summaryrefslogtreecommitdiff
path: root/BLAS/SRC/cgemm.f
diff options
context:
space:
mode:
Diffstat (limited to 'BLAS/SRC/cgemm.f')
-rw-r--r--BLAS/SRC/cgemm.f414
1 files changed, 414 insertions, 0 deletions
diff --git a/BLAS/SRC/cgemm.f b/BLAS/SRC/cgemm.f
new file mode 100644
index 00000000..68b3cf4b
--- /dev/null
+++ b/BLAS/SRC/cgemm.f
@@ -0,0 +1,414 @@
+ SUBROUTINE CGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
+* .. Scalar Arguments ..
+ COMPLEX ALPHA,BETA
+ INTEGER K,LDA,LDB,LDC,M,N
+ CHARACTER TRANSA,TRANSB
+* ..
+* .. Array Arguments ..
+ COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
+* ..
+*
+* Purpose
+* =======
+*
+* CGEMM performs one of the matrix-matrix operations
+*
+* C := alpha*op( A )*op( B ) + beta*C,
+*
+* where op( X ) is one of
+*
+* op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ),
+*
+* alpha and beta are scalars, and A, B and C are matrices, with op( A )
+* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
+*
+* Arguments
+* ==========
+*
+* TRANSA - CHARACTER*1.
+* On entry, TRANSA specifies the form of op( A ) to be used in
+* the matrix multiplication as follows:
+*
+* TRANSA = 'N' or 'n', op( A ) = A.
+*
+* TRANSA = 'T' or 't', op( A ) = A'.
+*
+* TRANSA = 'C' or 'c', op( A ) = conjg( A' ).
+*
+* Unchanged on exit.
+*
+* TRANSB - CHARACTER*1.
+* On entry, TRANSB specifies the form of op( B ) to be used in
+* the matrix multiplication as follows:
+*
+* TRANSB = 'N' or 'n', op( B ) = B.
+*
+* TRANSB = 'T' or 't', op( B ) = B'.
+*
+* TRANSB = 'C' or 'c', op( B ) = conjg( B' ).
+*
+* Unchanged on exit.
+*
+* M - INTEGER.
+* On entry, M specifies the number of rows of the matrix
+* op( A ) and of the matrix C. M must be at least zero.
+* Unchanged on exit.
+*
+* N - INTEGER.
+* On entry, N specifies the number of columns of the matrix
+* op( B ) and the number of columns of the matrix C. N must be
+* at least zero.
+* Unchanged on exit.
+*
+* K - INTEGER.
+* On entry, K specifies the number of columns of the matrix
+* op( A ) and the number of rows of the matrix op( B ). K must
+* be at least zero.
+* Unchanged on exit.
+*
+* ALPHA - COMPLEX .
+* On entry, ALPHA specifies the scalar alpha.
+* Unchanged on exit.
+*
+* A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
+* k when TRANSA = 'N' or 'n', and is m otherwise.
+* Before entry with TRANSA = 'N' or 'n', the leading m by k
+* part of the array A must contain the matrix A, otherwise
+* the leading k by m part of the array A must contain the
+* matrix A.
+* Unchanged on exit.
+*
+* LDA - INTEGER.
+* On entry, LDA specifies the first dimension of A as declared
+* in the calling (sub) program. When TRANSA = 'N' or 'n' then
+* LDA must be at least max( 1, m ), otherwise LDA must be at
+* least max( 1, k ).
+* Unchanged on exit.
+*
+* B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is
+* n when TRANSB = 'N' or 'n', and is k otherwise.
+* Before entry with TRANSB = 'N' or 'n', the leading k by n
+* part of the array B must contain the matrix B, otherwise
+* the leading n by k part of the array B must contain the
+* matrix B.
+* Unchanged on exit.
+*
+* LDB - INTEGER.
+* On entry, LDB specifies the first dimension of B as declared
+* in the calling (sub) program. When TRANSB = 'N' or 'n' then
+* LDB must be at least max( 1, k ), otherwise LDB must be at
+* least max( 1, n ).
+* Unchanged on exit.
+*
+* BETA - COMPLEX .
+* On entry, BETA specifies the scalar beta. When BETA is
+* supplied as zero then C need not be set on input.
+* Unchanged on exit.
+*
+* C - COMPLEX array of DIMENSION ( LDC, n ).
+* Before entry, the leading m by n part of the array C must
+* contain the matrix C, except when beta is zero, in which
+* case C need not be set on entry.
+* On exit, the array C is overwritten by the m by n matrix
+* ( alpha*op( A )*op( B ) + beta*C ).
+*
+* LDC - INTEGER.
+* On entry, LDC specifies the first dimension of C as declared
+* in the calling (sub) program. LDC must be at least
+* max( 1, m ).
+* Unchanged on exit.
+*
+*
+* Level 3 Blas routine.
