summaryrefslogtreecommitdiff
path: root/TESTING
diff options
context:
space:
mode:
authorRenegade <Renegate@Renegates-MacBook-Pro.local>2016-11-06 20:35:15 -0500
committerRenegade <Renegate@Renegates-MacBook-Pro.local>2016-11-06 20:35:15 -0500
commitb9c9d7631188cdf4c658a808a0748dbef848b863 (patch)
treea18908ffdfd87e880c8ef219fa3fcb7357f307ba /TESTING
parentf9c3afd2ecda142d2e54a1fad7b7b6c157626166 (diff)
downloadlapack-b9c9d7631188cdf4c658a808a0748dbef848b863.tar.gz
lapack-b9c9d7631188cdf4c658a808a0748dbef848b863.tar.bz2
lapack-b9c9d7631188cdf4c658a808a0748dbef848b863.zip
adding the 2stage symmetric eigenvalue routines drivers checking
Diffstat (limited to 'TESTING')
-rw-r--r--TESTING/EIG/Makefile24
-rw-r--r--TESTING/EIG/cchkee.f70
-rw-r--r--TESTING/EIG/cchkhb2stg.f880
-rw-r--r--TESTING/EIG/cchkst2stg.f2145
-rw-r--r--TESTING/EIG/cdrvsg2stg.f1384
-rw-r--r--TESTING/EIG/cdrvst2stg.f2118
-rw-r--r--TESTING/EIG/cerrst.f545
-rw-r--r--TESTING/EIG/dchkee.f53
-rw-r--r--TESTING/EIG/dchksb2stg.f870
-rw-r--r--TESTING/EIG/dchkst2stg.f2120
-rw-r--r--TESTING/EIG/ddrvsg2stg.f1364
-rw-r--r--TESTING/EIG/ddrvst2stg.f2874
-rw-r--r--TESTING/EIG/derrst.f496
-rw-r--r--TESTING/EIG/ilaenv.f10
-rw-r--r--TESTING/EIG/schkee.f54
-rw-r--r--TESTING/EIG/schksb2stg.f870
-rw-r--r--TESTING/EIG/schkst2stg.f2120
-rw-r--r--TESTING/EIG/sdrvsg2stg.f1365
-rw-r--r--TESTING/EIG/sdrvst2stg.f2874
-rw-r--r--TESTING/EIG/serrst.f496
-rw-r--r--TESTING/EIG/zchkee.f70
-rw-r--r--TESTING/EIG/zchkhb2stg.f880
-rw-r--r--TESTING/EIG/zchkst2stg.f2145
-rw-r--r--TESTING/EIG/zdrvsg2stg.f1384
-rw-r--r--TESTING/EIG/zdrvst2stg.f2118
-rw-r--r--TESTING/EIG/zerrst.f547
-rw-r--r--TESTING/Makefile20
-rw-r--r--TESTING/se2.in15
28 files changed, 29837 insertions, 74 deletions
diff --git a/TESTING/EIG/Makefile b/TESTING/EIG/Makefile
index 6811cc2c..413e2359 100644
--- a/TESTING/EIG/Makefile
+++ b/TESTING/EIG/Makefile
@@ -51,11 +51,11 @@ SCIGTST = slafts.o slahd2.o slasum.o slatb9.o sstech.o sstect.o \
SEIGTST = schkee.o \
sbdt01.o sbdt02.o sbdt03.o sbdt04.o sbdt05.o\
schkbb.o schkbd.o schkbk.o schkbl.o schkec.o \
- schkgg.o schkgk.o schkgl.o schkhs.o schksb.o schkst.o \
+ schkgg.o schkgk.o schkgl.o schkhs.o schksb.o schkst.o schkst2stg.o schksb2stg.o \
sckcsd.o sckglm.o sckgqr.o sckgsv.o scklse.o scsdts.o \
sdrges.o sdrgev.o sdrges3.o sdrgev3.o sdrgsx.o sdrgvx.o \
- sdrvbd.o sdrves.o sdrvev.o sdrvsg.o \
- sdrvst.o sdrvsx.o sdrvvx.o \
+ sdrvbd.o sdrves.o sdrvev.o sdrvsg.o sdrvsg2stg.o \
+ sdrvst.o sdrvst2stg.o sdrvsx.o sdrvvx.o \
serrbd.o serrec.o serred.o serrgg.o serrhs.o serrst.o \
sget02.o sget10.o sget22.o sget23.o sget24.o sget31.o \
sget32.o sget33.o sget34.o sget35.o sget36.o \
@@ -68,11 +68,11 @@ SEIGTST = schkee.o \
CEIGTST = cchkee.o \
cbdt01.o cbdt02.o cbdt03.o cbdt05.o\
cchkbb.o cchkbd.o cchkbk.o cchkbl.o cchkec.o \
- cchkgg.o cchkgk.o cchkgl.o cchkhb.o cchkhs.o cchkst.o \
+ cchkgg.o cchkgk.o cchkgl.o cchkhb.o cchkhs.o cchkst.o cchkst2stg.o cchkhb2stg.o \
cckcsd.o cckglm.o cckgqr.o cckgsv.o ccklse.o ccsdts.o \
cdrges.o cdrgev.o cdrges3.o cdrgev3.o cdrgsx.o cdrgvx.o \
- cdrvbd.o cdrves.o cdrvev.o cdrvsg.o \
- cdrvst.o cdrvsx.o cdrvvx.o \
+ cdrvbd.o cdrves.o cdrvev.o cdrvsg.o cdrvsg2stg.o \
+ cdrvst.o cdrvst2stg.o cdrvsx.o cdrvvx.o \
cerrbd.o cerrec.o cerred.o cerrgg.o cerrhs.o cerrst.o \
cget02.o cget10.o cget22.o cget23.o cget24.o \
cget35.o cget36.o cget37.o cget38.o cget51.o cget52.o \
@@ -88,11 +88,11 @@ DZIGTST = dlafts.o dlahd2.o dlasum.o dlatb9.o dstech.o dstect.o \
DEIGTST = dchkee.o \
dbdt01.o dbdt02.o dbdt03.o dbdt04.o dbdt05.o\
dchkbb.o dchkbd.o dchkbk.o dchkbl.o dchkec.o \
- dchkgg.o dchkgk.o dchkgl.o dchkhs.o dchksb.o dchkst.o \
+ dchkgg.o dchkgk.o dchkgl.o dchkhs.o dchksb.o dchkst.o dchkst2stg.o dchksb2stg.o \
dckcsd.o dckglm.o dckgqr.o dckgsv.o dcklse.o dcsdts.o \
ddrges.o ddrgev.o ddrges3.o ddrgev3.o ddrgsx.o ddrgvx.o \
- ddrvbd.o ddrves.o ddrvev.o ddrvsg.o \
- ddrvst.o ddrvsx.o ddrvvx.o \
+ ddrvbd.o ddrves.o ddrvev.o ddrvsg.o ddrvsg2stg.o \
+ ddrvst.o ddrvst2stg.o ddrvsx.o ddrvvx.o \
derrbd.o derrec.o derred.o derrgg.o derrhs.o derrst.o \
dget02.o dget10.o dget22.o dget23.o dget24.o dget31.o \
dget32.o dget33.o dget34.o dget35.o dget36.o \
@@ -105,11 +105,11 @@ DEIGTST = dchkee.o \
ZEIGTST = zchkee.o \
zbdt01.o zbdt02.o zbdt03.o zbdt05.o\
zchkbb.o zchkbd.o zchkbk.o zchkbl.o zchkec.o \
- zchkgg.o zchkgk.o zchkgl.o zchkhb.o zchkhs.o zchkst.o \
+ zchkgg.o zchkgk.o zchkgl.o zchkhb.o zchkhs.o zchkst.o zchkst2stg.o zchkhb2stg.o \
zckcsd.o zckglm.o zckgqr.o zckgsv.o zcklse.o zcsdts.o \
zdrges.o zdrgev.o zdrges3.o zdrgev3.o zdrgsx.o zdrgvx.o \
- zdrvbd.o zdrves.o zdrvev.o zdrvsg.o \
- zdrvst.o zdrvsx.o zdrvvx.o \
+ zdrvbd.o zdrves.o zdrvev.o zdrvsg.o zdrvsg2stg.o \
+ zdrvst.o zdrvst2stg.o zdrvsx.o zdrvvx.o \
zerrbd.o zerrec.o zerred.o zerrgg.o zerrhs.o zerrst.o \
zget02.o zget10.o zget22.o zget23.o zget24.o \
zget35.o zget36.o zget37.o zget38.o zget51.o zget52.o \
diff --git a/TESTING/EIG/cchkee.f b/TESTING/EIG/cchkee.f
index d5f3f729..2fd530f6 100644
--- a/TESTING/EIG/cchkee.f
+++ b/TESTING/EIG/cchkee.f
@@ -1102,7 +1102,8 @@
$ CDRGEV, CDRGSX, CDRGVX, CDRVBD, CDRVES, CDRVEV,
$ CDRVSG, CDRVST, CDRVSX, CDRVVX, CERRBD,
$ CERRED, CERRGG, CERRHS, CERRST, ILAVER, XLAENV,
- $ CDRGES3, CDRGEV3
+ $ CDRGES3, CDRGEV3,
+ $ CCHKST2STG, CDRVST2STG, CCHKHB2STG
* ..
* .. Intrinsic Functions ..
INTRINSIC LEN, MIN
@@ -1149,7 +1150,7 @@
PATH = LINE( 1: 3 )
NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'CHS' )
SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'CST' ) .OR.
- $ LSAMEN( 3, PATH, 'CSG' )
+ $ LSAMEN( 3, PATH, 'CSG' ) .OR. LSAMEN( 3, PATH, 'SE2' )
SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'CBD' )
CEV = LSAMEN( 3, PATH, 'CEV' )
CES = LSAMEN( 3, PATH, 'CES' )
@@ -1829,7 +1830,8 @@
$ WRITE( NOUT, FMT = 9980 )'CCHKHS', INFO
270 CONTINUE
*
- ELSE IF( LSAMEN( 3, C3, 'CST' ) .OR. LSAMEN( 3, C3, 'SEP' ) ) THEN
+ ELSE IF( LSAMEN( 3, C3, 'CST' ) .OR. LSAMEN( 3, C3, 'SEP' )
+ $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN
*
* ----------------------------------
* SEP: Symmetric Eigenvalue Problem
@@ -1859,6 +1861,17 @@
WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
$ NXVAL( I )
IF( TSTCHK ) THEN
+ IF( LSAMEN( 3, C3, 'SE2' ) ) THEN
+ CALL CCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+ $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ),
+ $ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ),
+ $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ),
+ $ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ),
+ $ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX,
+ $ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ),
+ $ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK,
+ $ RESULT, INFO )
+ ELSE
CALL CCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
$ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ),
$ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ),
@@ -1868,16 +1881,26 @@
$ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ),
$ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK,
$ RESULT, INFO )
+ ENDIF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CCHKST', INFO
END IF
IF( TSTDRV ) THEN
+ IF( LSAMEN( 3, C3, 'SE2' ) ) THEN
+ CALL CDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH,
+ $ NOUT, A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ),
+ $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ),
+ $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ),
+ $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK,
+ $ LWORK, IWORK, LIWORK, RESULT, INFO )
+ ELSE
CALL CDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT,
- $ A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ),
- $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ),
- $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ),
- $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK,
- $ LWORK, IWORK, LIWORK, RESULT, INFO )
+ $ A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ),
+ $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ),
+ $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ),
+ $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK,
+ $ LWORK, IWORK, LIWORK, RESULT, INFO )
+ ENDIF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CDRVST', INFO
END IF
@@ -1910,12 +1933,18 @@
WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
$ NXVAL( I )
IF( TSTCHK ) THEN
- CALL CDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
- $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
- $ DR( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ),
- $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK,
- $ LWORK, RWORK, LWORK, IWORK, LIWORK, RESULT,
- $ INFO )
+* CALL CDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+* $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
+* $ DR( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ),
+* $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK,
+* $ LWORK, RWORK, LWORK, IWORK, LIWORK, RESULT,
+* $ INFO )
+ CALL CDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+ $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
+ $ DR( 1, 3 ), DR( 1, 4 ), A( 1, 3 ), NMAX,
+ $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ),
+ $ A( 1, 7 ), WORK, LWORK, RWORK, LWORK,
+ $ IWORK, LIWORK, RESULT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CDRVSG', INFO
END IF
@@ -2278,10 +2307,15 @@
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
IF( TSTERR )
$ CALL CERRST( 'CHB', NOUT )
- CALL CCHKHB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH,
- $ NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), DR( 1, 2 ),
- $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT,
- $ INFO )
+* CALL CCHKHB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+* $ NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), DR( 1, 2 ),
+* $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT,
+* $ INFO )
+ CALL CCHKHB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED,
+ $ THRESH, NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ),
+ $ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ),
+ $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT,
+ $ INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CCHKHB', INFO
*
diff --git a/TESTING/EIG/cchkhb2stg.f b/TESTING/EIG/cchkhb2stg.f
new file mode 100644
index 00000000..d4aba4b9
--- /dev/null
+++ b/TESTING/EIG/cchkhb2stg.f
@@ -0,0 +1,880 @@
+*> \brief \b CCHKHBSTG
+*
+* @generated from zchkhb2stg.f, fortran z -> c, Sun Nov 6 00:22:35 2016
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE CCHKHBSTG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
+* ISEED, THRESH, NOUNIT, A, LDA, SD, SE, D1,
+* D2, D3, U, LDU, WORK, LWORK, RWORK RESULT,
+* INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
+* $ NWDTHS
+* REAL THRESH
+* ..
+* .. Array Arguments ..
+* LOGICAL DOTYPE( * )
+* INTEGER ISEED( 4 ), KK( * ), NN( * )
+* REAL RESULT( * ), RWORK( * ), SD( * ), SE( * )
+* COMPLEX A( LDA, * ), U( LDU, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> CCHKHBSTG tests the reduction of a Hermitian band matrix to tridiagonal
+*> from, used with the Hermitian eigenvalue problem.
+*>
+*> CHBTRD factors a Hermitian band matrix A as U S U* , where * means
+*> conjugate transpose, S is symmetric tridiagonal, and U is unitary.
+*> CHBTRD can use either just the lower or just the upper triangle
+*> of A; CCHKHBSTG checks both cases.
+*>
+*> CHETRD_HB2ST factors a Hermitian band matrix A as U S U* ,
+*> where * means conjugate transpose, S is symmetric tridiagonal, and U is
+*> unitary. CHETRD_HB2ST can use either just the lower or just
+*> the upper triangle of A; CCHKHBSTG checks both cases.
+*>
+*> DSTEQR factors S as Z D1 Z'.
+*> D1 is the matrix of eigenvalues computed when Z is not computed
+*> and from the S resulting of DSBTRD "U" (used as reference for DSYTRD_SB2ST)
+*> D2 is the matrix of eigenvalues computed when Z is not computed
+*> and from the S resulting of DSYTRD_SB2ST "U".
+*> D3 is the matrix of eigenvalues computed when Z is not computed
+*> and from the S resulting of DSYTRD_SB2ST "L".
+*>
+*> When CCHKHBSTG is called, a number of matrix "sizes" ("n's"), a number
+*> of bandwidths ("k's"), and a number of matrix "types" are
+*> specified. For each size ("n"), each bandwidth ("k") less than or
+*> equal to "n", and each type of matrix, one matrix will be generated
+*> and used to test the hermitian banded reduction routine. For each
+*> matrix, a number of tests will be performed:
+*>
+*> (1) | A - V S V* | / ( |A| n ulp ) computed by CHBTRD with
+*> UPLO='U'
+*>
+*> (2) | I - UU* | / ( n ulp )
+*>
+*> (3) | A - V S V* | / ( |A| n ulp ) computed by CHBTRD with
+*> UPLO='L'
+*>
+*> (4) | I - UU* | / ( n ulp )
+*>
+*> (5) | D1 - D2 | / ( |D1| ulp ) where D1 is computed by
+*> DSBTRD with UPLO='U' and
+*> D2 is computed by
+*> CHETRD_HB2ST with UPLO='U'
+*>
+*> (6) | D1 - D3 | / ( |D1| ulp ) where D1 is computed by
+*> DSBTRD with UPLO='U' and
+*> D3 is computed by
+*> CHETRD_HB2ST with UPLO='L'
+*>
+*> The "sizes" are specified by an array NN(1:NSIZES); the value of
+*> each element NN(j) specifies one size.
+*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
+*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
+*> Currently, the list of possible types is:
+*>
+*> (1) The zero matrix.
+*> (2) The identity matrix.
+*>
+*> (3) A diagonal matrix with evenly spaced entries
+*> 1, ..., ULP and random signs.
+*> (ULP = (first number larger than 1) - 1 )
+*> (4) A diagonal matrix with geometrically spaced entries
+*> 1, ..., ULP and random signs.
+*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
+*> and random signs.
+*>
+*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
+*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
+*>
+*> (8) A matrix of the form U* D U, where U is unitary and
+*> D has evenly spaced entries 1, ..., ULP with random signs
+*> on the diagonal.
+*>
+*> (9) A matrix of the form U* D U, where U is unitary and
+*> D has geometrically spaced entries 1, ..., ULP with random
+*> signs on the diagonal.
+*>
+*> (10) A matrix of the form U* D U, where U is unitary and
+*> D has "clustered" entries 1, ULP,..., ULP with random
+*> signs on the diagonal.
+*>
+*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
+*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
+*>
+*> (13) Hermitian matrix with random entries chosen from (-1,1).
+*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
+*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] NSIZES
+*> \verbatim
+*> NSIZES is INTEGER
+*> The number of sizes of matrices to use. If it is zero,
+*> CCHKHBSTG does nothing. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NN
+*> \verbatim
+*> NN is INTEGER array, dimension (NSIZES)
+*> An array containing the sizes to be used for the matrices.
+*> Zero values will be skipped. The values must be at least
+*> zero.
