations are stored in WORK, +* and the real cosines in RWORK. +* + KLM = MIN( M-1, KL ) + KUN = MIN( N-1, KU ) + KB = KLM + KUN + KB1 = KB + 1 + INCA = KB1*LDAB + NR = 0 + J1 = KLM + 2 + J2 = 1 - KUN +* + DO 90 I = 1, MINMN +* +* Reduce i-th column and i-th row of matrix to bidiagonal form +* + ML = KLM + 1 + MU = KUN + 1 + DO 80 KK = 1, KB + J1 = J1 + KB + J2 = J2 + KB +* +* generate plane rotations to annihilate nonzero elements +* which have been created below the band +* + IF( NR.GT.0 ) + $ CALL CLARGV( NR, AB( KLU1, J1-KLM-1 ), INCA, + $ WORK( J1 ), KB1, RWORK( J1 ), KB1 ) +* +* apply plane rotations from the left +* + DO 10 L = 1, KB + IF( J2-KLM+L-1.GT.N ) THEN + NRT = NR - 1 + ELSE + NRT = NR + END IF + IF( NRT.GT.0 ) + $ CALL CLARTV( NRT, AB( KLU1-L, J1-KLM+L-1 ), INCA, + $ AB( KLU1-L+1, J1-KLM+L-1 ), INCA, + $ RWORK( J1 ), WORK( J1 ), KB1 ) + 10 CONTINUE +* + IF( ML.GT.ML0 ) THEN + IF( ML.LE.M-I+1 ) THEN +* +* generate plane rotation to annihilate a(i+ml-1,i) +* within the band, and apply rotation from the left +* + CALL CLARTG( AB( KU+ML-1, I ), AB( KU+ML, I ), + $ RWORK( I+ML-1 ), WORK( I+ML-1 ), RA ) + AB( KU+ML-1, I ) = RA + IF( I.LT.N ) + $ CALL CROT( MIN( KU+ML-2, N-I ), + $ AB( KU+ML-2, I+1 ), LDAB-1, + $ AB( KU+ML-1, I+1 ), LDAB-1, + $ RWORK( I+ML-1 ), WORK( I+ML-1 ) ) + END IF + NR = NR + 1 + J1 = J1 - KB1 + END IF +* + IF( WANTQ ) THEN +* +* accumulate product of plane rotations in Q +* + DO 20 J = J1, J2, KB1 + CALL CROT( M, Q( 1, J-1 ), 1, Q( 1, J ), 1, + $ RWORK( J ), CONJG( WORK( J ) ) ) + 20 CONTINUE + END IF +* + IF( WANTC ) THEN +* +* apply plane rotations to C +* + DO 30 J = J1, J2, KB1 + CALL CROT( NCC, C( J-1, 1 ), LDC, C( J, 1 ), LDC, + $ RWORK( J ), WORK( J ) ) + 30 CONTINUE + END IF +* + IF( J2+KUN.GT.N ) THEN +* +* adjust J2 to keep within the bounds of the matrix +* + NR = NR - 1 + J2 = J2 - KB1 + END IF +* + DO 40 J = J1, J2, KB1 +* +* create nonzero element a(j-1,j+ku) above the band +* and store it in WORK(n+1:2*n) +* + WORK( J+KUN ) = WORK( J )*AB( 1, J+KUN ) + AB( 1, J+KUN ) = RWORK( J )*AB( 1, J+KUN ) + 40 CONTINUE +* +* generate plane rotations to annihilate nonzero elements +* which have been generated above the band +* + IF( NR.GT.0 ) + $ CALL CLARGV( NR, AB( 1, J1+KUN-1 ), INCA, + $ WORK( J1+KUN ), KB1, RWORK( J1+KUN ), + $ KB1 ) +* +* apply plane rotations from the right +* + DO 50 L = 1, KB + IF( J2+L-1.GT.M ) THEN + NRT = NR - 1 + ELSE + NRT = NR + END IF + IF( NRT.GT.0 ) + $ CALL CLARTV( NRT, AB( L+1, J1+KUN-1 ), INCA, + $ AB( L, J1+KUN ), INCA, + $ RWORK( J1+KUN ), WORK( J1+KUN ), KB1 ) + 50 CONTINUE +* + IF( ML.EQ.ML0 .AND. MU.GT.MU0 ) THEN + IF( MU.LE.N-I+1 ) THEN +* +* generate plane rotation to annihilate a(i,i+mu-1) +* within the band, and apply rotation from the right +* + CALL CLARTG( AB( KU-MU+3, I+MU-2 ), + $ AB( KU-MU+2, I+MU-1 ), + $ RWORK( I+MU-1 ), WORK( I+MU-1 ), RA ) + AB( KU-MU+3, I+MU-2 ) = RA + CALL CROT( MIN( KL+MU-2, M-I ), + $ AB( KU-MU+4, I+MU-2 ), 1, + $ AB( KU-MU+3, I+MU-1 ), 1, + $ RWORK( I+MU-1 ), WORK( I+MU-1 ) ) + END IF + NR = NR + 1 + J1 = J1 - KB1 + END IF +* + IF( WANTPT ) THEN +* +* accumulate product of plane rotations in P' +* + DO 60 J = J1, J2, KB1 + CALL CROT( N, PT( J+KUN-1, 1 ), LDPT, + $ PT( J+KUN, 1 ), LDPT, RWORK( J+KUN ), + $ CONJG( WORK( J+KUN ) ) ) + 60 CONTINUE + END IF +* + IF( J2+KB.GT.M ) THEN +* +* adjust J2 to keep within the bounds of the matrix +* + NR = NR - 1 + J2 = J2 - KB1 + END IF +* + DO 70 J = J1, J2, KB1 +* +* create nonzero element a(j+kl+ku,j+ku-1) below the +* band and store it in WORK(1:n) +* + WORK( J+KB ) = WORK( J+KUN )*AB( KLU1, J+KUN ) + AB( KLU1, J+KUN ) = RWORK( J+KUN )*AB( KLU1, J+KUN ) + 70 CONTINUE +* + IF( ML.GT.ML0 ) THEN + ML = ML - 1 + ELSE + MU = MU - 1 + END IF + 80 CONTINUE + 90 CONTINUE + END IF +* + IF( KU.EQ.0 .AND. KL.GT.0 ) THEN +* +* A has been reduced to complex lower bidiagonal form +* +* Transform lower bidiagonal form to upper bidiagonal by applying +* plane rotations from the left, overwriting superdiagonal +* elements on subdiagonal elements +* + DO 100 I = 1, MIN( M-1, N ) + CALL CLARTG( AB( 1, I ), AB( 2, I ), RC, RS, RA ) + AB( 1, I ) = RA + IF( I.LT.N ) THEN + AB( 2, I ) = RS*AB( 1, I+1 ) + AB( 1, I+1 ) = RC*AB( 1, I+1 ) + END IF + IF( WANTQ ) + $ CALL CROT( M, Q( 1, I ), 1, Q( 1, I+1 ), 1, RC, + $ CONJG( RS ) ) + IF( WANTC ) + $ CALL CROT( NCC, C( I, 1 ), LDC, C( I+1, 1 ), LDC, RC, + $ RS ) + 100 CONTINUE + ELSE +* +* A has been reduced to complex upper bidiagonal form or is +* diagonal +* + IF( KU.GT.0 .AND. M.LT.N ) THEN +* +* Annihilate a(m,m+1) by applying plane rotations from the +* right +* + RB = AB( KU, M+1 ) + DO 110 I = M, 1, -1 + CALL CLARTG( AB( KU+1, I ), RB, RC, RS, RA ) + AB( KU+1, I ) = RA + IF( I.GT.1 ) THEN + RB = -CONJG( RS )*AB( KU, I ) + AB( KU, I ) = RC*AB( KU, I ) + END IF + IF( WANTPT ) + $ CALL CROT( N, PT( I, 1 ), LDPT, PT( M+1, 1 ), LDPT, + $ RC, CONJG( RS ) ) + 110 CONTINUE + END IF + END IF +* +* Make diagonal and superdiagonal elements real, storing them in D +* and E +* + T = AB( KU+1, 1 ) + DO 120 I = 1, MINMN + ABST = ABS( T ) + D( I ) = ABST + IF( ABST.NE.ZERO ) THEN + T = T / ABST + ELSE + T = CONE + END IF + IF( WANTQ ) + $ CALL CSCAL( M, T, Q( 1, I ), 1 ) + IF( WANTC ) + $ CALL CSCAL( NCC, CONJG( T ), C( I, 1 ), LDC ) + IF( I.LT.MINMN ) THEN + IF( KU.EQ.0 .AND. KL.EQ.0 ) THEN + E( I ) = ZERO + T = AB( 1, I+1 ) + ELSE + IF( KU.EQ.0 ) THEN + T = AB( 2, I )*CONJG( T ) + ELSE + T = AB( KU, I+1 )*CONJG( T ) + END IF + ABST = ABS( T ) + E( I ) = ABST + IF( ABST.NE.ZERO ) THEN + T = T / ABST + ELSE + T = CONE + END IF + IF( WANTPT ) + $ CALL CSCAL( N, T, PT( I+1, 1 ), LDPT ) + T = AB( KU+1, I+1 )*CONJG( T ) + END IF + END IF + 120 CONTINUE + RETURN +* +* End of CGBBRD +* + END |