+*
+* -- Written on 8-February-1989.
+* Jack Dongarra, Argonne National Laboratory.
+* Iain Duff, AERE Harwell.
+* Jeremy Du Croz, Numerical Algorithms Group Ltd.
+* Sven Hammarling, Numerical Algorithms Group Ltd.
+*
+*
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC CONJG,MAX
+* ..
+* .. Local Scalars ..
+ COMPLEX TEMP
+ INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
+ LOGICAL CONJA,CONJB,NOTA,NOTB
+* ..
+* .. Parameters ..
+ COMPLEX ONE
+ PARAMETER (ONE= (1.0E+0,0.0E+0))
+ COMPLEX ZERO
+ PARAMETER (ZERO= (0.0E+0,0.0E+0))
+* ..
+*
+* Set NOTA and NOTB as true if A and B respectively are not
+* conjugated or transposed, set CONJA and CONJB as true if A and
+* B respectively are to be transposed but not conjugated and set
+* NROWA, NCOLA and NROWB as the number of rows and columns of A
+* and the number of rows of B respectively.
+*
+ NOTA = LSAME(TRANSA,'N')
+ NOTB = LSAME(TRANSB,'N')
+ CONJA = LSAME(TRANSA,'C')
+ CONJB = LSAME(TRANSB,'C')
+ IF (NOTA) THEN
+ NROWA = M
+ NCOLA = K
+ ELSE
+ NROWA = K
+ NCOLA = M
+ END IF
+ IF (NOTB) THEN
+ NROWB = K
+ ELSE
+ NROWB = N
+ END IF
+*
+* Test the input parameters.
+*
+ INFO = 0
+ IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND.
+ + (.NOT.LSAME(TRANSA,'T'))) THEN
+ INFO = 1
+ ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND.
+ + (.NOT.LSAME(TRANSB,'T'))) THEN
+ INFO = 2
+ ELSE IF (M.LT.0) THEN
+ INFO = 3
+ ELSE IF (N.LT.0) THEN
+ INFO = 4
+ ELSE IF (K.LT.0) THEN
+ INFO = 5
+ ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
+ INFO = 8
+ ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
+ INFO = 10
+ ELSE IF (LDC.LT.MAX(1,M)) THEN
+ INFO = 13
+ END IF
+ IF (INFO.NE.0) THEN
+ CALL XERBLA('CGEMM ',INFO)
+ RETURN
+ END IF
+*
+* Quick return if possible.
+*
+ IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ + (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
+*
+* And when alpha.eq.zero.
+*
+ IF (ALPHA.EQ.ZERO) THEN
+ IF (BETA.EQ.ZERO) THEN
+ DO 20 J = 1,N
+ DO 10 I = 1,M
+ C(I,J) = ZERO
+ 10 CONTINUE
+ 20 CONTINUE
+ ELSE
+ DO 40 J = 1,N
+ DO 30 I = 1,M
+ C(I,J) = BETA*C(I,J)
+ 30 CONTINUE
+ 40 CONTINUE
+ END IF
+ RETURN
+ END IF
+*
+* Start the operations.
+*
+ IF (NOTB) THEN
+ IF (NOTA) THEN
+*
+* Form C := alpha*A*B + beta*C.
+*
+ DO 90 J = 1,N
+ IF (BETA.EQ.ZERO) THEN
+ DO 50 I = 1,M
+ C(I,J) = ZERO
+ 50 CONTINUE
+ ELSE IF (BETA.NE.ONE) THEN
+ DO 60 I = 1,M
+ C(I,J) = BETA*C(I,J)
+ 60 CONTINUE
+ END IF
+ DO 80 L = 1,K
+ IF (B(L,J).NE.ZERO) THEN
+ TEMP = ALPHA*B(L,J)
+ DO 70 I = 1,M
+ C(I,J) = C(I,J) + TEMP*A(I,L)
+ 70 CONTINUE
+ END IF
+ 80 CONTINUE
+ 90 CONTINUE
+ ELSE IF (CONJA) THEN
+*
+* Form C := alpha*conjg( A' )*B + beta*C.
+*
+ DO 120 J = 1,N
+ DO 110 I = 1,M
+ TEMP = ZERO
+ DO 100 L = 1,K
+ TEMP = TEMP + CONJG(A(L,I))*B(L,J)
+ 100 CONTINUE
+ IF (BETA.EQ.ZERO) THEN
+ C(I,J) = ALPHA*TEMP
+ ELSE
+ C(I,J) = ALPHA*TEMP + BETA*C(I,J)
+ END IF
+ 110 CONTINUE
+ 120 CONTINUE
+ ELSE
+*
+* Form C := alpha*A'*B + beta*C
+*
+ DO 150 J = 1,N
+ DO 140 I = 1,M
+ TEMP = ZERO
+ DO 130 L = 1,K
+ TEMP = TEMP + A(L,I)*B(L,J)
+ 130 CONTINUE
+ IF (BETA.EQ.ZERO) THEN
+ C(I,J) = ALPHA*TEMP
+ ELSE
+ C(I,J) = ALPHA*TEMP + BETA*C(I,J)
+ END IF
+ 140 CONTINUE
+ 150 CONTINUE
+ END IF
+ ELSE IF (NOTA) THEN
+ IF (CONJB) THEN
+*
+* Form C := alpha*A*conjg( B' ) + beta*C.