+*> \endverbatim
+*>
+*> \param[in] NWDTHS
+*> \verbatim
+*> NWDTHS is INTEGER
+*> The number of bandwidths to use. If it is zero,
+*> CCHKHBSTG does nothing. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] KK
+*> \verbatim
+*> KK is INTEGER array, dimension (NWDTHS)
+*> An array containing the bandwidths to be used for the band
+*> matrices. The values must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NTYPES
+*> \verbatim
+*> NTYPES is INTEGER
+*> The number of elements in DOTYPE. If it is zero, CCHKHBSTG
+*> does nothing. It must be at least zero. If it is MAXTYP+1
+*> and NSIZES is 1, then an additional type, MAXTYP+1 is
+*> defined, which is to use whatever matrix is in A. This
+*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
+*> DOTYPE(MAXTYP+1) is .TRUE. .
+*> \endverbatim
+*>
+*> \param[in] DOTYPE
+*> \verbatim
+*> DOTYPE is LOGICAL array, dimension (NTYPES)
+*> If DOTYPE(j) is .TRUE., then for each size in NN a
+*> matrix of that size and of type j will be generated.
+*> If NTYPES is smaller than the maximum number of types
+*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
+*> MAXTYP will not be generated. If NTYPES is larger
+*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
+*> will be ignored.
+*> \endverbatim
+*>
+*> \param[in,out] ISEED
+*> \verbatim
+*> ISEED is INTEGER array, dimension (4)
+*> On entry ISEED specifies the seed of the random number
+*> generator. The array elements should be between 0 and 4095;
+*> if not they will be reduced mod 4096. Also, ISEED(4) must
+*> be odd. The random number generator uses a linear
+*> congruential sequence limited to small integers, and so
+*> should produce machine independent random numbers. The
+*> values of ISEED are changed on exit, and can be used in the
+*> next call to CCHKHBSTG to continue the same random number
+*> sequence.
+*> \endverbatim
+*>
+*> \param[in] THRESH
+*> \verbatim
+*> THRESH is REAL
+*> A test will count as "failed" if the "error", computed as
+*> described above, exceeds THRESH. Note that the error
+*> is scaled to be O(1), so THRESH should be a reasonably
+*> small multiple of 1, e.g., 10 or 100. In particular,
+*> it should not depend on the precision (single vs. double)
+*> or the size of the matrix. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NOUNIT
+*> \verbatim
+*> NOUNIT is INTEGER
+*> The FORTRAN unit number for printing out error messages
+*> (e.g., if a routine returns IINFO not equal to 0.)
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX array, dimension
+*> (LDA, max(NN))
+*> Used to hold the matrix whose eigenvalues are to be
+*> computed.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of A. It must be at least 2 (not 1!)
+*> and at least max( KK )+1.
+*> \endverbatim
+*>
+*> \param[out] SD
+*> \verbatim
+*> SD is REAL array, dimension (max(NN))
+*> Used to hold the diagonal of the tridiagonal matrix computed
+*> by CHBTRD.
+*> \endverbatim
+*>
+*> \param[out] SE
+*> \verbatim
+*> SE is REAL array, dimension (max(NN))
+*> Used to hold the off-diagonal of the tridiagonal matrix
+*> computed by CHBTRD.
+*> \endverbatim
+*>
+*> \param[out] U
+*> \verbatim
+*> U is COMPLEX array, dimension (LDU, max(NN))
+*> Used to hold the unitary matrix computed by CHBTRD.
+*> \endverbatim
+*>
+*> \param[in] LDU
+*> \verbatim
+*> LDU is INTEGER
+*> The leading dimension of U. It must be at least 1
+*> and at least max( NN ).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX array, dimension (LWORK)
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The number of entries in WORK. This must be at least
+*> max( LDA+1, max(NN)+1 )*max(NN).
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is REAL array
+*> \endverbatim
+*>
+*> \param[out] RESULT
+*> \verbatim
+*> RESULT is REAL array, dimension (4)
+*> The values computed by the tests described above.
+*> The values are currently limited to 1/ulp, to avoid
+*> overflow.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> If 0, then everything ran OK.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> Some Local Variables and Parameters:
+*> ---- ----- --------- --- ----------
+*> ZERO, ONE Real 0 and 1.
+*> MAXTYP The number of types defined.
+*> NTEST The number of tests performed, or which can
+*> be performed so far, for the current matrix.
+*> NTESTT The total number of tests performed so far.
+*> NMAX Largest value in NN.
+*> NMATS The number of matrices generated so far.
+*> NERRS The number of tests which have exceeded THRESH
+*> so far.
+*> COND, IMODE Values to be passed to the matrix generators.
+*> ANORM Norm of A; passed to matrix generators.
+*>
+*> OVFL, UNFL Overflow and underflow thresholds.
+*> ULP, ULPINV Finest relative precision and its inverse.
+*> RTOVFL, RTUNFL Square roots of the previous 2 values.
+*> The following four arrays decode JTYPE:
+*> KTYPE(j) The general type (1-10) for type "j".
+*> KMODE(j) The MODE value to be passed to the matrix
+*> generator for type "j".
+*> KMAGN(j) The order of magnitude ( O(1),
+*> O(overflow^(1/2) ), O(underflow^(1/2) )
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complex_eig
+*
+* =====================================================================
+ SUBROUTINE CCHKHB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
+ $ ISEED, THRESH, NOUNIT, A, LDA, SD, SE, D1,
+ $ D2, D3, U, LDU, WORK, LWORK, RWORK, RESULT,
+ $ INFO )
+*
+* -- LAPACK test routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
+ $ NWDTHS
+ REAL THRESH
+* ..
+* .. Array Arguments ..
+ LOGICAL DOTYPE( * )
+ INTEGER ISEED( 4 ), KK( * ), NN( * )
+ REAL RESULT( * ), RWORK( * ), SD( * ), SE( * ),
+ $ D1( * ), D2( * ), D3( * )
+ COMPLEX A( LDA, * ), U( LDU, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
+ $ CONE = ( 1.0E+0, 0.0E+0 ) )
+ REAL ZERO, ONE, TWO, TEN
+ PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
+ $ TEN = 10.0E+0 )
+ REAL HALF
+ PARAMETER ( HALF = ONE / TWO )
+ INTEGER MAXTYP
+ PARAMETER ( MAXTYP = 15 )
+* ..
+* .. Local Scalars ..
+ LOGICAL BADNN, BADNNB
+ INTEGER I, IINFO, IMODE, ITYPE, J, JC, JCOL, JR, JSIZE,
+ $ JTYPE, JWIDTH, K, KMAX, MTYPES, N, NERRS,
+ $ NMATS, NMAX, NTEST, NTESTT
+ REAL ANINV, ANORM, COND, OVFL, RTOVFL, RTUNFL,
+ $ TEMP1, TEMP2, TEMP3, TEMP4, ULP, ULPINV, UNFL
+* ..
+* .. Local Arrays ..
+ INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
+ $ KMODE( MAXTYP ), KTYPE( MAXTYP )
+* ..
+* .. External Functions ..
+ REAL SLAMCH
+ EXTERNAL SLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL SLASUM, XERBLA, CHBT21, CHBTRD, CLACPY, CLASET,
+ $ CLATMR, CLATMS, CHBTRD_HB2ST, CSTEQR
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, REAL, CONJG, MAX, MIN, SQRT
+* ..
+* .. Data statements ..
+ DATA KTYPE / 1, 2, 5*4, 5*5, 3*8 /
+ DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
+ $ 2, 3 /
+ DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
+ $ 0, 0 /
+* ..
+* .. Executable Statements ..
+*
+* Check for errors
+*
+ NTESTT = 0
+ INFO = 0
+*
+* Important constants
+*
+ BADNN = .FALSE.
+ NMAX = 1
+ DO 10 J = 1, NSIZES
+ NMAX = MAX( NMAX, NN( J ) )
+ IF( NN( J ).LT.0 )
+ $ BADNN = .TRUE.
+ 10 CONTINUE
+*
+ BADNNB = .FALSE.
+ KMAX = 0
+ DO 20 J = 1, NSIZES
+ KMAX = MAX( KMAX, KK( J ) )
+ IF( KK( J ).LT.0 )
+ $ BADNNB = .TRUE.
+ 20 CONTINUE
+ KMAX = MIN( NMAX-1, KMAX )
+*
+* Check for errors
+*
+ IF( NSIZES.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( BADNN ) THEN
+ INFO = -2
+ ELSE IF( NWDTHS.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( BADNNB ) THEN
+ INFO = -4
+ ELSE IF( NTYPES.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.KMAX+1 ) THEN
+ INFO = -11
+ ELSE IF( LDU.LT.NMAX ) THEN
+ INFO = -15
+ ELSE IF( ( MAX( LDA, NMAX )+1 )*NMAX.GT.LWORK ) THEN
+ INFO = -17
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CCHKHBSTG', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 .OR. NWDTHS.EQ.0 )
+ $ RETURN
+*
+* More Important constants
+*
+ UNFL = SLAMCH( 'Safe minimum' )
+ OVFL = ONE / UNFL
+ ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
+ ULPINV = ONE / ULP
+ RTUNFL = SQRT( UNFL )
+ RTOVFL = SQRT( OVFL )
+*
+* Loop over sizes, types
+*
+ NERRS = 0
+ NMATS = 0
+*
+ DO 190 JSIZE = 1, NSIZES
+ N = NN( JSIZE )
+ ANINV = ONE / REAL( MAX( 1, N ) )
+*
+ DO 180 JWIDTH = 1, NWDTHS
+ K = KK( JWIDTH )
+ IF( K.GT.N )
+ $ GO TO 180
+ K = MAX( 0, MIN( N-1, K ) )
+*
+ IF( NSIZES.NE.1 ) THEN
+ MTYPES = MIN( MAXTYP, NTYPES )
+ ELSE
+ MTYPES = MIN( MAXTYP+1, NTYPES )
+ END IF
+*
+ DO 170 JTYPE = 1, MTYPES
+ IF( .NOT.DOTYPE( JTYPE ) )
+ $ GO TO 170
+ NMATS = NMATS + 1
+ NTEST = 0
+*
+ DO 30 J = 1, 4
+ IOLDSD( J ) = ISEED( J )
+ 30 CONTINUE
+*
+* Compute "A".
+* Store as "Upper"; later, we will copy to other format.
+*
+* Control parameters:
+*
+* KMAGN KMODE KTYPE
+* =1 O(1) clustered 1 zero
+* =2 large clustered 2 identity
+* =3 small exponential (none)
+* =4 arithmetic diagonal, (w/ eigenvalues)
+* =5 random log hermitian, w/ eigenvalues
+* =6 random (none)
+* =7 random diagonal
+* =8 random hermitian
+* =9 positive definite
+* =10 diagonally dominant tridiagonal
+*
+ IF( MTYPES.GT.MAXTYP )
+ $ GO TO 100
+*
+ ITYPE = KTYPE( JTYPE )
+ IMODE = KMODE( JTYPE )
+*
+* Compute norm
+*
+ GO TO ( 40, 50, 60 )KMAGN( JTYPE )
+*
+ 40 CONTINUE
+ ANORM = ONE
+ GO TO 70
+*
+ 50 CONTINUE
+ ANORM = ( RTOVFL*ULP )*ANINV
+ GO TO 70
+*
+ 60 CONTINUE
+ ANORM = RTUNFL*N*ULPINV
+ GO TO 70
+*
+ 70 CONTINUE
+*
+ CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
+ IINFO = 0
+ IF( JTYPE.LE.15 ) THEN
+ COND = ULPINV
+ ELSE
+ COND = ULPINV*ANINV / TEN
+ END IF
+*
+* Special Matrices -- Identity & Jordan block
+*
+* Zero
+*
+ IF( ITYPE.EQ.1 ) THEN
+ IINFO = 0
+*
+ ELSE IF( ITYPE.EQ.2 ) THEN
+*
+* Identity
+*
+ DO 80 JCOL = 1, N
+ A( K+1, JCOL ) = ANORM
+ 80 CONTINUE
+*
+ ELSE IF( ITYPE.EQ.4 ) THEN
+*
+* Diagonal Matrix, [Eigen]values Specified
+*
+ CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE,
+ $ COND, ANORM, 0, 0, 'Q', A( K+1, 1 ), LDA,
+ $ WORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.5 ) THEN
+*
+* Hermitian, eigenvalues specified
+*
+ CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE,
+ $ COND, ANORM, K, K, 'Q', A, LDA, WORK,
+ $ IINFO )
+*
+ ELSE IF( ITYPE.EQ.7 ) THEN
+*
+* Diagonal, random eigenvalues
+*
+ CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE,
+ $ CONE, 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
+ $ ZERO, ANORM, 'Q', A( K+1, 1 ), LDA,
+ $ IDUMMA, IINFO )
+*
+ ELSE IF( ITYPE.EQ.8 ) THEN
+*
+* Hermitian, random eigenvalues
+*
+ CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE,
+ $ CONE, 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, K, K,
+ $ ZERO, ANORM, 'Q', A, LDA, IDUMMA, IINFO )
+*
+ ELSE IF( ITYPE.EQ.9 ) THEN
+*
+* Positive definite, eigenvalues specified.
+*
+ CALL CLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE,
+ $ COND, ANORM, K, K, 'Q', A, LDA,
+ $ WORK( N+1 ), IINFO )
+*
+ ELSE IF( ITYPE.EQ.10 ) THEN
+*
+* Positive definite tridiagonal, eigenvalues specified.
+*
+ IF( N.GT.1 )
+ $ K = MAX( 1, K )
+ CALL CLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE,
+ $ COND, ANORM, 1, 1, 'Q', A( K, 1 ), LDA,
+ $ WORK, IINFO )
+ DO 90 I = 2, N
+ TEMP1 = ABS( A( K, I ) ) /
+ $ SQRT( ABS( A( K+1, I-1 )*A( K+1, I ) ) )
+ IF( TEMP1.GT.HALF ) THEN
+ A( K, I ) = HALF*SQRT( ABS( A( K+1,
+ $ I-1 )*A( K+1, I ) ) )
+ END IF
+ 90 CONTINUE
+*
+ ELSE
+*
+ IINFO = 1
+ END IF
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ RETURN
+ END IF
+*
+ 100 CONTINUE
+*
+* Call CHBTRD to compute S and U from upper triangle.
+*
+ CALL CLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
+*
+ NTEST = 1
+ CALL CHBTRD( 'V', 'U', N, K, WORK, LDA, SD, SE, U, LDU,
+ $ WORK( LDA*N+1 ), IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHBTRD(U)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 1 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+* Do tests 1 and 2
+*
+ CALL CHBT21( 'Upper', N, K, 1, A, LDA, SD, SE, U, LDU,
+ $ WORK, RWORK, RESULT( 1 ) )
+*
+* Before converting A into lower for DSBTRD, run DSYTRD_SB2ST
+* otherwise matrix A will be converted to lower and then need
+* to be converted back to upper in order to run the upper case
+* ofDSYTRD_SB2ST
+*
+* Compute D1 the eigenvalues resulting from the tridiagonal
+* form using the DSBTRD and used as reference to compare
+* with the DSYTRD_SB2ST routine
+*
+* Compute D1 from the DSBTRD and used as reference for the
+* DSYTRD_SB2ST
+*
+ CALL SCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ CALL CSTEQR( 'N', N, D1, RWORK, WORK, LDU,
+ $ RWORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEQR(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 5 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+* DSYTRD_SB2ST Upper case is used to compute D2.
+* Note to set SD and SE to zero to be sure not reusing
+* the one from above. Compare it with D1 computed
+* using the DSBTRD.
+*
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, 1 )
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, 1 )
+ CALL CLACPY( ' ', K+1, N, A, LDA, U, LDU )
+ LH = MAX(1, 4*N)
+ LW = LWORK - LH
+ CALL CHETRD_HB2ST( 'N', 'N', "U", N, K, U, LDU, SD, SE,
+ $ WORK, LH, WORK( LH+1 ), LW, IINFO )
+*
+* Compute D2 from the DSYTRD_SB2ST Upper case
+*
+ CALL SCOPY( N, SD, 1, D2, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ CALL CSTEQR( 'N', N, D2, RWORK, WORK, LDU,
+ $ RWORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEQR(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 5 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+* Convert A from Upper-Triangle-Only storage to
+* Lower-Triangle-Only storage.
+*
+ DO 120 JC = 1, N
+ DO 110 JR = 0, MIN( K, N-JC )
+ A( JR+1, JC ) = CONJG( A( K+1-JR, JC+JR ) )
+ 110 CONTINUE
+ 120 CONTINUE
+ DO 140 JC = N + 1 - K, N
+ DO 130 JR = MIN( K, N-JC ) + 1, K
+ A( JR+1, JC ) = ZERO
+ 130 CONTINUE
+ 140 CONTINUE
+*
+* Call CHBTRD to compute S and U from lower triangle
+*
+ CALL CLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
+*
+ NTEST = 3
+ CALL CHBTRD( 'V', 'L', N, K, WORK, LDA, SD, SE, U, LDU,
+ $ WORK( LDA*N+1 ), IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHBTRD(L)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 3 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+ NTEST = 4
+*
+* Do tests 3 and 4
+*
+ CALL CHBT21( 'Lower', N, K, 1, A, LDA, SD, SE, U, LDU,
+ $ WORK, RWORK, RESULT( 3 ) )
+*
+* DSYTRD_SB2ST Lower case is used to compute D3.
+* Note to set SD and SE to zero to be sure not reusing
+* the one from above. Compare it with D1 computed
+* using the DSBTRD.
