summaryrefslogtreecommitdiff
path: root/BLAS/SRC/sgbmv.f
diff options
context:
space:
mode:
Diffstat (limited to 'BLAS/SRC/sgbmv.f')
-rw-r--r--BLAS/SRC/sgbmv.f297
1 files changed, 297 insertions, 0 deletions
diff --git a/BLAS/SRC/sgbmv.f b/BLAS/SRC/sgbmv.f
new file mode 100644
index 00000000..6a79a039
--- /dev/null
+++ b/BLAS/SRC/sgbmv.f
@@ -0,0 +1,297 @@
+ SUBROUTINE SGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
+* .. Scalar Arguments ..
+ REAL ALPHA,BETA
+ INTEGER INCX,INCY,KL,KU,LDA,M,N
+ CHARACTER TRANS
+* ..
+* .. Array Arguments ..
+ REAL A(LDA,*),X(*),Y(*)
+* ..
+*
+* Purpose
+* =======
+*
+* SGBMV performs one of the matrix-vector operations
+*
+* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
+*
+* where alpha and beta are scalars, x and y are vectors and A is an
+* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
+*
+* Arguments
+* ==========
+*
+* TRANS - CHARACTER*1.
+* On entry, TRANS specifies the operation to be performed as
+* follows:
+*
+* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
+*
+* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
+*
+* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.
+*
+* Unchanged on exit.
+*
+* M - INTEGER.
+* On entry, M specifies the number of rows of the matrix A.
+* M must be at least zero.
+* Unchanged on exit.
+*
+* N - INTEGER.
+* On entry, N specifies the number of columns of the matrix A.
+* N must be at least zero.
+* Unchanged on exit.
+*
+* KL - INTEGER.
+* On entry, KL specifies the number of sub-diagonals of the
+* matrix A. KL must satisfy 0 .le. KL.
+* Unchanged on exit.
+*
+* KU - INTEGER.
+* On entry, KU specifies the number of super-diagonals of the
+* matrix A. KU must satisfy 0 .le. KU.
+* Unchanged on exit.
+*
+* ALPHA - REAL .
+* On entry, ALPHA specifies the scalar alpha.
+* Unchanged on exit.
+*
+* A - REAL array of DIMENSION ( LDA, n ).
+* Before entry, the leading ( kl + ku + 1 ) by n part of the
+* array A must contain the matrix of coefficients, supplied
+* column by column, with the leading diagonal of the matrix in
+* row ( ku + 1 ) of the array, the first super-diagonal
+* starting at position 2 in row ku, the first sub-diagonal
+* starting at position 1 in row ( ku + 2 ), and so on.
+* Elements in the array A that do not correspond to elements
+* in the band matrix (such as the top left ku by ku triangle)
+* are not referenced.
+* The following program segment will transfer a band matrix
+* from conventional full matrix storage to band storage:
+*
+* DO 20, J = 1, N
+* K = KU + 1 - J
+* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
+* A( K + I, J ) = matrix( I, J )
+* 10 CONTINUE
+* 20 CONTINUE
+*
+* Unchanged on exit.
+*
+* LDA - INTEGER.
+* On entry, LDA specifies the first dimension of A as declared
+* in the calling (sub) program. LDA must be at least
+* ( kl + ku + 1 ).
+* Unchanged on exit.
+*
+* X - REAL array of DIMENSION at least
+* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
+* and at least
+* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
+* Before entry, the incremented array X must contain the
+* vector x.
+* Unchanged on exit.
+*
+* INCX - INTEGER.
+* On entry, INCX specifies the increment for the elements of
+* X. INCX must not be zero.
+* Unchanged on exit.
+*
+* BETA - REAL .
+* On entry, BETA specifies the scalar beta. When BETA is
+* supplied as zero then Y need not be set on input.
+* Unchanged on exit.
+*
+* Y - REAL array of DIMENSION at least
+* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
+* and at least
+* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
+* Before entry, the incremented array Y must contain the
+* vector y. On exit, Y is overwritten by the updated vector y.
+*
+* INCY - INTEGER.
+* On entry, INCY specifies the increment for the elements of
+* Y. INCY must not be zero.
+* Unchanged on exit.
+*
+*
+* Level 2 Blas routine.
+*
+* -- Written on 22-October-1986.
+* Jack Dongarra, Argonne National Lab.
+* Jeremy Du Croz, Nag Central Office.
+* Sven Hammarling, Nag Central Office.
+* Richard Hanson, Sandia National Labs.
+*
+* .. Parameters ..
+ REAL ONE,ZERO
+ PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
+* ..
+* .. Local Scalars ..