+*
+ DO 200 J = 1,N
+ IF (BETA.EQ.ZERO) THEN
+ DO 160 I = 1,M
+ C(I,J) = ZERO
+ 160 CONTINUE
+ ELSE IF (BETA.NE.ONE) THEN
+ DO 170 I = 1,M
+ C(I,J) = BETA*C(I,J)
+ 170 CONTINUE
+ END IF
+ DO 190 L = 1,K
+ IF (B(J,L).NE.ZERO) THEN
+ TEMP = ALPHA*CONJG(B(J,L))
+ DO 180 I = 1,M
+ C(I,J) = C(I,J) + TEMP*A(I,L)
+ 180 CONTINUE
+ END IF
+ 190 CONTINUE
+ 200 CONTINUE
+ ELSE
+*
+* Form C := alpha*A*B' + beta*C
+*
+ DO 250 J = 1,N
+ IF (BETA.EQ.ZERO) THEN
+ DO 210 I = 1,M
+ C(I,J) = ZERO
+ 210 CONTINUE
+ ELSE IF (BETA.NE.ONE) THEN
+ DO 220 I = 1,M
+ C(I,J) = BETA*C(I,J)
+ 220 CONTINUE
+ END IF
+ DO 240 L = 1,K
+ IF (B(J,L).NE.ZERO) THEN
+ TEMP = ALPHA*B(J,L)
+ DO 230 I = 1,M
+ C(I,J) = C(I,J) + TEMP*A(I,L)
+ 230 CONTINUE
+ END IF
+ 240 CONTINUE
+ 250 CONTINUE
+ END IF
+ ELSE IF (CONJA) THEN
+ IF (CONJB) THEN
+*
+* Form C := alpha*conjg( A' )*conjg( B' ) + beta*C.
+*
+ DO 280 J = 1,N
+ DO 270 I = 1,M
+ TEMP = ZERO
+ DO 260 L = 1,K
+ TEMP = TEMP + CONJG(A(L,I))*CONJG(B(J,L))
+ 260 CONTINUE
+ IF (BETA.EQ.ZERO) THEN
+ C(I,J) = ALPHA*TEMP
+ ELSE
+ C(I,J) = ALPHA*TEMP + BETA*C(I,J)
+ END IF
+ 270 CONTINUE
+ 280 CONTINUE
+ ELSE
+*
+* Form C := alpha*conjg( A' )*B' + beta*C
+*
+ DO 310 J = 1,N
+ DO 300 I = 1,M
+ TEMP = ZERO
+ DO 290 L = 1,K
+ TEMP = TEMP + CONJG(A(L,I))*B(J,L)
+ 290 CONTINUE
+ IF (BETA.EQ.ZERO) THEN
+ C(I,J) = ALPHA*TEMP
+ ELSE
+ C(I,J) = ALPHA*TEMP + BETA*C(I,J)
+ END IF
+ 300 CONTINUE
+ 310 CONTINUE
+ END IF
+ ELSE
+ IF (CONJB) THEN
+*
+* Form C := alpha*A'*conjg( B' ) + beta*C
+*
+ DO 340 J = 1,N
+ DO 330 I = 1,M
+ TEMP = ZERO
+ DO 320 L = 1,K
+ TEMP = TEMP + A(L,I)*CONJG(B(J,L))
+ 320 CONTINUE
+ IF (BETA.EQ.ZERO) THEN
+ C(I,J) = ALPHA*TEMP
+ ELSE
+ C(I,J) = ALPHA*TEMP + BETA*C(I,J)
+ END IF
+ 330 CONTINUE
+ 340 CONTINUE
+ ELSE
+*
+* Form C := alpha*A'*B' + beta*C
+*
+ DO 370 J = 1,N
+ DO 360 I = 1,M
+ TEMP = ZERO
+ DO 350 L = 1,K
+ TEMP = TEMP + A(L,I)*B(J,L)
+ 350 CONTINUE
+ IF (BETA.EQ.ZERO) THEN
+ C(I,J) = ALPHA*TEMP
+ ELSE
+ C(I,J) = ALPHA*TEMP + BETA*C(I,J)
+ END IF
+ 360 CONTINUE
+ 370 CONTINUE
+ END IF
+ END IF
+*
+ RETURN
+*
+* End of CGEMM .
+*
+ END