+*
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, 1 )
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, 1 )
+ CALL CLACPY( ' ', K+1, N, A, LDA, U, LDU )
+ LH = MAX(1, 4*N)
+ LW = LWORK - LH
+ CALL CHETRD_HB2ST( 'N', 'N', "L", N, K, U, LDU, SD, SE,
+ $ WORK, LH, WORK( LH+1 ), LW, IINFO )
+*
+* Compute D3 from the 2-stage Upper case
+*
+ CALL SCOPY( N, SD, 1, D3, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ CALL CSTEQR( 'N', N, D3, RWORK, WORK, LDU,
+ $ RWORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEQR(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 6 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+*
+* Do Tests 3 and 4 which are similar to 11 and 12 but with the
+* D1 computed using the standard 1-stage reduction as reference
+*
+ NTEST = 6
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ TEMP3 = ZERO
+ TEMP4 = ZERO
+*
+ DO 151 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
+ 151 CONTINUE
+*
+ RESULT(5) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+ RESULT(6) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
+*
+* End of Loop -- Check for RESULT(j) > THRESH
+*
+ 150 CONTINUE
+ NTESTT = NTESTT + NTEST
+*
+* Print out tests which fail.
+*
+ DO 160 JR = 1, NTEST
+ IF( RESULT( JR ).GE.THRESH ) THEN
+*
+* If this is the first test to fail,
+* print a header to the data file.
+*
+ IF( NERRS.EQ.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'CHB'
+ WRITE( NOUNIT, FMT = 9997 )
+ WRITE( NOUNIT, FMT = 9996 )
+ WRITE( NOUNIT, FMT = 9995 )'Hermitian'
+ WRITE( NOUNIT, FMT = 9994 )'unitary', '*',
+ $ 'conjugate transpose', ( '*', J = 1, 6 )
+ END IF
+ NERRS = NERRS + 1
+ WRITE( NOUNIT, FMT = 9993 )N, K, IOLDSD, JTYPE,
+ $ JR, RESULT( JR )
+ END IF
+ 160 CONTINUE
+*
+ 170 CONTINUE
+ 180 CONTINUE
+ 190 CONTINUE
+*
+* Summary
+*
+ CALL SLASUM( 'CHB', NOUNIT, NERRS, NTESTT )
+ RETURN
+*
+ 9999 FORMAT( ' CCHKHBSTG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
+ $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
+ 9998 FORMAT( / 1X, A3,
+ $ ' -- Complex Hermitian Banded Tridiagonal Reduction Routines'
+ $ )
+ 9997 FORMAT( ' Matrix types (see SCHK23 for details): ' )
+*
+ 9996 FORMAT( / ' Special Matrices:',
+ $ / ' 1=Zero matrix. ',
+ $ ' 5=Diagonal: clustered entries.',
+ $ / ' 2=Identity matrix. ',
+ $ ' 6=Diagonal: large, evenly spaced.',
+ $ / ' 3=Diagonal: evenly spaced entries. ',
+ $ ' 7=Diagonal: small, evenly spaced.',
+ $ / ' 4=Diagonal: geometr. spaced entries.' )
+ 9995 FORMAT( ' Dense ', A, ' Banded Matrices:',
+ $ / ' 8=Evenly spaced eigenvals. ',
+ $ ' 12=Small, evenly spaced eigenvals.',
+ $ / ' 9=Geometrically spaced eigenvals. ',
+ $ ' 13=Matrix with random O(1) entries.',
+ $ / ' 10=Clustered eigenvalues. ',
+ $ ' 14=Matrix with large random entries.',
+ $ / ' 11=Large, evenly spaced eigenvals. ',
+ $ ' 15=Matrix with small random entries.' )
+*
+ 9994 FORMAT( / ' Tests performed: (S is Tridiag, U is ', A, ',',
+ $ / 20X, A, ' means ', A, '.', / ' UPLO=''U'':',
+ $ / ' 1= | A - U S U', A1, ' | / ( |A| n ulp ) ',
+ $ ' 2= | I - U U', A1, ' | / ( n ulp )', / ' UPLO=''L'':',
+ $ / ' 3= | A - U S U', A1, ' | / ( |A| n ulp ) ',
+ $ ' 4= | I - U U', A1, ' | / ( n ulp )' / ' Eig check:',
+ $ /' 5= | D1 - D2', '', ' | / ( |D1| ulp ) ',
+ $ ' 6= | D1 - D3', '', ' | / ( |D1| ulp ) ' )
+ 9993 FORMAT( ' N=', I5, ', K=', I4, ', seed=', 4( I4, ',' ), ' type ',
+ $ I2, ', test(', I2, ')=', G10.3 )
+*
+* End of CCHKHBSTG
+*
+ END
diff --git a/TESTING/EIG/cchkst2stg.f b/TESTING/EIG/cchkst2stg.f
new file mode 100644
index 00000000..84bf432a
--- /dev/null
+++ b/TESTING/EIG/cchkst2stg.f
@@ -0,0 +1,2145 @@
+*> \brief \b CCHKST2STG
+*
+* @generated from zchkst2stg.f, fortran z -> c, Fri Nov 4 15:45:07 2016
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE CCHKST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+* NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
+* WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
+* LWORK, RWORK, LRWORK, IWORK, LIWORK, RESULT,
+* INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
+* $ NSIZES, NTYPES
+* REAL THRESH
+* ..
+* .. Array Arguments ..
+* LOGICAL DOTYPE( * )
+* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+* REAL D1( * ), D2( * ), D3( * ), D4( * ), D5( * ),
+* $ RESULT( * ), RWORK( * ), SD( * ), SE( * ),
+* $ WA1( * ), WA2( * ), WA3( * ), WR( * )
+* COMPLEX A( LDA, * ), AP( * ), TAU( * ), U( LDU, * ),
+* $ V( LDU, * ), VP( * ), WORK( * ), Z( LDU, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> CCHKST2STG checks the Hermitian eigenvalue problem routines
+*> using the 2-stage reduction techniques. Since the generation
+*> of Q or the vectors is not available in this release, we only
+*> compare the eigenvalue resulting when using the 2-stage to the
+*> one considered as reference using the standard 1-stage reduction
+*> CHETRD. For that, we call the standard CHETRD and compute D1 using
+*> DSTEQR, then we call the 2-stage CHETRD_2STAGE with Upper and Lower
+*> and we compute D2 and D3 using DSTEQR and then we replaced tests
+*> 3 and 4 by tests 11 and 12. test 1 and 2 remain to verify that
+*> the 1-stage results are OK and can be trusted.
+*> This testing routine will converge to the CCHKST in the next
+*> release when vectors and generation of Q will be implemented.
+*>
+*> CHETRD factors A as U S U* , where * means conjugate transpose,
+*> S is real symmetric tridiagonal, and U is unitary.
+*> CHETRD can use either just the lower or just the upper triangle
+*> of A; CCHKST2STG checks both cases.
+*> U is represented as a product of Householder
+*> transformations, whose vectors are stored in the first
+*> n-1 columns of V, and whose scale factors are in TAU.
+*>
+*> CHPTRD does the same as CHETRD, except that A and V are stored
+*> in "packed" format.
+*>
+*> CUNGTR constructs the matrix U from the contents of V and TAU.
+*>
+*> CUPGTR constructs the matrix U from the contents of VP and TAU.
+*>
+*> CSTEQR factors S as Z D1 Z* , where Z is the unitary
+*> matrix of eigenvectors and D1 is a diagonal matrix with
+*> the eigenvalues on the diagonal. D2 is the matrix of
+*> eigenvalues computed when Z is not computed.
+*>
+*> SSTERF computes D3, the matrix of eigenvalues, by the
+*> PWK method, which does not yield eigenvectors.
+*>
+*> CPTEQR factors S as Z4 D4 Z4* , for a
+*> Hermitian positive definite tridiagonal matrix.
+*> D5 is the matrix of eigenvalues computed when Z is not
+*> computed.
+*>
+*> SSTEBZ computes selected eigenvalues. WA1, WA2, and
+*> WA3 will denote eigenvalues computed to high
+*> absolute accuracy, with different range options.
+*> WR will denote eigenvalues computed to high relative
+*> accuracy.
+*>
+*> CSTEIN computes Y, the eigenvectors of S, given the
+*> eigenvalues.
+*>
+*> CSTEDC factors S as Z D1 Z* , where Z is the unitary
+*> matrix of eigenvectors and D1 is a diagonal matrix with
+*> the eigenvalues on the diagonal ('I' option). It may also
+*> update an input unitary matrix, usually the output
+*> from CHETRD/CUNGTR or CHPTRD/CUPGTR ('V' option). It may
+*> also just compute eigenvalues ('N' option).
+*>
+*> CSTEMR factors S as Z D1 Z* , where Z is the unitary
+*> matrix of eigenvectors and D1 is a diagonal matrix with
+*> the eigenvalues on the diagonal ('I' option). CSTEMR
+*> uses the Relatively Robust Representation whenever possible.
+*>
+*> When CCHKST2STG is called, a number of matrix "sizes" ("n's") and a
+*> number of matrix "types" are specified. For each size ("n")
+*> and each type of matrix, one matrix will be generated and used
+*> to test the Hermitian eigenroutines. For each matrix, a number
+*> of tests will be performed:
+*>
+*> (1) | A - V S V* | / ( |A| n ulp ) CHETRD( UPLO='U', ... )
+*>
+*> (2) | I - UV* | / ( n ulp ) CUNGTR( UPLO='U', ... )
+*>
+*> (3) | A - V S V* | / ( |A| n ulp ) CHETRD( UPLO='L', ... )
+*> replaced by | D1 - D2 | / ( |D1| ulp ) where D1 is the
+*> eigenvalue matrix computed using S and D2 is the
+*> eigenvalue matrix computed using S_2stage the output of
+*> CHETRD_2STAGE("N", "U",....). D1 and D2 are computed
+*> via DSTEQR('N',...)
+*>
+*> (4) | I - UV* | / ( n ulp ) CUNGTR( UPLO='L', ... )
+*> replaced by | D1 - D3 | / ( |D1| ulp ) where D1 is the
+*> eigenvalue matrix computed using S and D3 is the
+*> eigenvalue matrix computed using S_2stage the output of
+*> CHETRD_2STAGE("N", "L",....). D1 and D3 are computed
+*> via DSTEQR('N',...)
+*>
+*> (5-8) Same as 1-4, but for CHPTRD and CUPGTR.
+*>
+*> (9) | S - Z D Z* | / ( |S| n ulp ) CSTEQR('V',...)
+*>
+*> (10) | I - ZZ* | / ( n ulp ) CSTEQR('V',...)
+*>
+*> (11) | D1 - D2 | / ( |D1| ulp ) CSTEQR('N',...)
+*>
+*> (12) | D1 - D3 | / ( |D1| ulp ) SSTERF
+*>
+*> (13) 0 if the true eigenvalues (computed by sturm count)
+*> of S are within THRESH of
+*> those in D1. 2*THRESH if they are not. (Tested using
+*> SSTECH)
+*>
+*> For S positive definite,
+*>
+*> (14) | S - Z4 D4 Z4* | / ( |S| n ulp ) CPTEQR('V',...)
+*>
+*> (15) | I - Z4 Z4* | / ( n ulp ) CPTEQR('V',...)
+*>
+*> (16) | D4 - D5 | / ( 100 |D4| ulp ) CPTEQR('N',...)
+*>
+*> When S is also diagonally dominant by the factor gamma < 1,
+*>
+*> (17) max | D4(i) - WR(i) | / ( |D4(i)| omega ) ,
+*> i
+*> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
+*> SSTEBZ( 'A', 'E', ...)
+*>
+*> (18) | WA1 - D3 | / ( |D3| ulp ) SSTEBZ( 'A', 'E', ...)
+*>
+*> (19) ( max { min | WA2(i)-WA3(j) | } +
+*> i j
+*> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
+*> i j
+*> SSTEBZ( 'I', 'E', ...)
+*>
+*> (20) | S - Y WA1 Y* | / ( |S| n ulp ) SSTEBZ, CSTEIN
+*>
+*> (21) | I - Y Y* | / ( n ulp ) SSTEBZ, CSTEIN
+*>
+*> (22) | S - Z D Z* | / ( |S| n ulp ) CSTEDC('I')
+*>
+*> (23) | I - ZZ* | / ( n ulp ) CSTEDC('I')
+*>
+*> (24) | S - Z D Z* | / ( |S| n ulp ) CSTEDC('V')
+*>
+*> (25) | I - ZZ* | / ( n ulp ) CSTEDC('V')
+*>
+*> (26) | D1 - D2 | / ( |D1| ulp ) CSTEDC('V') and
+*> CSTEDC('N')
+*>
+*> Test 27 is disabled at the moment because CSTEMR does not
+*> guarantee high relatvie accuracy.
+*>
+*> (27) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
+*> i
+*> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
+*> CSTEMR('V', 'A')
+*>
+*> (28) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
+*> i
+*> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
+*> CSTEMR('V', 'I')
+*>
+*> Tests 29 through 34 are disable at present because CSTEMR
+*> does not handle partial specturm requests.
+*>
+*> (29) | S - Z D Z* | / ( |S| n ulp ) CSTEMR('V', 'I')
+*>
+*> (30) | I - ZZ* | / ( n ulp ) CSTEMR('V', 'I')
+*>
+*> (31) ( max { min | WA2(i)-WA3(j) | } +
+*> i j
+*> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
+*> i j
+*> CSTEMR('N', 'I') vs. CSTEMR('V', 'I')
+*>
+*> (32) | S - Z D Z* | / ( |S| n ulp ) CSTEMR('V', 'V')
+*>
+*> (33) | I - ZZ* | / ( n ulp ) CSTEMR('V', 'V')
+*>
+*> (34) ( max { min | WA2(i)-WA3(j) | } +
+*> i j
+*> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
+*> i j
+*> CSTEMR('N', 'V') vs. CSTEMR('V', 'V')
+*>
+*> (35) | S - Z D Z* | / ( |S| n ulp ) CSTEMR('V', 'A')
+*>
+*> (36) | I - ZZ* | / ( n ulp ) CSTEMR('V', 'A')
+*>
+*> (37) ( max { min | WA2(i)-WA3(j) | } +
+*> i j
+*> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
+*> i j
+*> CSTEMR('N', 'A') vs. CSTEMR('V', 'A')
+*>
+*> The "sizes" are specified by an array NN(1:NSIZES); the value of
+*> each element NN(j) specifies one size.
+*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
+*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
+*> Currently, the list of possible types is:
+*>
+*> (1) The zero matrix.
+*> (2) The identity matrix.
+*>
+*> (3) A diagonal matrix with evenly spaced entries
+*> 1, ..., ULP and random signs.
+*> (ULP = (first number larger than 1) - 1 )
+*> (4) A diagonal matrix with geometrically spaced entries
+*> 1, ..., ULP and random signs.
+*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
+*> and random signs.
+*>
+*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
+*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
+*>
+*> (8) A matrix of the form U* D U, where U is unitary and
+*> D has evenly spaced entries 1, ..., ULP with random signs
+*> on the diagonal.
+*>
+*> (9) A matrix of the form U* D U, where U is unitary and
+*> D has geometrically spaced entries 1, ..., ULP with random
+*> signs on the diagonal.
+*>
+*> (10) A matrix of the form U* D U, where U is unitary and
+*> D has "clustered" entries 1, ULP,..., ULP with random
+*> signs on the diagonal.
+*>
+*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
+*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
+*>
+*> (13) Hermitian matrix with random entries chosen from (-1,1).
+*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
+*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
+*> (16) Same as (8), but diagonal elements are all positive.
+*> (17) Same as (9), but diagonal elements are all positive.
+*> (18) Same as (10), but diagonal elements are all positive.
+*> (19) Same as (16), but multiplied by SQRT( overflow threshold )
+*> (20) Same as (16), but multiplied by SQRT( underflow threshold )
+*> (21) A diagonally dominant tridiagonal matrix with geometrically
+*> spaced diagonal entries 1, ..., ULP.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] NSIZES
+*> \verbatim
+*> NSIZES is INTEGER
+*> The number of sizes of matrices to use. If it is zero,
+*> CCHKST2STG does nothing. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NN
+*> \verbatim
+*> NN is INTEGER array, dimension (NSIZES)
+*> An array containing the sizes to be used for the matrices.
+*> Zero values will be skipped. The values must be at least
+*> zero.
+*> \endverbatim
+*>
+*> \param[in] NTYPES
+*> \verbatim
+*> NTYPES is INTEGER
+*> The number of elements in DOTYPE. If it is zero, CCHKST2STG
+*> does nothing. It must be at least zero. If it is MAXTYP+1
+*> and NSIZES is 1, then an additional type, MAXTYP+1 is
+*> defined, which is to use whatever matrix is in A. This
+*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
+*> DOTYPE(MAXTYP+1) is .TRUE. .
+*> \endverbatim
+*>
+*> \param[in] DOTYPE
+*> \verbatim
+*> DOTYPE is LOGICAL array, dimension (NTYPES)
+*> If DOTYPE(j) is .TRUE., then for each size in NN a
+*> matrix of that size and of type j will be generated.
+*> If NTYPES is smaller than the maximum number of types
+*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
+*> MAXTYP will not be generated. If NTYPES is larger
+*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
+*> will be ignored.
+*> \endverbatim
+*>
+*> \param[in,out] ISEED
+*> \verbatim
+*> ISEED is INTEGER array, dimension (4)
+*> On entry ISEED specifies the seed of the random number
+*> generator. The array elements should be between 0 and 4095;
+*> if not they will be reduced mod 4096. Also, ISEED(4) must
+*> be odd. The random number generator uses a linear
+*> congruential sequence limited to small integers, and so
+*> should produce machine independent random numbers. The
+*> values of ISEED are changed on exit, and can be used in the
+*> next call to CCHKST2STG to continue the same random number
+*> sequence.
+*> \endverbatim
+*>
+*> \param[in] THRESH
+*> \verbatim
+*> THRESH is REAL
+*> A test will count as "failed" if the "error", computed as
+*> described above, exceeds THRESH. Note that the error
+*> is scaled to be O(1), so THRESH should be a reasonably
+*> small multiple of 1, e.g., 10 or 100. In particular,
+*> it should not depend on the precision (single vs. double)
+*> or the size of the matrix. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NOUNIT
+*> \verbatim
+*> NOUNIT is INTEGER
+*> The FORTRAN unit number for printing out error messages
+*> (e.g., if a routine returns IINFO not equal to 0.)