+ REAL TEMP
+ INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX,MIN
+* ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ + .NOT.LSAME(TRANS,'C')) THEN
+ INFO = 1
+ ELSE IF (M.LT.0) THEN
+ INFO = 2
+ ELSE IF (N.LT.0) THEN
+ INFO = 3
+ ELSE IF (KL.LT.0) THEN
+ INFO = 4
+ ELSE IF (KU.LT.0) THEN
+ INFO = 5
+ ELSE IF (LDA.LT. (KL+KU+1)) THEN
+ INFO = 8
+ ELSE IF (INCX.EQ.0) THEN
+ INFO = 10
+ ELSE IF (INCY.EQ.0) THEN
+ INFO = 13
+ END IF
+ IF (INFO.NE.0) THEN
+ CALL XERBLA('SGBMV ',INFO)
+ RETURN
+ END IF
+*
+* Quick return if possible.
+*
+ IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
+*
+* Set LENX and LENY, the lengths of the vectors x and y, and set
+* up the start points in X and Y.
+*
+ IF (LSAME(TRANS,'N')) THEN
+ LENX = N
+ LENY = M
+ ELSE
+ LENX = M
+ LENY = N
+ END IF
+ IF (INCX.GT.0) THEN
+ KX = 1
+ ELSE
+ KX = 1 - (LENX-1)*INCX
+ END IF
+ IF (INCY.GT.0) THEN
+ KY = 1
+ ELSE
+ KY = 1 - (LENY-1)*INCY
+ END IF
+*
+* Start the operations. In this version the elements of A are
+* accessed sequentially with one pass through the band part of A.
+*
+* First form y := beta*y.
+*
+ IF (BETA.NE.ONE) THEN
+ IF (INCY.EQ.1) THEN
+ IF (BETA.EQ.ZERO) THEN
+ DO 10 I = 1,LENY
+ Y(I) = ZERO
+ 10 CONTINUE
+ ELSE
+ DO 20 I = 1,LENY
+ Y(I) = BETA*Y(I)
+ 20 CONTINUE
+ END IF
+ ELSE
+ IY = KY
+ IF (BETA.EQ.ZERO) THEN
+ DO 30 I = 1,LENY
+ Y(IY) = ZERO
+ IY = IY + INCY
+ 30 CONTINUE
+ ELSE
+ DO 40 I = 1,LENY
+ Y(IY) = BETA*Y(IY)
+ IY = IY + INCY
+ 40 CONTINUE
+ END IF
+ END IF
+ END IF
+ IF (ALPHA.EQ.ZERO) RETURN
+ KUP1 = KU + 1
+ IF (LSAME(TRANS,'N')) THEN
+*
+* Form y := alpha*A*x + y.
+*
+ JX = KX
+ IF (INCY.EQ.1) THEN
+ DO 60 J = 1,N
+ IF (X(JX).NE.ZERO) THEN
+ TEMP = ALPHA*X(JX)
+ K = KUP1 - J
+ DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
+ Y(I) = Y(I) + TEMP*A(K+I,J)
+ 50 CONTINUE
+ END IF
+ JX = JX + INCX
+ 60 CONTINUE
+ ELSE
+ DO 80 J = 1,N
+ IF (X(JX).NE.ZERO) THEN
+ TEMP = ALPHA*X(JX)
+ IY = KY
+ K = KUP1 - J
+ DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
+ Y(IY) = Y(IY) + TEMP*A(K+I,J)
+ IY = IY + INCY
+ 70 CONTINUE
+ END IF
+ JX = JX + INCX
+ IF (J.GT.KU) KY = KY + INCY
+ 80 CONTINUE
+ END IF
+ ELSE
+*
+* Form y := alpha*A'*x + y.
+*
+ JY = KY
+ IF (INCX.EQ.1) THEN
+ DO 100 J = 1,N
+ TEMP = ZERO
+ K = KUP1 - J
+ DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
+ TEMP = TEMP + A(K+I,J)*X(I)
+ 90 CONTINUE
+ Y(JY) = Y(JY) + ALPHA*TEMP
+ JY = JY + INCY
+ 100 CONTINUE
+ ELSE
+ DO 120 J = 1,N
+ TEMP = ZERO
+ IX = KX
+ K = KUP1 - J
+ DO 110 I = MAX(1,J-KU),MIN(M,J+KL)
+ TEMP = TEMP + A(K+I,J)*X(IX)
+ IX = IX + INCX
+ 110 CONTINUE
+ Y(JY) = Y(JY) + ALPHA*TEMP
+ JY = JY + INCY
+ IF (J.GT.KU) KX = KX + INCX
+ 120 CONTINUE
+ END IF
+ END IF
+*
+ RETURN
+*
+* End of SGBMV .
+*
+ END