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX array of
+*> dimension ( LDA , max(NN) )
+*> Used to hold the matrix whose eigenvalues are to be
+*> computed. On exit, A contains the last matrix actually
+*> used.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of A. It must be at
+*> least 1 and at least max( NN ).
+*> \endverbatim
+*>
+*> \param[out] AP
+*> \verbatim
+*> AP is COMPLEX array of
+*> dimension( max(NN)*max(NN+1)/2 )
+*> The matrix A stored in packed format.
+*> \endverbatim
+*>
+*> \param[out] SD
+*> \verbatim
+*> SD is REAL array of
+*> dimension( max(NN) )
+*> The diagonal of the tridiagonal matrix computed by CHETRD.
+*> On exit, SD and SE contain the tridiagonal form of the
+*> matrix in A.
+*> \endverbatim
+*>
+*> \param[out] SE
+*> \verbatim
+*> SE is REAL array of
+*> dimension( max(NN) )
+*> The off-diagonal of the tridiagonal matrix computed by
+*> CHETRD. On exit, SD and SE contain the tridiagonal form of
+*> the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D1
+*> \verbatim
+*> D1 is REAL array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by CSTEQR simlutaneously
+*> with Z. On exit, the eigenvalues in D1 correspond with the
+*> matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D2
+*> \verbatim
+*> D2 is REAL array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by CSTEQR if Z is not
+*> computed. On exit, the eigenvalues in D2 correspond with
+*> the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D3
+*> \verbatim
+*> D3 is REAL array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by SSTERF. On exit, the
+*> eigenvalues in D3 correspond with the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D4
+*> \verbatim
+*> D4 is REAL array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by CPTEQR(V).
+*> CPTEQR factors S as Z4 D4 Z4*
+*> On exit, the eigenvalues in D4 correspond with the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D5
+*> \verbatim
+*> D5 is REAL array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by CPTEQR(N)
+*> when Z is not computed. On exit, the
+*> eigenvalues in D4 correspond with the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] WA1
+*> \verbatim
+*> WA1 is REAL array of
+*> dimension( max(NN) )
+*> All eigenvalues of A, computed to high
+*> absolute accuracy, with different range options.
+*> as computed by SSTEBZ.
+*> \endverbatim
+*>
+*> \param[out] WA2
+*> \verbatim
+*> WA2 is REAL array of
+*> dimension( max(NN) )
+*> Selected eigenvalues of A, computed to high
+*> absolute accuracy, with different range options.
+*> as computed by SSTEBZ.
+*> Choose random values for IL and IU, and ask for the
+*> IL-th through IU-th eigenvalues.
+*> \endverbatim
+*>
+*> \param[out] WA3
+*> \verbatim
+*> WA3 is REAL array of
+*> dimension( max(NN) )
+*> Selected eigenvalues of A, computed to high
+*> absolute accuracy, with different range options.
+*> as computed by SSTEBZ.
+*> Determine the values VL and VU of the IL-th and IU-th
+*> eigenvalues and ask for all eigenvalues in this range.
+*> \endverbatim
+*>
+*> \param[out] WR
+*> \verbatim
+*> WR is REAL array of
+*> dimension( max(NN) )
+*> All eigenvalues of A, computed to high
+*> absolute accuracy, with different options.
+*> as computed by SSTEBZ.
+*> \endverbatim
+*>
+*> \param[out] U
+*> \verbatim
+*> U is COMPLEX array of
+*> dimension( LDU, max(NN) ).
+*> The unitary matrix computed by CHETRD + CUNGTR.
+*> \endverbatim
+*>
+*> \param[in] LDU
+*> \verbatim
+*> LDU is INTEGER
+*> The leading dimension of U, Z, and V. It must be at least 1
+*> and at least max( NN ).
+*> \endverbatim
+*>
+*> \param[out] V
+*> \verbatim
+*> V is COMPLEX array of
+*> dimension( LDU, max(NN) ).
+*> The Housholder vectors computed by CHETRD in reducing A to
+*> tridiagonal form. The vectors computed with UPLO='U' are
+*> in the upper triangle, and the vectors computed with UPLO='L'
+*> are in the lower triangle. (As described in CHETRD, the
+*> sub- and superdiagonal are not set to 1, although the
+*> true Householder vector has a 1 in that position. The
+*> routines that use V, such as CUNGTR, set those entries to
+*> 1 before using them, and then restore them later.)
+*> \endverbatim
+*>
+*> \param[out] VP
+*> \verbatim
+*> VP is COMPLEX array of
+*> dimension( max(NN)*max(NN+1)/2 )
+*> The matrix V stored in packed format.
+*> \endverbatim
+*>
+*> \param[out] TAU
+*> \verbatim
+*> TAU is COMPLEX array of
+*> dimension( max(NN) )
+*> The Householder factors computed by CHETRD in reducing A
+*> to tridiagonal form.
+*> \endverbatim
+*>
+*> \param[out] Z
+*> \verbatim
+*> Z is COMPLEX array of
+*> dimension( LDU, max(NN) ).
+*> The unitary matrix of eigenvectors computed by CSTEQR,
+*> CPTEQR, and CSTEIN.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX array of
+*> dimension( LWORK )
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The number of entries in WORK. This must be at least
+*> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 3 * Nmax**2
+*> where Nmax = max( NN(j), 2 ) and lg = log base 2.
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array,
+*> Workspace.
+*> \endverbatim
+*>
+*> \param[out] LIWORK
+*> \verbatim
+*> LIWORK is INTEGER
+*> The number of entries in IWORK. This must be at least
+*> 6 + 6*Nmax + 5 * Nmax * lg Nmax
+*> where Nmax = max( NN(j), 2 ) and lg = log base 2.
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is REAL array
+*> \endverbatim
+*>
+*> \param[in] LRWORK
+*> \verbatim
+*> LRWORK is INTEGER
+*> The number of entries in LRWORK (dimension( ??? )
+*> \endverbatim
+*>
+*> \param[out] RESULT
+*> \verbatim
+*> RESULT is REAL array, dimension (26)
+*> The values computed by the tests described above.
+*> The values are currently limited to 1/ulp, to avoid
+*> overflow.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> If 0, then everything ran OK.
+*> -1: NSIZES < 0
+*> -2: Some NN(j) < 0
+*> -3: NTYPES < 0
+*> -5: THRESH < 0
+*> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
+*> -23: LDU < 1 or LDU < NMAX.
+*> -29: LWORK too small.
+*> If CLATMR, CLATMS, CHETRD, CUNGTR, CSTEQR, SSTERF,
+*> or CUNMC2 returns an error code, the
+*> absolute value of it is returned.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> Some Local Variables and Parameters:
+*> ---- ----- --------- --- ----------
+*> ZERO, ONE Real 0 and 1.
+*> MAXTYP The number of types defined.
+*> NTEST The number of tests performed, or which can
+*> be performed so far, for the current matrix.
+*> NTESTT The total number of tests performed so far.
+*> NBLOCK Blocksize as returned by ENVIR.
+*> NMAX Largest value in NN.
+*> NMATS The number of matrices generated so far.
+*> NERRS The number of tests which have exceeded THRESH
+*> so far.
+*> COND, IMODE Values to be passed to the matrix generators.
+*> ANORM Norm of A; passed to matrix generators.
+*>
+*> OVFL, UNFL Overflow and underflow thresholds.
+*> ULP, ULPINV Finest relative precision and its inverse.
+*> RTOVFL, RTUNFL Square roots of the previous 2 values.
+*> The following four arrays decode JTYPE:
+*> KTYPE(j) The general type (1-10) for type "j".
+*> KMODE(j) The MODE value to be passed to the matrix
+*> generator for type "j".
+*> KMAGN(j) The order of magnitude ( O(1),
+*> O(overflow^(1/2) ), O(underflow^(1/2) )
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complex_eig
+*
+* =====================================================================
+ SUBROUTINE CCHKST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+ $ NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
+ $ WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
+ $ LWORK, RWORK, LRWORK, IWORK, LIWORK, RESULT,
+ $ INFO )
+*
+* -- LAPACK test routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
+ $ NSIZES, NTYPES
+ REAL THRESH
+* ..
+* .. Array Arguments ..
+ LOGICAL DOTYPE( * )
+ INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+ REAL D1( * ), D2( * ), D3( * ), D4( * ), D5( * ),
+ $ RESULT( * ), RWORK( * ), SD( * ), SE( * ),
+ $ WA1( * ), WA2( * ), WA3( * ), WR( * )
+ COMPLEX A( LDA, * ), AP( * ), TAU( * ), U( LDU, * ),
+ $ V( LDU, * ), VP( * ), WORK( * ), Z( LDU, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE, TWO, EIGHT, TEN, HUN
+ PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
+ $ EIGHT = 8.0E0, TEN = 10.0E0, HUN = 100.0E0 )
+ COMPLEX CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
+ $ CONE = ( 1.0E+0, 0.0E+0 ) )
+ REAL HALF
+ PARAMETER ( HALF = ONE / TWO )
+ INTEGER MAXTYP
+ PARAMETER ( MAXTYP = 21 )
+ LOGICAL CRANGE
+ PARAMETER ( CRANGE = .FALSE. )
+ LOGICAL CREL
+ PARAMETER ( CREL = .FALSE. )
+* ..
+* .. Local Scalars ..
+ LOGICAL BADNN, TRYRAC
+ INTEGER I, IINFO, IL, IMODE, INDE, INDRWK, ITEMP,
+ $ ITYPE, IU, J, JC, JR, JSIZE, JTYPE, LGN,
+ $ LIWEDC, LOG2UI, LRWEDC, LWEDC, M, M2, M3,
+ $ MTYPES, N, NAP, NBLOCK, NERRS, NMATS, NMAX,
+ $ NSPLIT, NTEST, NTESTT, LH, LW
+ REAL ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
+ $ RTUNFL, TEMP1, TEMP2, TEMP3, TEMP4, ULP,
+ $ ULPINV, UNFL, VL, VU
+* ..
+* .. Local Arrays ..
+ INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
+ $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
+ $ KTYPE( MAXTYP )
+ REAL DUMMA( 1 )
+* ..
+* .. External Functions ..
+ INTEGER ILAENV
+ REAL SLAMCH, SLARND, SSXT1
+ EXTERNAL ILAENV, SLAMCH, SLARND, SSXT1
+* ..
+* .. External Subroutines ..
+ EXTERNAL SCOPY, SLABAD, SLASUM, SSTEBZ, SSTECH, SSTERF,
+ $ XERBLA, CCOPY, CHET21, CHETRD, CHPT21, CHPTRD,
+ $ CLACPY, CLASET, CLATMR, CLATMS, CPTEQR, CSTEDC,
+ $ CSTEMR, CSTEIN, CSTEQR, CSTT21, CSTT22, CUNGTR,
+ $ CUPGTR, CHETRD_2STAGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, REAL, CONJG, INT, LOG, MAX, MIN, SQRT
+* ..
+* .. Data statements ..
+ DATA KTYPE / 1, 2, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 8,
+ $ 8, 8, 9, 9, 9, 9, 9, 10 /
+ DATA KMAGN / 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
+ $ 2, 3, 1, 1, 1, 2, 3, 1 /
+ DATA KMODE / 0, 0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
+ $ 0, 0, 4, 3, 1, 4, 4, 3 /
+* ..
+* .. Executable Statements ..
+*
+* Keep ftnchek happy
+ IDUMMA( 1 ) = 1
+*
+* Check for errors
+*
+ NTESTT = 0
+ INFO = 0
+*
+* Important constants
+*
+ BADNN = .FALSE.
+ TRYRAC = .TRUE.
+ NMAX = 1
+ DO 10 J = 1, NSIZES
+ NMAX = MAX( NMAX, NN( J ) )
+ IF( NN( J ).LT.0 )
+ $ BADNN = .TRUE.
+ 10 CONTINUE
+*
+ NBLOCK = ILAENV( 1, 'CHETRD', 'L', NMAX, -1, -1, -1 )
+ NBLOCK = MIN( NMAX, MAX( 1, NBLOCK ) )
+*
+* Check for errors
+*
+ IF( NSIZES.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( BADNN ) THEN
+ INFO = -2
+ ELSE IF( NTYPES.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.NMAX ) THEN
+ INFO = -9
+ ELSE IF( LDU.LT.NMAX ) THEN
+ INFO = -23
+ ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
+ INFO = -29
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CCHKST2STG', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
+ $ RETURN
+*
+* More Important constants
+*
+ UNFL = SLAMCH( 'Safe minimum' )
+ OVFL = ONE / UNFL
+ CALL SLABAD( UNFL, OVFL )
+ ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
+ ULPINV = ONE / ULP
+ LOG2UI = INT( LOG( ULPINV ) / LOG( TWO ) )
+ RTUNFL = SQRT( UNFL )
+ RTOVFL = SQRT( OVFL )
+*
+* Loop over sizes, types
+*
+ DO 20 I = 1, 4
+ ISEED2( I ) = ISEED( I )
+ 20 CONTINUE
+ NERRS = 0
+ NMATS = 0
+*
+ DO 310 JSIZE = 1, NSIZES
+ N = NN( JSIZE )
+ IF( N.GT.0 ) THEN
+ LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
+ IF( 2**LGN.LT.N )
+ $ LGN = LGN + 1
+ IF( 2**LGN.LT.N )
+ $ LGN = LGN + 1
+ LWEDC = 1 + 4*N + 2*N*LGN + 4*N**2
+ LRWEDC = 1 + 3*N + 2*N*LGN + 4*N**2
+ LIWEDC = 6 + 6*N + 5*N*LGN
+ ELSE
+ LWEDC = 8
+ LRWEDC = 7
+ LIWEDC = 12
+ END IF
+ NAP = ( N*( N+1 ) ) / 2
+ ANINV = ONE / REAL( MAX( 1, N ) )
+*
+ IF( NSIZES.NE.1 ) THEN
+ MTYPES = MIN( MAXTYP, NTYPES )
+ ELSE
+ MTYPES = MIN( MAXTYP+1, NTYPES )
+ END IF
+*
+ DO 300 JTYPE = 1, MTYPES
+ IF( .NOT.DOTYPE( JTYPE ) )
+ $ GO TO 300
+ NMATS = NMATS + 1
+ NTEST = 0
+*
+ DO 30 J = 1, 4
+ IOLDSD( J ) = ISEED( J )
+ 30 CONTINUE
+*
+* Compute "A"
+*
+* Control parameters:
+*
+* KMAGN KMODE KTYPE
+* =1 O(1) clustered 1 zero
+* =2 large clustered 2 identity
+* =3 small exponential (none)
+* =4 arithmetic diagonal, (w/ eigenvalues)
+* =5 random log Hermitian, w/ eigenvalues
+* =6 random (none)
+* =7 random diagonal
+* =8 random Hermitian
+* =9 positive definite
+* =10 diagonally dominant tridiagonal
+*
+ IF( MTYPES.GT.MAXTYP )
+ $ GO TO 100
+*
+ ITYPE = KTYPE( JTYPE )
+ IMODE = KMODE( JTYPE )
+*
+* Compute norm
+*
+ GO TO ( 40, 50, 60 )KMAGN( JTYPE )
+*
+ 40 CONTINUE
+ ANORM = ONE
+ GO TO 70
+*
+ 50 CONTINUE
+ ANORM = ( RTOVFL*ULP )*ANINV
+ GO TO 70
+*
+ 60 CONTINUE
+ ANORM = RTUNFL*N*ULPINV
+ GO TO 70
+*
+ 70 CONTINUE
+*
+ CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
+ IINFO = 0
+ IF( JTYPE.LE.15 ) THEN
+ COND = ULPINV
+ ELSE
+ COND = ULPINV*ANINV / TEN
+ END IF
+*
+* Special Matrices -- Identity & Jordan block
+*
+* Zero
+*
+ IF( ITYPE.EQ.1 ) THEN
+ IINFO = 0
+*
+ ELSE IF( ITYPE.EQ.2 ) THEN
+*
+* Identity
+*
+ DO 80 JC = 1, N
+ A( JC, JC ) = ANORM
+ 80 CONTINUE
+*
+ ELSE IF( ITYPE.EQ.4 ) THEN
+*
+* Diagonal Matrix, [Eigen]values Specified
+*
+ CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
+ $ ANORM, 0, 0, 'N', A, LDA, WORK, IINFO )
+*
+*
+ ELSE IF( ITYPE.EQ.5 ) THEN
+*
+* Hermitian, eigenvalues specified
+*
+ CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
+ $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.7 ) THEN
+*
+* Diagonal, random eigenvalues
+*
+ CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.8 ) THEN
+*
+* Hermitian, random eigenvalues
+*
+ CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.9 ) THEN
+*
+* Positive definite, eigenvalues specified.
+*
+ CALL CLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE, COND,
+ $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.10 ) THEN
+*
+* Positive definite tridiagonal, eigenvalues specified.
+*
+ CALL CLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE, COND,
+ $ ANORM, 1, 1, 'N', A, LDA, WORK, IINFO )
+ DO 90 I = 2, N
+ TEMP1 = ABS( A( I-1, I ) )
+ TEMP2 = SQRT( ABS( A( I-1, I-1 )*A( I, I ) ) )
+ IF( TEMP1.GT.HALF*TEMP2 ) THEN
+ A( I-1, I ) = A( I-1, I )*
+ $ ( HALF*TEMP2 / ( UNFL+TEMP1 ) )
+ A( I, I-1 ) = CONJG( A( I-1, I ) )
+ END IF
+ 90 CONTINUE
+*
+ ELSE
+*
+ IINFO = 1
+ END IF
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ RETURN
+ END IF
+*
+ 100 CONTINUE
+*
+* Call CHETRD and CUNGTR to compute S and U from
+* upper triangle.
+*
+ CALL CLACPY( 'U', N, N, A, LDA, V, LDU )
+*
+ NTEST = 1
+ CALL CHETRD( 'U', N, V, LDU, SD, SE, TAU, WORK, LWORK,
+ $ IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHETRD(U)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 1 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL CLACPY( 'U', N, N, V, LDU, U, LDU )
+*
+ NTEST = 2
+ CALL CUNGTR( 'U', N, U, LDU, TAU, WORK, LWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CUNGTR(U)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 2 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do tests 1 and 2
+*
+ CALL CHET21( 2, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( 1 ) )
+ CALL CHET21( 3, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( 2 ) )
+*
+* Compute D1 the eigenvalues resulting from the tridiagonal
+* form using the standard 1-stage algorithm and use it as a
+* reference to compare with the 2-stage technique
+*
+* Compute D1 from the 1-stage and used as reference for the
+* 2-stage
+*
+ CALL SCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ CALL CSTEQR( 'N', N, D1, RWORK, WORK, LDU, RWORK( N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEQR(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 3 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* 2-STAGE TRD Upper case is used to compute D2.
+* Note to set SD and SE to zero to be sure not reusing
+* the one from above. Compare it with D1 computed
+* using the 1-stage.
+*
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, 1 )
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, 1 )
+ CALL CLACPY( 'U', N, N, A, LDA, V, LDU )
+ LH = MAX(1, 4*N)
+ LW = LWORK - LH
+ CALL CHETRD_2STAGE( 'N', "U", N, V, LDU, SD, SE, TAU,
+ $ WORK, LH, WORK( LH+1 ), LW, IINFO )
+*
+* Compute D2 from the 2-stage Upper case
+*
+ CALL SCOPY( N, SD, 1, D2, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ NTEST = 3
+ CALL CSTEQR( 'N', N, D2, RWORK, WORK, LDU, RWORK( N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEQR(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 3 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* 2-STAGE TRD Lower case is used to compute D3.
+* Note to set SD and SE to zero to be sure not reusing
+* the one from above. Compare it with D1 computed
+* using the 1-stage.
+*
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, 1 )
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, 1 )
+ CALL CLACPY( 'L', N, N, A, LDA, V, LDU )
+ CALL CHETRD_2STAGE( 'N', "L", N, V, LDU, SD, SE, TAU,
+ $ WORK, LH, WORK( LH+1 ), LW, IINFO )
+*
+* Compute D3 from the 2-stage Upper case
+*
+ CALL SCOPY( N, SD, 1, D3, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ NTEST = 4
+ CALL CSTEQR( 'N', N, D3, RWORK, WORK, LDU, RWORK( N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEQR(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 4 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+*
+* Do Tests 3 and 4 which are similar to 11 and 12 but with the
+* D1 computed using the standard 1-stage reduction as reference
+*
+ NTEST = 4
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ TEMP3 = ZERO
+ TEMP4 = ZERO
+*
+ DO 151 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
+ 151 CONTINUE
+*
+ RESULT( 3 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+ RESULT( 4 ) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
+*
+* Skip the DSYTRD for lower that since we replaced its testing
+* 3 and 4 by the 2-stage one.
+ GOTO 101
+*
+* Call CHETRD and CUNGTR to compute S and U from
+* lower triangle, do tests.
+*
+ CALL CLACPY( 'L', N, N, A, LDA, V, LDU )
+*
+ NTEST = 3
+ CALL CHETRD( 'L', N, V, LDU, SD, SE, TAU, WORK, LWORK,
+ $ IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHETRD(L)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 3 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL CLACPY( 'L', N, N, V, LDU, U, LDU )
+*
+ NTEST = 4
+ CALL CUNGTR( 'L', N, U, LDU, TAU, WORK, LWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CUNGTR(L)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 4 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL CHET21( 2, 'Lower', N, 1, A, LDA, SD, SE, U, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( 3 ) )
+ CALL CHET21( 3, 'Lower', N, 1, A, LDA, SD, SE, U, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( 4 ) )
+*
+*after skipping old tests 3 4 back to the normal
+*
+ 101 CONTINUE
+*
+* Store the upper triangle of A in AP
+*
+ I = 0
+ DO 120 JC = 1, N
+ DO 110 JR = 1, JC
+ I = I + 1
+ AP( I ) = A( JR, JC )
+ 110 CONTINUE
+ 120 CONTINUE
+*
+* Call CHPTRD and CUPGTR to compute S and U from AP
+*
+ CALL CCOPY( NAP, AP, 1, VP, 1 )
+*
+ NTEST = 5
+ CALL CHPTRD( 'U', N, VP, SD, SE, TAU, IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHPTRD(U)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 5 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ NTEST = 6
+ CALL CUPGTR( 'U', N, VP, TAU, U, LDU, WORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CUPGTR(U)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 6 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do tests 5 and 6
+*
+ CALL CHPT21( 2, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
+ $ WORK, RWORK, RESULT( 5 ) )
+ CALL CHPT21( 3, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
+ $ WORK, RWORK, RESULT( 6 ) )
+*
+* Store the lower triangle of A in AP
+*
+ I = 0
+ DO 140 JC = 1, N
+ DO 130 JR = JC, N
+ I = I + 1
+ AP( I ) = A( JR, JC )
+ 130 CONTINUE
+ 140 CONTINUE
+*
+* Call CHPTRD and CUPGTR to compute S and U from AP
+*
+ CALL CCOPY( NAP, AP, 1, VP, 1 )
+*
+ NTEST = 7
+ CALL CHPTRD( 'L', N, VP, SD, SE, TAU, IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHPTRD(L)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 7 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ NTEST = 8
+ CALL CUPGTR( 'L', N, VP, TAU, U, LDU, WORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CUPGTR(L)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 8 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL CHPT21( 2, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
+ $ WORK, RWORK, RESULT( 7 ) )
+ CALL CHPT21( 3, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
+ $ WORK, RWORK, RESULT( 8 ) )
+*
+* Call CSTEQR to compute D1, D2, and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL SCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
+ CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
+*
+ NTEST = 9
+ CALL CSTEQR( 'V', N, D1, RWORK, Z, LDU, RWORK( N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEQR(V)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 9 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Compute D2
+*
+ CALL SCOPY( N, SD, 1, D2, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ NTEST = 11
+ CALL CSTEQR( 'N', N, D2, RWORK, WORK, LDU, RWORK( N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEQR(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 11 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Compute D3 (using PWK method)
+*
+ CALL SCOPY( N, SD, 1, D3, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ NTEST = 12
+ CALL SSTERF( N, D3, RWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTERF', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 12 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 9 and 10
+*
+ CALL CSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK,
+ $ RESULT( 9 ) )
+*
+* Do Tests 11 and 12
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ TEMP3 = ZERO
+ TEMP4 = ZERO
+*
+ DO 150 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
+ 150 CONTINUE
+*
+ RESULT( 11 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+ RESULT( 12 ) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
+*
+* Do Test 13 -- Sturm Sequence Test of Eigenvalues
+* Go up by factors of two until it succeeds
+*
+ NTEST = 13
+ TEMP1 = THRESH*( HALF-ULP )
+*
+ DO 160 J = 0, LOG2UI
+ CALL SSTECH( N, SD, SE, D1, TEMP1, RWORK, IINFO )
+ IF( IINFO.EQ.0 )
+ $ GO TO 170
+ TEMP1 = TEMP1*TWO
+ 160 CONTINUE
+*
+ 170 CONTINUE
+ RESULT( 13 ) = TEMP1
+*
+* For positive definite matrices ( JTYPE.GT.15 ) call CPTEQR
+* and do tests 14, 15, and 16 .
+*
+ IF( JTYPE.GT.15 ) THEN
+*
+* Compute D4 and Z4
+*
+ CALL SCOPY( N, SD, 1, D4, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
+ CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
+*
+ NTEST = 14
+ CALL CPTEQR( 'V', N, D4, RWORK, Z, LDU, RWORK( N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CPTEQR(V)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 14 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 14 and 15
+*
+ CALL CSTT21( N, 0, SD, SE, D4, DUMMA, Z, LDU, WORK,
+ $ RWORK, RESULT( 14 ) )
+*
+* Compute D5
+*
+ CALL SCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ NTEST = 16
+ CALL CPTEQR( 'N', N, D5, RWORK, Z, LDU, RWORK( N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CPTEQR(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 16 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 16
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 180 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D4( J ) ), ABS( D5( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D4( J )-D5( J ) ) )
+ 180 CONTINUE
+*
+ RESULT( 16 ) = TEMP2 / MAX( UNFL,
+ $ HUN*ULP*MAX( TEMP1, TEMP2 ) )
+ ELSE
+ RESULT( 14 ) = ZERO
+ RESULT( 15 ) = ZERO
+ RESULT( 16 ) = ZERO
+ END IF
+*
+* Call SSTEBZ with different options and do tests 17-18.
+*
+* If S is positive definite and diagonally dominant,
+* ask for all eigenvalues with high relative accuracy.
+*
+ VL = ZERO
+ VU = ZERO
+ IL = 0
+ IU = 0
+ IF( JTYPE.EQ.21 ) THEN
+ NTEST = 17
+ ABSTOL = UNFL + UNFL
+ CALL SSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
+ $ M, NSPLIT, WR, IWORK( 1 ), IWORK( N+1 ),
+ $ RWORK, IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(A,rel)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 17 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do test 17
+*
+ TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
+ $ ( ONE-HALF )**4
+*
+ TEMP1 = ZERO
+ DO 190 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
+ $ ( ABSTOL+ABS( D4( J ) ) ) )
+ 190 CONTINUE
+*
+ RESULT( 17 ) = TEMP1 / TEMP2
+ ELSE
+ RESULT( 17 ) = ZERO
+ END IF
+*
+* Now ask for all eigenvalues with high absolute accuracy.
+*
+ NTEST = 18
+ ABSTOL = UNFL + UNFL
+ CALL SSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
+ $ NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), RWORK,
+ $ IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(A)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 18 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do test 18
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 200 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D3( J ) ), ABS( WA1( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D3( J )-WA1( J ) ) )
+ 200 CONTINUE
+*
+ RESULT( 18 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Choose random values for IL and IU, and ask for the
+* IL-th through IU-th eigenvalues.
+*
+ NTEST = 19
+ IF( N.LE.1 ) THEN
+ IL = 1
+ IU = N
+ ELSE
+ IL = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
+ IU = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
+ IF( IU.LT.IL ) THEN
+ ITEMP = IU
+ IU = IL
+ IL = ITEMP
+ END IF
+ END IF
+*
+ CALL SSTEBZ( 'I', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
+ $ M2, NSPLIT, WA2, IWORK( 1 ), IWORK( N+1 ),
+ $ RWORK, IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(I)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 19 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Determine the values VL and VU of the IL-th and IU-th
+* eigenvalues and ask for all eigenvalues in this range.
+*
+ IF( N.GT.0 ) THEN
+ IF( IL.NE.1 ) THEN
+ VL = WA1( IL ) - MAX( HALF*( WA1( IL )-WA1( IL-1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ ELSE
+ VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = WA1( IU ) + MAX( HALF*( WA1( IU+1 )-WA1( IU ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ ELSE
+ VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ END IF
+ ELSE
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ CALL SSTEBZ( 'V', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
+ $ M3, NSPLIT, WA3, IWORK( 1 ), IWORK( N+1 ),
+ $ RWORK, IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(V)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 19 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.NE.0 ) THEN
+ RESULT( 19 ) = ULPINV
+ GO TO 280
+ END IF
+*
+* Do test 19
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( N ) ), ABS( WA1( 1 ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+*
+ RESULT( 19 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP )
+*
+* Call CSTEIN to compute eigenvectors corresponding to
+* eigenvalues in WA1. (First call SSTEBZ again, to make sure
+* it returns these eigenvalues in the correct order.)
+*
+ NTEST = 21
+ CALL SSTEBZ( 'A', 'B', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
+ $ NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), RWORK,
+ $ IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(A,B)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 20 ) = ULPINV
+ RESULT( 21 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL CSTEIN( N, SD, SE, M, WA1, IWORK( 1 ), IWORK( N+1 ), Z,
+ $ LDU, RWORK, IWORK( 2*N+1 ), IWORK( 3*N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEIN', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 20 ) = ULPINV
+ RESULT( 21 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do tests 20 and 21
+*
+ CALL CSTT21( N, 0, SD, SE, WA1, DUMMA, Z, LDU, WORK, RWORK,
+ $ RESULT( 20 ) )
+*
+* Call CSTEDC(I) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ INDE = 1
+ INDRWK = INDE + N
+ CALL SCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK( INDE ), 1 )
+ CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
+*
+ NTEST = 22
+ CALL CSTEDC( 'I', N, D1, RWORK( INDE ), Z, LDU, WORK, LWEDC,
+ $ RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEDC(I)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 22 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 22 and 23
+*
+ CALL CSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK,
+ $ RESULT( 22 ) )
+*
+* Call CSTEDC(V) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL SCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK( INDE ), 1 )
+ CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
+*
+ NTEST = 24
+ CALL CSTEDC( 'V', N, D1, RWORK( INDE ), Z, LDU, WORK, LWEDC,
+ $ RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEDC(V)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 24 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 24 and 25
+*
+ CALL CSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK,
+ $ RESULT( 24 ) )
+*
+* Call CSTEDC(N) to compute D2, do tests.
+*
+* Compute D2
+*
+ CALL SCOPY( N, SD, 1, D2, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK( INDE ), 1 )
+ CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
+*
+ NTEST = 26
+ CALL CSTEDC( 'N', N, D2, RWORK( INDE ), Z, LDU, WORK, LWEDC,
+ $ RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEDC(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 26 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 26
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+*
+ DO 210 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ 210 CONTINUE
+*
+ RESULT( 26 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Only test CSTEMR if IEEE compliant
+*
+ IF( ILAENV( 10, 'CSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 .AND.
+ $ ILAENV( 11, 'CSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 ) THEN
+*
+* Call CSTEMR, do test 27 (relative eigenvalue accuracy)
+*
+* If S is positive definite and diagonally dominant,
+* ask for all eigenvalues with high relative accuracy.
+*
+ VL = ZERO
+ VU = ZERO
+ IL = 0
+ IU = 0
+ IF( JTYPE.EQ.21 .AND. CREL ) THEN
+ NTEST = 27
+ ABSTOL = UNFL + UNFL
+ CALL CSTEMR( 'V', 'A', N, SD, SE, VL, VU, IL, IU,
+ $ M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ RWORK, LRWORK, IWORK( 2*N+1 ), LWORK-2*N,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,A,rel)',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 27 ) = ULPINV
+ GO TO 270
+ END IF
+ END IF
+*
+* Do test 27
+*
+ TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
+ $ ( ONE-HALF )**4
+*
+ TEMP1 = ZERO
+ DO 220 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
+ $ ( ABSTOL+ABS( D4( J ) ) ) )
+ 220 CONTINUE
+*
+ RESULT( 27 ) = TEMP1 / TEMP2
+*
+ IL = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
+ IU = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
+ IF( IU.LT.IL ) THEN
+ ITEMP = IU
+ IU = IL
+ IL = ITEMP
+ END IF
+*
+ IF( CRANGE ) THEN
+ NTEST = 28
+ ABSTOL = UNFL + UNFL
+ CALL CSTEMR( 'V', 'I', N, SD, SE, VL, VU, IL, IU,
+ $ M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ RWORK, LRWORK, IWORK( 2*N+1 ),
+ $ LWORK-2*N, IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,I,rel)',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 28 ) = ULPINV
+ GO TO 270
+ END IF
+ END IF
+*
+*
+* Do test 28
+*
+ TEMP2 = TWO*( TWO*N-ONE )*ULP*
+ $ ( ONE+EIGHT*HALF**2 ) / ( ONE-HALF )**4
+*
+ TEMP1 = ZERO
+ DO 230 J = IL, IU
+ TEMP1 = MAX( TEMP1, ABS( WR( J-IL+1 )-D4( N-J+
+ $ 1 ) ) / ( ABSTOL+ABS( WR( J-IL+1 ) ) ) )
+ 230 CONTINUE
+*
+ RESULT( 28 ) = TEMP1 / TEMP2
+ ELSE
+ RESULT( 28 ) = ZERO
+ END IF
+ ELSE
+ RESULT( 27 ) = ZERO
+ RESULT( 28 ) = ZERO
+ END IF
+*
+* Call CSTEMR(V,I) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL SCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
+ CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
+*
+ IF( CRANGE ) THEN
+ NTEST = 29
+ IL = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
+ IU = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
+ IF( IU.LT.IL ) THEN
+ ITEMP = IU
+ IU = IL
+ IL = ITEMP
+ END IF
+ CALL CSTEMR( 'V', 'I', N, D5, RWORK, VL, VU, IL, IU,
+ $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,I)', IINFO,
+ $ N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 29 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 29 and 30
+*
+*
+* Call CSTEMR to compute D2, do tests.
+*
+* Compute D2
+*
+ CALL SCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ NTEST = 31
+ CALL CSTEMR( 'N', 'I', N, D5, RWORK, VL, VU, IL, IU,
+ $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEMR(N,I)', IINFO,
+ $ N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 31 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 31
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+*
+ DO 240 J = 1, IU - IL + 1
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
+ $ ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ 240 CONTINUE
+*
+ RESULT( 31 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+*
+* Call CSTEMR(V,V) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL SCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
+ CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
+*
+ NTEST = 32
+*
+ IF( N.GT.0 ) THEN
+ IF( IL.NE.1 ) THEN
+ VL = D2( IL ) - MAX( HALF*
+ $ ( D2( IL )-D2( IL-1 ) ), ULP*ANORM,
+ $ TWO*RTUNFL )
+ ELSE
+ VL = D2( 1 ) - MAX( HALF*( D2( N )-D2( 1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = D2( IU ) + MAX( HALF*
+ $ ( D2( IU+1 )-D2( IU ) ), ULP*ANORM,
+ $ TWO*RTUNFL )
+ ELSE
+ VU = D2( N ) + MAX( HALF*( D2( N )-D2( 1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ END IF
+ ELSE
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ CALL CSTEMR( 'V', 'V', N, D5, RWORK, VL, VU, IL, IU,
+ $ M, D1, Z, LDU, M, IWORK( 1 ), TRYRAC,
+ $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,V)', IINFO,
+ $ N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 32 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 32 and 33
+*
+ CALL CSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
+ $ M, RWORK, RESULT( 32 ) )
+*
+* Call CSTEMR to compute D2, do tests.
+*
+* Compute D2
+*
+ CALL SCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ NTEST = 34
+ CALL CSTEMR( 'N', 'V', N, D5, RWORK, VL, VU, IL, IU,
+ $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEMR(N,V)', IINFO,
+ $ N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 34 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 34
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+*
+ DO 250 J = 1, IU - IL + 1
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
+ $ ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ 250 CONTINUE
+*
+ RESULT( 34 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+ ELSE
+ RESULT( 29 ) = ZERO
+ RESULT( 30 ) = ZERO
+ RESULT( 31 ) = ZERO
+ RESULT( 32 ) = ZERO
+ RESULT( 33 ) = ZERO
+ RESULT( 34 ) = ZERO
+ END IF
+*
+*
+* Call CSTEMR(V,A) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL SCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ NTEST = 35
+*
+ CALL CSTEMR( 'V', 'A', N, D5, RWORK, VL, VU, IL, IU,
+ $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,A)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 35 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 35 and 36
+*
+ CALL CSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, M,
+ $ RWORK, RESULT( 35 ) )
+*
+* Call CSTEMR to compute D2, do tests.
+*
+* Compute D2
+*
+ CALL SCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ NTEST = 37
+ CALL CSTEMR( 'N', 'A', N, D5, RWORK, VL, VU, IL, IU,
+ $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CSTEMR(N,A)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 37 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 34
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+*
+ DO 260 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ 260 CONTINUE
+*
+ RESULT( 37 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+ END IF
+ 270 CONTINUE
+ 280 CONTINUE
+ NTESTT = NTESTT + NTEST
+*
+* End of Loop -- Check for RESULT(j) > THRESH
+*
+*
+* Print out tests which fail.
+*
+ DO 290 JR = 1, NTEST
+ IF( RESULT( JR ).GE.THRESH ) THEN
+*
+* If this is the first test to fail,
+* print a header to the data file.
+*
+ IF( NERRS.EQ.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'CST'
+ WRITE( NOUNIT, FMT = 9997 )
+ WRITE( NOUNIT, FMT = 9996 )
+ WRITE( NOUNIT, FMT = 9995 )'Hermitian'
+ WRITE( NOUNIT, FMT = 9994 )
+*
+* Tests performed
+*
+ WRITE( NOUNIT, FMT = 9987 )
+ END IF
+ NERRS = NERRS + 1
+ IF( RESULT( JR ).LT.10000.0E0 ) THEN
+ WRITE( NOUNIT, FMT = 9989 )N, JTYPE, IOLDSD, JR,
+ $ RESULT( JR )
+ ELSE
+ WRITE( NOUNIT, FMT = 9988 )N, JTYPE, IOLDSD, JR,
+ $ RESULT( JR )
+ END IF
+ END IF
+ 290 CONTINUE
+ 300 CONTINUE
+ 310 CONTINUE
+*
+* Summary
+*
+ CALL SLASUM( 'CST', NOUNIT, NERRS, NTESTT )
+ RETURN
+*
+ 9999 FORMAT( ' CCHKST2STG: ', A, ' returned INFO=', I6, '.', / 9X,
+ $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
+*
+ 9998 FORMAT( / 1X, A3, ' -- Complex Hermitian eigenvalue problem' )
+ 9997 FORMAT( ' Matrix types (see CCHKST2STG for details): ' )
+*
+ 9996 FORMAT( / ' Special Matrices:',
+ $ / ' 1=Zero matrix. ',
+ $ ' 5=Diagonal: clustered entries.',
+ $ / ' 2=Identity matrix. ',
+ $ ' 6=Diagonal: large, evenly spaced.',
+ $ / ' 3=Diagonal: evenly spaced entries. ',
+ $ ' 7=Diagonal: small, evenly spaced.',
+ $ / ' 4=Diagonal: geometr. spaced entries.' )
+ 9995 FORMAT( ' Dense ', A, ' Matrices:',
+ $ / ' 8=Evenly spaced eigenvals. ',
+ $ ' 12=Small, evenly spaced eigenvals.',
+ $ / ' 9=Geometrically spaced eigenvals. ',
+ $ ' 13=Matrix with random O(1) entries.',
+ $ / ' 10=Clustered eigenvalues. ',
+ $ ' 14=Matrix with large random entries.',
+ $ / ' 11=Large, evenly spaced eigenvals. ',
+ $ ' 15=Matrix with small random entries.' )
+ 9994 FORMAT( ' 16=Positive definite, evenly spaced eigenvalues',
+ $ / ' 17=Positive definite, geometrically spaced eigenvlaues',
+ $ / ' 18=Positive definite, clustered eigenvalues',
+ $ / ' 19=Positive definite, small evenly spaced eigenvalues',
+ $ / ' 20=Positive definite, large evenly spaced eigenvalues',
+ $ / ' 21=Diagonally dominant tridiagonal, geometrically',
+ $ ' spaced eigenvalues' )
+*
+ 9989 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
+ $ 4( I4, ',' ), ' result ', I3, ' is', 0P, F8.2 )
+ 9988 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
+ $ 4( I4, ',' ), ' result ', I3, ' is', 1P, E10.3 )
+*
+ 9987 FORMAT( / 'Test performed: see CCHKST2STG for details.', / )
+* End of CCHKST2STG
+*
+ END
diff --git a/TESTING/EIG/cdrvsg2stg.f b/TESTING/EIG/cdrvsg2stg.f
new file mode 100644
index 00000000..3a624568
--- /dev/null
+++ b/TESTING/EIG/cdrvsg2stg.f
@@ -0,0 +1,1384 @@
+*> \brief \b CDRVSG2STG
+*
+* @generated from zdrvsg2stg.f, fortran z -> c, Sun Nov 6 14:01:09 2016
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE CDRVSG2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+* NOUNIT, A, LDA, B, LDB, D, D2, Z, LDZ, AB,
+* BB, AP, BP, WORK, NWORK, RWORK, LRWORK,
+* IWORK, LIWORK, RESULT, INFO )
+*
+* IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDB, LDZ, LIWORK, LRWORK, NOUNIT,
+* $ NSIZES, NTYPES, NWORK
+* REAL THRESH
+* ..
+* .. Array Arguments ..
+* LOGICAL DOTYPE( * )
+* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+* REAL D( * ), RESULT( * ), RWORK( * )
+* COMPLEX A( LDA, * ), AB( LDA, * ), AP( * ),
+* $ B( LDB, * ), BB( LDB, * ), BP( * ), WORK( * ),
+* $ Z( LDZ, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> CDRVSG2STG checks the complex Hermitian generalized eigenproblem
+*> drivers.
+*>
+*> CHEGV computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian-definite generalized
+*> eigenproblem.
+*>
+*> CHEGVD computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian-definite generalized
+*> eigenproblem using a divide and conquer algorithm.
+*>
+*> CHEGVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian-definite generalized
+*> eigenproblem.
+*>
+*> CHPGV computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian-definite generalized
+*> eigenproblem in packed storage.
+*>
+*> CHPGVD computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian-definite generalized
+*> eigenproblem in packed storage using a divide and
+*> conquer algorithm.
+*>
+*> CHPGVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian-definite generalized
+*> eigenproblem in packed storage.
+*>
+*> CHBGV computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian-definite banded
+*> generalized eigenproblem.
+*>
+*> CHBGVD computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian-definite banded
+*> generalized eigenproblem using a divide and conquer
+*> algorithm.
+*>
+*> CHBGVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian-definite banded
+*> generalized eigenproblem.
+*>
+*> When CDRVSG2STG is called, a number of matrix "sizes" ("n's") and a
+*> number of matrix "types" are specified. For each size ("n")
+*> and each type of matrix, one matrix A of the given type will be
+*> generated; a random well-conditioned matrix B is also generated
+*> and the pair (A,B) is used to test the drivers.
+*>
+*> For each pair (A,B), the following tests are performed:
+*>
+*> (1) CHEGV with ITYPE = 1 and UPLO ='U':
+*>
+*> | A Z - B Z D | / ( |A| |Z| n ulp )
+*> | D - D2 | / ( |D| ulp ) where D is computed by
+*> CHEGV and D2 is computed by
+*> CHEGV_2STAGE. This test is
+*> only performed for DSYGV
+*>
+*> (2) as (1) but calling CHPGV
+*> (3) as (1) but calling CHBGV
+*> (4) as (1) but with UPLO = 'L'
+*> (5) as (4) but calling CHPGV
+*> (6) as (4) but calling CHBGV
+*>
+*> (7) CHEGV with ITYPE = 2 and UPLO ='U':
+*>
+*> | A B Z - Z D | / ( |A| |Z| n ulp )
+*>
+*> (8) as (7) but calling CHPGV
+*> (9) as (7) but with UPLO = 'L'
+*> (10) as (9) but calling CHPGV
+*>
+*> (11) CHEGV with ITYPE = 3 and UPLO ='U':
+*>
+*> | B A Z - Z D | / ( |A| |Z| n ulp )
+*>
+*> (12) as (11) but calling CHPGV
+*> (13) as (11) but with UPLO = 'L'
+*> (14) as (13) but calling CHPGV
+*>
+*> CHEGVD, CHPGVD and CHBGVD performed the same 14 tests.
+*>
+*> CHEGVX, CHPGVX and CHBGVX performed the above 14 tests with
+*> the parameter RANGE = 'A', 'N' and 'I', respectively.
+*>
+*> The "sizes" are specified by an array NN(1:NSIZES); the value of
+*> each element NN(j) specifies one size.
+*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
+*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
+*> This type is used for the matrix A which has half-bandwidth KA.
+*> B is generated as a well-conditioned positive definite matrix
+*> with half-bandwidth KB (<= KA).
+*> Currently, the list of possible types for A is:
+*>
+*> (1) The zero matrix.
+*> (2) The identity matrix.
+*>
+*> (3) A diagonal matrix with evenly spaced entries
+*> 1, ..., ULP and random signs.
+*> (ULP = (first number larger than 1) - 1 )
+*> (4) A diagonal matrix with geometrically spaced entries
+*> 1, ..., ULP and random signs.
+*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
+*> and random signs.
+*>
+*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
+*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
+*>
+*> (8) A matrix of the form U* D U, where U is unitary and
+*> D has evenly spaced entries 1, ..., ULP with random signs
+*> on the diagonal.
+*>
+*> (9) A matrix of the form U* D U, where U is unitary and
+*> D has geometrically spaced entries 1, ..., ULP with random
+*> signs on the diagonal.
+*>
+*> (10) A matrix of the form U* D U, where U is unitary and
+*> D has "clustered" entries 1, ULP,..., ULP with random
+*> signs on the diagonal.
+*>
+*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
+*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
+*>
+*> (13) Hermitian matrix with random entries chosen from (-1,1).
+*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
+*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
+*>
+*> (16) Same as (8), but with KA = 1 and KB = 1
+*> (17) Same as (8), but with KA = 2 and KB = 1
+*> (18) Same as (8), but with KA = 2 and KB = 2
+*> (19) Same as (8), but with KA = 3 and KB = 1
+*> (20) Same as (8), but with KA = 3 and KB = 2
+*> (21) Same as (8), but with KA = 3 and KB = 3
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \verbatim
+*> NSIZES INTEGER
+*> The number of sizes of matrices to use. If it is zero,
+*> CDRVSG2STG does nothing. It must be at least zero.
+*> Not modified.
+*>
+*> NN INTEGER array, dimension (NSIZES)
+*> An array containing the sizes to be used for the matrices.
+*> Zero values will be skipped. The values must be at least
+*> zero.
+*> Not modified.
+*>
+*> NTYPES INTEGER
+*> The number of elements in DOTYPE. If it is zero, CDRVSG2STG
+*> does nothing. It must be at least zero. If it is MAXTYP+1
+*> and NSIZES is 1, then an additional type, MAXTYP+1 is
+*> defined, which is to use whatever matrix is in A. This
+*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
+*> DOTYPE(MAXTYP+1) is .TRUE. .
+*> Not modified.
+*>
+*> DOTYPE LOGICAL array, dimension (NTYPES)
+*> If DOTYPE(j) is .TRUE., then for each size in NN a
+*> matrix of that size and of type j will be generated.
+*> If NTYPES is smaller than the maximum number of types
+*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
+*> MAXTYP will not be generated. If NTYPES is larger
+*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
+*> will be ignored.
+*> Not modified.
+*>
+*> ISEED INTEGER array, dimension (4)
+*> On entry ISEED specifies the seed of the random number
+*> generator. The array elements should be between 0 and 4095;
+*> if not they will be reduced mod 4096. Also, ISEED(4) must
+*> be odd. The random number generator uses a linear
+*> congruential sequence limited to small integers, and so
+*> should produce machine independent random numbers. The
+*> values of ISEED are changed on exit, and can be used in the
+*> next call to CDRVSG2STG to continue the same random number
+*> sequence.
+*> Modified.
+*>
+*> THRESH REAL
+*> A test will count as "failed" if the "error", computed as
+*> described above, exceeds THRESH. Note that the error
+*> is scaled to be O(1), so THRESH should be a reasonably
+*> small multiple of 1, e.g., 10 or 100. In particular,
+*> it should not depend on the precision (single vs. double)
+*> or the size of the matrix. It must be at least zero.
+*> Not modified.
+*>
+*> NOUNIT INTEGER
+*> The FORTRAN unit number for printing out error messages
+*> (e.g., if a routine returns IINFO not equal to 0.)
+*> Not modified.
+*>
+*> A COMPLEX array, dimension (LDA , max(NN))
+*> Used to hold the matrix whose eigenvalues are to be
+*> computed. On exit, A contains the last matrix actually
+*> used.
+*> Modified.
+*>
+*> LDA INTEGER
+*> The leading dimension of A. It must be at
+*> least 1 and at least max( NN ).
+*> Not modified.
+*>
+*> B COMPLEX array, dimension (LDB , max(NN))
+*> Used to hold the Hermitian positive definite matrix for
+*> the generailzed problem.
+*> On exit, B contains the last matrix actually
+*> used.
+*> Modified.
+*>
+*> LDB INTEGER
+*> The leading dimension of B. It must be at
+*> least 1 and at least max( NN ).
+*> Not modified.
+*>
+*> D REAL array, dimension (max(NN))
+*> The eigenvalues of A. On exit, the eigenvalues in D
+*> correspond with the matrix in A.
+*> Modified.
+*>
+*> Z COMPLEX array, dimension (LDZ, max(NN))
+*> The matrix of eigenvectors.
+*> Modified.
+*>
+*> LDZ INTEGER
+*> The leading dimension of ZZ. It must be at least 1 and
+*> at least max( NN ).
+*> Not modified.
+*>
+*> AB COMPLEX array, dimension (LDA, max(NN))
+*> Workspace.
+*> Modified.
+*>
+*> BB COMPLEX array, dimension (LDB, max(NN))
+*> Workspace.
+*> Modified.
+*>
+*> AP COMPLEX array, dimension (max(NN)**2)
+*> Workspace.
+*> Modified.
+*>
+*> BP COMPLEX array, dimension (max(NN)**2)
+*> Workspace.
+*> Modified.
+*>
+*> WORK COMPLEX array, dimension (NWORK)
+*> Workspace.
+*> Modified.
+*>
+*> NWORK INTEGER
+*> The number of entries in WORK. This must be at least
+*> 2*N + N**2 where N = max( NN(j), 2 ).
+*> Not modified.
+*>
+*> RWORK REAL array, dimension (LRWORK)
+*> Workspace.
+*> Modified.
+*>
+*> LRWORK INTEGER
+*> The number of entries in RWORK. This must be at least
+*> max( 7*N, 1 + 4*N + 2*N*lg(N) + 3*N**2 ) where
+*> N = max( NN(j) ) and lg( N ) = smallest integer k such
+*> that 2**k >= N .
+*> Not modified.
+*>
+*> IWORK INTEGER array, dimension (LIWORK))
+*> Workspace.
+*> Modified.
+*>
+*> LIWORK INTEGER
+*> The number of entries in IWORK. This must be at least
+*> 2 + 5*max( NN(j) ).
+*> Not modified.
+*>
+*> RESULT REAL array, dimension (70)
+*> The values computed by the 70 tests described above.
+*> Modified.
+*>
+*> INFO INTEGER
+*> If 0, then everything ran OK.
+*> -1: NSIZES < 0
+*> -2: Some NN(j) < 0
+*> -3: NTYPES < 0
+*> -5: THRESH < 0
+*> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
+*> -16: LDZ < 1 or LDZ < NMAX.
+*> -21: NWORK too small.
+*> -23: LRWORK too small.
+*> -25: LIWORK too small.
+*> If CLATMR, CLATMS, CHEGV, CHPGV, CHBGV, CHEGVD, CHPGVD,
+*> CHPGVD, CHEGVX, CHPGVX, CHBGVX returns an error code,
+*> the absolute value of it is returned.
+*> Modified.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> Some Local Variables and Parameters:
+*> ---- ----- --------- --- ----------
+*> ZERO, ONE Real 0 and 1.
+*> MAXTYP The number of types defined.
+*> NTEST The number of tests that have been run
+*> on this matrix.
+*> NTESTT The total number of tests for this call.
+*> NMAX Largest value in NN.
+*> NMATS The number of matrices generated so far.
+*> NERRS The number of tests which have exceeded THRESH
+*> so far (computed by SLAFTS).
+*> COND, IMODE Values to be passed to the matrix generators.
+*> ANORM Norm of A; passed to matrix generators.
+*>
+*> OVFL, UNFL Overflow and underflow thresholds.
+*> ULP, ULPINV Finest relative precision and its inverse.
+*> RTOVFL, RTUNFL Square roots of the previous 2 values.
+*> The following four arrays decode JTYPE:
+*> KTYPE(j) The general type (1-10) for type "j".
+*> KMODE(j) The MODE value to be passed to the matrix
+*> generator for type "j".
+*> KMAGN(j) The order of magnitude ( O(1),
+*> O(overflow^(1/2) ), O(underflow^(1/2) )
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complex_eig
+*
+* =====================================================================
+ SUBROUTINE CDRVSG2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+ $ NOUNIT, A, LDA, B, LDB, D, D2, Z, LDZ, AB,
+ $ BB, AP, BP, WORK, NWORK, RWORK, LRWORK,
+ $ IWORK, LIWORK, RESULT, INFO )
+*
+ IMPLICIT NONE
+*
+* -- LAPACK test routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDB, LDZ, LIWORK, LRWORK, NOUNIT,
+ $ NSIZES, NTYPES, NWORK
+ REAL THRESH
+* ..
+* .. Array Arguments ..
+ LOGICAL DOTYPE( * )
+ INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+ REAL D( * ), D2( * ), RESULT( * ), RWORK( * )
+ COMPLEX A( LDA, * ), AB( LDA, * ), AP( * ),
+ $ B( LDB, * ), BB( LDB, * ), BP( * ), WORK( * ),
+ $ Z( LDZ, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE, TEN
+ PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TEN = 10.0E+0 )
+ COMPLEX CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
+ $ CONE = ( 1.0E+0, 0.0E+0 ) )
+ INTEGER MAXTYP
+ PARAMETER ( MAXTYP = 21 )
+* ..
+* .. Local Scalars ..
+ LOGICAL BADNN
+ CHARACTER UPLO
+ INTEGER I, IBTYPE, IBUPLO, IINFO, IJ, IL, IMODE, ITEMP,
+ $ ITYPE, IU, J, JCOL, JSIZE, JTYPE, KA, KA9, KB,
+ $ KB9, M, MTYPES, N, NERRS, NMATS, NMAX, NTEST,
+ $ NTESTT
+ REAL ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
+ $ RTUNFL, ULP, ULPINV, UNFL, VL, VU, TEMP1, TEMP2
+* ..
+* .. Local Arrays ..
+ INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
+ $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
+ $ KTYPE( MAXTYP )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ REAL SLAMCH, SLARND
+ EXTERNAL LSAME, SLAMCH, SLARND
+* ..
+* .. External Subroutines ..
+ EXTERNAL SLABAD, SLAFTS, SLASUM, XERBLA, CHBGV, CHBGVD,
+ $ CHBGVX, CHEGV, CHEGVD, CHEGVX, CHPGV, CHPGVD,
+ $ CHPGVX, CLACPY, CLASET, CLATMR, CLATMS, CSGT01,
+ $ CHEGV_2STAGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, REAL, MAX, MIN, SQRT
+* ..
+* .. Data statements ..
+ DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 6*9 /
+ DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
+ $ 2, 3, 6*1 /
+ DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
+ $ 0, 0, 6*4 /
+* ..
+* .. Executable Statements ..
+*
+* 1) Check for errors
+*
+ NTESTT = 0
+ INFO = 0
+*
+ BADNN = .FALSE.
+ NMAX = 0
+ DO 10 J = 1, NSIZES
+ NMAX = MAX( NMAX, NN( J ) )
+ IF( NN( J ).LT.0 )
+ $ BADNN = .TRUE.
+ 10 CONTINUE
+*
+* Check for errors
+*
+ IF( NSIZES.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( BADNN ) THEN
+ INFO = -2
+ ELSE IF( NTYPES.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
+ INFO = -9
+ ELSE IF( LDZ.LE.1 .OR. LDZ.LT.NMAX ) THEN
+ INFO = -16
+ ELSE IF( 2*MAX( NMAX, 2 )**2.GT.NWORK ) THEN
+ INFO = -21
+ ELSE IF( 2*MAX( NMAX, 2 )**2.GT.LRWORK ) THEN
+ INFO = -23
+ ELSE IF( 2*MAX( NMAX, 2 )**2.GT.LIWORK ) THEN
+ INFO = -25
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CDRVSG2STG', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
+ $ RETURN
+*
+* More Important constants
+*
+ UNFL = SLAMCH( 'Safe minimum' )
+ OVFL = SLAMCH( 'Overflow' )
+ CALL SLABAD( UNFL, OVFL )
+ ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
+ ULPINV = ONE / ULP
+ RTUNFL = SQRT( UNFL )
+ RTOVFL = SQRT( OVFL )
+*
+ DO 20 I = 1, 4
+ ISEED2( I ) = ISEED( I )
+ 20 CONTINUE
+*
+* Loop over sizes, types
+*
+ NERRS = 0
+ NMATS = 0
+*
+ DO 650 JSIZE = 1, NSIZES
+ N = NN( JSIZE )
+ ANINV = ONE / REAL( MAX( 1, N ) )
+*
+ IF( NSIZES.NE.1 ) THEN
+ MTYPES = MIN( MAXTYP, NTYPES )
+ ELSE
+ MTYPES = MIN( MAXTYP+1, NTYPES )
+ END IF
+*
+ KA9 = 0
+ KB9 = 0
+ DO 640 JTYPE = 1, MTYPES
+ IF( .NOT.DOTYPE( JTYPE ) )
+ $ GO TO 640
+ NMATS = NMATS + 1
+ NTEST = 0
+*
+ DO 30 J = 1, 4
+ IOLDSD( J ) = ISEED( J )
+ 30 CONTINUE
+*
+* 2) Compute "A"
+*
+* Control parameters:
+*
+* KMAGN KMODE KTYPE
+* =1 O(1) clustered 1 zero
+* =2 large clustered 2 identity
+* =3 small exponential (none)
+* =4 arithmetic diagonal, w/ eigenvalues
+* =5 random log hermitian, w/ eigenvalues
+* =6 random (none)
+* =7 random diagonal
+* =8 random hermitian
+* =9 banded, w/ eigenvalues
+*
+ IF( MTYPES.GT.MAXTYP )
+ $ GO TO 90
+*
+ ITYPE = KTYPE( JTYPE )
+ IMODE = KMODE( JTYPE )
+*
+* Compute norm
+*
+ GO TO ( 40, 50, 60 )KMAGN( JTYPE )
+*
+ 40 CONTINUE
+ ANORM = ONE
+ GO TO 70
+*
+ 50 CONTINUE
+ ANORM = ( RTOVFL*ULP )*ANINV
+ GO TO 70
+*
+ 60 CONTINUE
+ ANORM = RTUNFL*N*ULPINV
+ GO TO 70
+*
+ 70 CONTINUE
+*
+ IINFO = 0
+ COND = ULPINV
+*
+* Special Matrices -- Identity & Jordan block
+*
+ IF( ITYPE.EQ.1 ) THEN
+*
+* Zero
+*
+ KA = 0
+ KB = 0
+ CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
+*
+ ELSE IF( ITYPE.EQ.2 ) THEN
+*
+* Identity
+*
+ KA = 0
+ KB = 0
+ CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
+ DO 80 JCOL = 1, N
+ A( JCOL, JCOL ) = ANORM
+ 80 CONTINUE
+*
+ ELSE IF( ITYPE.EQ.4 ) THEN
+*
+* Diagonal Matrix, [Eigen]values Specified
+*
+ KA = 0
+ KB = 0
+ CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
+ $ ANORM, 0, 0, 'N', A, LDA, WORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.5 ) THEN
+*
+* Hermitian, eigenvalues specified
+*
+ KA = MAX( 0, N-1 )
+ KB = KA
+ CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
+ $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.7 ) THEN
+*
+* Diagonal, random eigenvalues
+*
+ KA = 0
+ KB = 0
+ CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.8 ) THEN
+*
+* Hermitian, random eigenvalues
+*
+ KA = MAX( 0, N-1 )
+ KB = KA
+ CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.9 ) THEN
+*
+* Hermitian banded, eigenvalues specified
+*
+* The following values are used for the half-bandwidths:
+*
+* ka = 1 kb = 1
+* ka = 2 kb = 1
+* ka = 2 kb = 2
+* ka = 3 kb = 1
+* ka = 3 kb = 2
+* ka = 3 kb = 3
+*
+ KB9 = KB9 + 1
+ IF( KB9.GT.KA9 ) THEN
+ KA9 = KA9 + 1
+ KB9 = 1
+ END IF
+ KA = MAX( 0, MIN( N-1, KA9 ) )
+ KB = MAX( 0, MIN( N-1, KB9 ) )
+ CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
+ $ ANORM, KA, KA, 'N', A, LDA, WORK, IINFO )
+*
+ ELSE
+*
+ IINFO = 1
+ END IF
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ RETURN
+ END IF
+*
+ 90 CONTINUE
+*
+ ABSTOL = UNFL + UNFL
+ IF( N.LE.1 ) THEN
+ IL = 1
+ IU = N
+ ELSE
+ IL = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) )
+ IU = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) )
+ IF( IL.GT.IU ) THEN
+ ITEMP = IL
+ IL = IU
+ IU = ITEMP
+ END IF
+ END IF
+*
+* 3) Call CHEGV, CHPGV, CHBGV, CHEGVD, CHPGVD, CHBGVD,
+* CHEGVX, CHPGVX and CHBGVX, do tests.
+*
+* loop over the three generalized problems
+* IBTYPE = 1: A*x = (lambda)*B*x
+* IBTYPE = 2: A*B*x = (lambda)*x
+* IBTYPE = 3: B*A*x = (lambda)*x
+*
+ DO 630 IBTYPE = 1, 3
+*
+* loop over the setting UPLO
+*
+ DO 620 IBUPLO = 1, 2
+ IF( IBUPLO.EQ.1 )
+ $ UPLO = 'U'
+ IF( IBUPLO.EQ.2 )
+ $ UPLO = 'L'
+*
+* Generate random well-conditioned positive definite
+* matrix B, of bandwidth not greater than that of A.
+*
+ CALL CLATMS( N, N, 'U', ISEED, 'P', RWORK, 5, TEN,
+ $ ONE, KB, KB, UPLO, B, LDB, WORK( N+1 ),
+ $ IINFO )
+*
+* Test CHEGV
+*
+ NTEST = NTEST + 1
+*
+ CALL CLACPY( ' ', N, N, A, LDA, Z, LDZ )
+ CALL CLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL CHEGV( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D,
+ $ WORK, NWORK, RWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHEGV(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL CSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+* Test CHEGV_2STAGE
+*
+ NTEST = NTEST + 1
+*
+ CALL CLACPY( ' ', N, N, A, LDA, Z, LDZ )
+ CALL CLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL CHEGV_2STAGE( IBTYPE, 'N', UPLO, N, Z, LDZ,
+ $ BB, LDB, D2, WORK, NWORK, RWORK,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'CHEGV_2STAGE(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+C CALL CSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+C $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+* Do Tests | D1 - D2 | / ( |D1| ulp )
+* D1 computed using the standard 1-stage reduction as reference
+* D2 computed using the 2-stage reduction
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 151 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D( J ) ),
+ $ ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D( J )-D2( J ) ) )
+ 151 CONTINUE
+*
+ RESULT( NTEST ) = TEMP2 /
+ $ MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Test CHEGVD
+*
+ NTEST = NTEST + 1
+*
+ CALL CLACPY( ' ', N, N, A, LDA, Z, LDZ )
+ CALL CLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL CHEGVD( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D,
+ $ WORK, NWORK, RWORK, LRWORK, IWORK,
+ $ LIWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHEGVD(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL CSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+* Test CHEGVX
+*
+ NTEST = NTEST + 1
+*
+ CALL CLACPY( ' ', N, N, A, LDA, AB, LDA )
+ CALL CLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL CHEGVX( IBTYPE, 'V', 'A', UPLO, N, AB, LDA, BB,
+ $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
+ $ LDZ, WORK, NWORK, RWORK, IWORK( N+1 ),
+ $ IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHEGVX(V,A' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL CSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+ CALL CLACPY( ' ', N, N, A, LDA, AB, LDA )
+ CALL CLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+* since we do not know the exact eigenvalues of this
+* eigenpair, we just set VL and VU as constants.
+* It is quite possible that there are no eigenvalues
+* in this interval.
+*
+ VL = ZERO
+ VU = ANORM
+ CALL CHEGVX( IBTYPE, 'V', 'V', UPLO, N, AB, LDA, BB,
+ $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
+ $ LDZ, WORK, NWORK, RWORK, IWORK( N+1 ),
+ $ IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHEGVX(V,V,' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL CSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+ CALL CLACPY( ' ', N, N, A, LDA, AB, LDA )
+ CALL CLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL CHEGVX( IBTYPE, 'V', 'I', UPLO, N, AB, LDA, BB,
+ $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
+ $ LDZ, WORK, NWORK, RWORK, IWORK( N+1 ),
+ $ IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHEGVX(V,I,' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL CSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+ 100 CONTINUE
+*
+* Test CHPGV
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 120 J = 1, N
+ DO 110 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 110 CONTINUE
+ 120 CONTINUE
+ ELSE
+ IJ = 1
+ DO 140 J = 1, N
+ DO 130 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 130 CONTINUE
+ 140 CONTINUE
+ END IF
+*
+ CALL CHPGV( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ,
+ $ WORK, RWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHPGV(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL CSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+* Test CHPGVD
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 160 J = 1, N
+ DO 150 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 150 CONTINUE
+ 160 CONTINUE
+ ELSE
+ IJ = 1
+ DO 180 J = 1, N
+ DO 170 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 170 CONTINUE
+ 180 CONTINUE
+ END IF
+*
+ CALL CHPGVD( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ,
+ $ WORK, NWORK, RWORK, LRWORK, IWORK,
+ $ LIWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHPGVD(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL CSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+* Test CHPGVX
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 200 J = 1, N
+ DO 190 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 190 CONTINUE
+ 200 CONTINUE
+ ELSE
+ IJ = 1
+ DO 220 J = 1, N
+ DO 210 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 210 CONTINUE
+ 220 CONTINUE
+ END IF
+*
+ CALL CHPGVX( IBTYPE, 'V', 'A', UPLO, N, AP, BP, VL,
+ $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
+ $ RWORK, IWORK( N+1 ), IWORK, INFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHPGVX(V,A' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL CSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 240 J = 1, N
+ DO 230 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 230 CONTINUE
+ 240 CONTINUE
+ ELSE
+ IJ = 1
+ DO 260 J = 1, N
+ DO 250 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 250 CONTINUE
+ 260 CONTINUE
+ END IF
+*
+ VL = ZERO
+ VU = ANORM
+ CALL CHPGVX( IBTYPE, 'V', 'V', UPLO, N, AP, BP, VL,
+ $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
+ $ RWORK, IWORK( N+1 ), IWORK, INFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHPGVX(V,V' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL CSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 280 J = 1, N
+ DO 270 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 270 CONTINUE
+ 280 CONTINUE
+ ELSE
+ IJ = 1
+ DO 300 J = 1, N
+ DO 290 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 290 CONTINUE
+ 300 CONTINUE
+ END IF
+*
+ CALL CHPGVX( IBTYPE, 'V', 'I', UPLO, N, AP, BP, VL,
+ $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
+ $ RWORK, IWORK( N+1 ), IWORK, INFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHPGVX(V,I' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL CSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+ 310 CONTINUE
+*
+ IF( IBTYPE.EQ.1 ) THEN
+*
+* TEST CHBGV
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 340 J = 1, N
+ DO 320 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 320 CONTINUE
+ DO 330 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 330 CONTINUE
+ 340 CONTINUE
+ ELSE
+ DO 370 J = 1, N
+ DO 350 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 350 CONTINUE
+ DO 360 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 360 CONTINUE
+ 370 CONTINUE
+ END IF
+*
+ CALL CHBGV( 'V', UPLO, N, KA, KB, AB, LDA, BB, LDB,
+ $ D, Z, LDZ, WORK, RWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHBGV(V,' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL CSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+* TEST CHBGVD
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 400 J = 1, N
+ DO 380 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 380 CONTINUE
+ DO 390 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 390 CONTINUE
+ 400 CONTINUE
+ ELSE
+ DO 430 J = 1, N
+ DO 410 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 410 CONTINUE
+ DO 420 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 420 CONTINUE
+ 430 CONTINUE
+ END IF
+*
+ CALL CHBGVD( 'V', UPLO, N, KA, KB, AB, LDA, BB,
+ $ LDB, D, Z, LDZ, WORK, NWORK, RWORK,
+ $ LRWORK, IWORK, LIWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHBGVD(V,' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL CSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+* Test CHBGVX
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 460 J = 1, N
+ DO 440 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 440 CONTINUE
+ DO 450 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 450 CONTINUE
+ 460 CONTINUE
+ ELSE
+ DO 490 J = 1, N
+ DO 470 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 470 CONTINUE
+ DO 480 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 480 CONTINUE
+ 490 CONTINUE
+ END IF
+*
+ CALL CHBGVX( 'V', 'A', UPLO, N, KA, KB, AB, LDA,
+ $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
+ $ IU, ABSTOL, M, D, Z, LDZ, WORK, RWORK,
+ $ IWORK( N+1 ), IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHBGVX(V,A' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL CSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 520 J = 1, N
+ DO 500 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 500 CONTINUE
+ DO 510 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 510 CONTINUE
+ 520 CONTINUE
+ ELSE
+ DO 550 J = 1, N
+ DO 530 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 530 CONTINUE
+ DO 540 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 540 CONTINUE
+ 550 CONTINUE
+ END IF
+*
+ VL = ZERO
+ VU = ANORM
+ CALL CHBGVX( 'V', 'V', UPLO, N, KA, KB, AB, LDA,
+ $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
+ $ IU, ABSTOL, M, D, Z, LDZ, WORK, RWORK,
+ $ IWORK( N+1 ), IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHBGVX(V,V' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL CSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 580 J = 1, N
+ DO 560 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 560 CONTINUE
+ DO 570 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 570 CONTINUE
+ 580 CONTINUE
+ ELSE
+ DO 610 J = 1, N
+ DO 590 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 590 CONTINUE
+ DO 600 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 600 CONTINUE
+ 610 CONTINUE
+ END IF
+*
+ CALL CHBGVX( 'V', 'I', UPLO, N, KA, KB, AB, LDA,
+ $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
+ $ IU, ABSTOL, M, D, Z, LDZ, WORK, RWORK,
+ $ IWORK( N+1 ), IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHBGVX(V,I' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL CSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+ END IF
+*
+ 620 CONTINUE
+ 630 CONTINUE
+*
+* End of Loop -- Check for RESULT(j) > THRESH
+*
+ NTESTT = NTESTT + NTEST
+ CALL SLAFTS( 'CSG', N, N, JTYPE, NTEST, RESULT, IOLDSD,
+ $ THRESH, NOUNIT, NERRS )
+ 640 CONTINUE
+ 650 CONTINUE
+*
+* Summary
+*
+ CALL SLASUM( 'CSG', NOUNIT, NERRS, NTESTT )
+*
+ RETURN
+*
+ 9999 FORMAT( ' CDRVSG2STG: ', A, ' returned INFO=', I6, '.', / 9X,
+ $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
+*
+* End of CDRVSG2STG
+*
+ END
diff --git a/TESTING/EIG/cdrvst2stg.f b/TESTING/EIG/cdrvst2stg.f
new file mode 100644
index 00000000..ab1af355
--- /dev/null
+++ b/TESTING/EIG/cdrvst2stg.f
@@ -0,0 +1,2118 @@
+*> \brief \b CDRVST2STG
+*
+* @generated from zdrvst2stg.f, fortran z -> c, Sat Nov 5 23:41:02 2016
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE CDRVST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+* NOUNIT, A, LDA, D1, D2, D3, WA1, WA2, WA3, U,
+* LDU, V, TAU, Z, WORK, LWORK, RWORK, LRWORK,
+* IWORK, LIWORK, RESULT, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
+* $ NSIZES, NTYPES
+* REAL THRESH
+* ..
+* .. Array Arguments ..
+* LOGICAL DOTYPE( * )
+* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+* REAL D1( * ), D2( * ), D3( * ), RESULT( * ),
+* $ RWORK( * ), WA1( * ), WA2( * ), WA3( * )
+* COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
+* $ V( LDU, * ), WORK( * ), Z( LDU, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> CDRVST2STG checks the Hermitian eigenvalue problem drivers.
+*>
+*> CHEEVD computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian matrix,
+*> using a divide-and-conquer algorithm.
+*>
+*> CHEEVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian matrix.
+*>
+*> CHEEVR computes selected eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian matrix
+*> using the Relatively Robust Representation where it can.
+*>
+*> CHPEVD computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian matrix in packed
+*> storage, using a divide-and-conquer algorithm.
+*>
+*> CHPEVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian matrix in packed
+*> storage.
+*>
+*> CHBEVD computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian band matrix,
+*> using a divide-and-conquer algorithm.
+*>
+*> CHBEVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian band matrix.
+*>
+*> CHEEV computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian matrix.
+*>
+*> CHPEV computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian matrix in packed
+*> storage.
+*>
+*> CHBEV computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian band matrix.
+*>
+*> When CDRVST2STG is called, a number of matrix "sizes" ("n's") and a
+*> number of matrix "types" are specified. For each size ("n")
+*> and each type of matrix, one matrix will be generated and used
+*> to test the appropriate drivers. For each matrix and each
+*> driver routine called, the following tests will be performed:
+*>
+*> (1) | A - Z D Z' | / ( |A| n ulp )
+*>
+*> (2) | I - Z Z' | / ( n ulp )
+*>
+*> (3) | D1 - D2 | / ( |D1| ulp )
+*>
+*> where Z is the matrix of eigenvectors returned when the
+*> eigenvector option is given and D1 and D2 are the eigenvalues
+*> returned with and without the eigenvector option.
+*>
+*> The "sizes" are specified by an array NN(1:NSIZES); the value of
+*> each element NN(j) specifies one size.
+*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
+*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
+*> Currently, the list of possible types is:
+*>
+*> (1) The zero matrix.
+*> (2) The identity matrix.
+*>
+*> (3) A diagonal matrix with evenly spaced entries
+*> 1, ..., ULP and random signs.
+*> (ULP = (first number larger than 1) - 1 )
+*> (4) A diagonal matrix with geometrically spaced entries
+*> 1, ..., ULP and random signs.
+*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
+*> and random signs.
+*>
+*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
+*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
+*>
+*> (8) A matrix of the form U* D U, where U is unitary and
+*> D has evenly spaced entries 1, ..., ULP with random signs
+*> on the diagonal.
+*>
+*> (9) A matrix of the form U* D U, where U is unitary and
+*> D has geometrically spaced entries 1, ..., ULP with random
+*> signs on the diagonal.
+*>
+*> (10) A matrix of the form U* D U, where U is unitary and
+*> D has "clustered" entries 1, ULP,..., ULP with random
+*> signs on the diagonal.
+*>
+*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
+*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
+*>
+*> (13) Symmetric matrix with random entries chosen from (-1,1).
+*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
+*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
+*> (16) A band matrix with half bandwidth randomly chosen between
+*> 0 and N-1, with evenly spaced eigenvalues 1, ..., ULP
+*> with random signs.
+*> (17) Same as (16), but multiplied by SQRT( overflow threshold )
+*> (18) Same as (16), but multiplied by SQRT( underflow threshold )
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \verbatim
+*> NSIZES INTEGER
+*> The number of sizes of matrices to use. If it is zero,
+*> CDRVST2STG does nothing. It must be at least zero.
+*> Not modified.
+*>
+*> NN INTEGER array, dimension (NSIZES)
+*> An array containing the sizes to be used for the matrices.
+*> Zero values will be skipped. The values must be at least
+*> zero.
+*> Not modified.
+*>
+*> NTYPES INTEGER
+*> The number of elements in DOTYPE. If it is zero, CDRVST2STG
+*> does nothing. It must be at least zero. If it is MAXTYP+1
+*> and NSIZES is 1, then an additional type, MAXTYP+1 is
+*> defined, which is to use whatever matrix is in A. This
+*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
+*> DOTYPE(MAXTYP+1) is .TRUE. .
+*> Not modified.
+*>
+*> DOTYPE LOGICAL array, dimension (NTYPES)
+*> If DOTYPE(j) is .TRUE., then for each size in NN a
+*> matrix of that size and of type j will be generated.
+*> If NTYPES is smaller than the maximum number of types
+*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
+*> MAXTYP will not be generated. If NTYPES is larger
+*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
+*> will be ignored.
+*> Not modified.
+*>
+*> ISEED INTEGER array, dimension (4)
+*> On entry ISEED specifies the seed of the random number
+*> generator. The array elements should be between 0 and 4095;
+*> if not they will be reduced mod 4096. Also, ISEED(4) must
+*> be odd. The random number generator uses a linear
+*> congruential sequence limited to small integers, and so
+*> should produce machine independent random numbers. The
+*> values of ISEED are changed on exit, and can be used in the
+*> next call to CDRVST2STG to continue the same random number
+*> sequence.
+*> Modified.
+*>
+*> THRESH REAL
+*> A test will count as "failed" if the "error", computed as
+*> described above, exceeds THRESH. Note that the error
+*> is scaled to be O(1), so THRESH should be a reasonably
+*> small multiple of 1, e.g., 10 or 100. In particular,
+*> it should not depend on the precision (single vs. double)
+*> or the size of the matrix. It must be at least zero.
+*> Not modified.
+*>
+*> NOUNIT INTEGER
+*> The FORTRAN unit number for printing out error messages
+*> (e.g., if a routine returns IINFO not equal to 0.)
+*> Not modified.
+*>
+*> A COMPLEX array, dimension (LDA , max(NN))
+*> Used to hold the matrix whose eigenvalues are to be
+*> computed. On exit, A contains the last matrix actually
+*> used.
+*> Modified.
+*>
+*> LDA INTEGER
+*> The leading dimension of A. It must be at
+*> least 1 and at least max( NN ).
+*> Not modified.
+*>
+*> D1 REAL array, dimension (max(NN))
+*> The eigenvalues of A, as computed by CSTEQR simlutaneously
+*> with Z. On exit, the eigenvalues in D1 correspond with the
+*> matrix in A.
+*> Modified.
+*>
+*> D2 REAL array, dimension (max(NN))
+*> The eigenvalues of A, as computed by CSTEQR if Z is not
+*> computed. On exit, the eigenvalues in D2 correspond with
+*> the matrix in A.
+*> Modified.
+*>
+*> D3 REAL array, dimension (max(NN))
+*> The eigenvalues of A, as computed by SSTERF. On exit, the
+*> eigenvalues in D3 correspond with the matrix in A.
+*> Modified.
+*>
+*> WA1 REAL array, dimension
+*>
+*> WA2 REAL array, dimension
+*>
+*> WA3 REAL array, dimension
+*>
+*> U COMPLEX array, dimension (LDU, max(NN))
+*> The unitary matrix computed by CHETRD + CUNGC3.
+*> Modified.
+*>
+*> LDU INTEGER
+*> The leading dimension of U, Z, and V. It must be at
+*> least 1 and at least max( NN ).
+*> Not modified.
+*>
+*> V COMPLEX array, dimension (LDU, max(NN))
+*> The Housholder vectors computed by CHETRD in reducing A to
+*> tridiagonal form.
+*> Modified.
+*>
+*> TAU COMPLEX array, dimension (max(NN))
+*> The Householder factors computed by CHETRD in reducing A
+*> to tridiagonal form.
+*> Modified.
+*>
+*> Z COMPLEX array, dimension (LDU, max(NN))
+*> The unitary matrix of eigenvectors computed by CHEEVD,
+*> CHEEVX, CHPEVD, CHPEVX, CHBEVD, and CHBEVX.
+*> Modified.
+*>
+*> WORK - COMPLEX array of dimension ( LWORK )
+*> Workspace.
+*> Modified.
+*>
+*> LWORK - INTEGER
+*> The number of entries in WORK. This must be at least
+*> 2*max( NN(j), 2 )**2.
+*> Not modified.
+*>
+*> RWORK REAL array, dimension (3*max(NN))
+*> Workspace.
+*> Modified.
+*>
+*> LRWORK - INTEGER
+*> The number of entries in RWORK.
+*>
+*> IWORK INTEGER array, dimension (6*max(NN))
+*> Workspace.
+*> Modified.
+*>
+*> LIWORK - INTEGER
+*> The number of entries in IWORK.
+*>
+*> RESULT REAL array, dimension (??)
+*> The values computed by the tests described above.
+*> The values are currently limited to 1/ulp, to avoid
+*> overflow.
+*> Modified.
+*>
+*> INFO INTEGER
+*> If 0, then everything ran OK.
+*> -1: NSIZES < 0
+*> -2: Some NN(j) < 0
+*> -3: NTYPES < 0
+*> -5: THRESH < 0
+*> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
+*> -16: LDU < 1 or LDU < NMAX.
+*> -21: LWORK too small.
+*> If SLATMR, SLATMS, CHETRD, SORGC3, CSTEQR, SSTERF,
+*> or SORMC2 returns an error code, the
+*> absolute value of it is returned.
+*> Modified.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> Some Local Variables and Parameters:
+*> ---- ----- --------- --- ----------
+*> ZERO, ONE Real 0 and 1.
+*> MAXTYP The number of types defined.
+*> NTEST The number of tests performed, or which can
+*> be performed so far, for the current matrix.
+*> NTESTT The total number of tests performed so far.
+*> NMAX Largest value in NN.
+*> NMATS The number of matrices generated so far.
+*> NERRS The number of tests which have exceeded THRESH
+*> so far (computed by SLAFTS).
+*> COND, IMODE Values to be passed to the matrix generators.
+*> ANORM Norm of A; passed to matrix generators.
+*>
+*> OVFL, UNFL Overflow and underflow thresholds.
+*> ULP, ULPINV Finest relative precision and its inverse.
+*> RTOVFL, RTUNFL Square roots of the previous 2 values.
+*> The following four arrays decode JTYPE:
+*> KTYPE(j) The general type (1-10) for type "j".
+*> KMODE(j) The MODE value to be passed to the matrix
+*> generator for type "j".
+*> KMAGN(j) The order of magnitude ( O(1),
+*> O(overflow^(1/2) ), O(underflow^(1/2) )
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complex_eig
+*
+* =====================================================================
+ SUBROUTINE CDRVST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+ $ NOUNIT, A, LDA, D1, D2, D3, WA1, WA2, WA3, U,
+ $ LDU, V, TAU, Z, WORK, LWORK, RWORK, LRWORK,
+ $ IWORK, LIWORK, RESULT, INFO )
+*
+* -- LAPACK test routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
+ $ NSIZES, NTYPES
+ REAL THRESH
+* ..
+* .. Array Arguments ..
+ LOGICAL DOTYPE( * )
+ INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+ REAL D1( * ), D2( * ), D3( * ), RESULT( * ),
+ $ RWORK( * ), WA1( * ), WA2( * ), WA3( * )
+ COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
+ $ V( LDU, * ), WORK( * ), Z( LDU, * )
+* ..
+*
+* =====================================================================
+*
+*
+* .. Parameters ..
+ REAL ZERO, ONE, TWO, TEN
+ PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
+ $ TEN = 10.0E+0 )
+ REAL HALF
+ PARAMETER ( HALF = ONE / TWO )
+ COMPLEX CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
+ $ CONE = ( 1.0E+0, 0.0E+0 ) )
+ INTEGER MAXTYP
+ PARAMETER ( MAXTYP = 18 )
+* ..
+* .. Local Scalars ..
+ LOGICAL BADNN
+ CHARACTER UPLO
+ INTEGER I, IDIAG, IHBW, IINFO, IL, IMODE, INDWRK, INDX,
+ $ IROW, ITEMP, ITYPE, IU, IUPLO, J, J1, J2, JCOL,
+ $ JSIZE, JTYPE, KD, LGN, LIWEDC, LRWEDC, LWEDC,
+ $ M, M2, M3, MTYPES, N, NERRS, NMATS, NMAX,
+ $ NTEST, NTESTT
+ REAL ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
+ $ RTUNFL, TEMP1, TEMP2, TEMP3, ULP, ULPINV, UNFL,
+ $ VL, VU
+* ..
+* .. Local Arrays ..
+ INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
+ $ ISEED3( 4 ), KMAGN( MAXTYP ), KMODE( MAXTYP ),
+ $ KTYPE( MAXTYP )
+* ..
+* .. External Functions ..
+ REAL SLAMCH, SLARND, SSXT1
+ EXTERNAL SLAMCH, SLARND, SSXT1
+* ..
+* .. External Subroutines ..
+ EXTERNAL ALASVM, SLABAD, SLAFTS, XERBLA, CHBEV, CHBEVD,
+ $ CHBEVX, CHEEV, CHEEVD, CHEEVR, CHEEVX, CHET21,
+ $ CHET22, CHPEV, CHPEVD, CHPEVX, CLACPY, CLASET,
+ $ CHEEVD_2STAGE, CHEEVR_2STAGE, CHEEVX_2STAGE,
+ $ CHEEV_2STAGE, CHBEV_2STAGE, CHBEVD_2STAGE,
+ $ CHBEVX_2STAGE, CHETRD_2STAGE, CHETRD_SY2SB,
+ $ CHETRD_SB2ST, CLATMR, CLATMS
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, REAL, INT, LOG, MAX, MIN, SQRT
+* ..
+* .. Data statements ..
+ DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 3*9 /
+ DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
+ $ 2, 3, 1, 2, 3 /
+ DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
+ $ 0, 0, 4, 4, 4 /
+* ..
+* .. Executable Statements ..
+*
+* 1) Check for errors
+*
+ NTESTT = 0
+ INFO = 0
+*
+ BADNN = .FALSE.
+ NMAX = 1
+ DO 10 J = 1, NSIZES
+ NMAX = MAX( NMAX, NN( J ) )
+ IF( NN( J ).LT.0 )
+ $ BADNN = .TRUE.
+ 10 CONTINUE
+*
+* Check for errors
+*
+ IF( NSIZES.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( BADNN ) THEN
+ INFO = -2
+ ELSE IF( NTYPES.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.NMAX ) THEN
+ INFO = -9
+ ELSE IF( LDU.LT.NMAX ) THEN
+ INFO = -16
+ ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
+ INFO = -22
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CDRVST2STG', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if nothing to do
+*
+ IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
+ $ RETURN
+*
+* More Important constants
+*
+ UNFL = SLAMCH( 'Safe minimum' )
+ OVFL = SLAMCH( 'Overflow' )
+ CALL SLABAD( UNFL, OVFL )
+ ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
+ ULPINV = ONE / ULP
+ RTUNFL = SQRT( UNFL )
+ RTOVFL = SQRT( OVFL )
+*
+* Loop over sizes, types
+*
+ DO 20 I = 1, 4
+ ISEED2( I ) = ISEED( I )
+ ISEED3( I ) = ISEED( I )
+ 20 CONTINUE
+*
+ NERRS = 0
+ NMATS = 0
+*
+ DO 1220 JSIZE = 1, NSIZES
+ N = NN( JSIZE )
+ IF( N.GT.0 ) THEN
+ LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
+ IF( 2**LGN.LT.N )
+ $ LGN = LGN + 1
+ IF( 2**LGN.LT.N )
+ $ LGN = LGN + 1
+ LWEDC = MAX( 2*N+N*N, 2*N*N )
+ LRWEDC = 1 + 4*N + 2*N*LGN + 3*N**2
+ LIWEDC = 3 + 5*N
+ ELSE
+ LWEDC = 2
+ LRWEDC = 8
+ LIWEDC = 8
+ END IF
+ ANINV = ONE / REAL( MAX( 1, N ) )
+*
+ IF( NSIZES.NE.1 ) THEN
+ MTYPES = MIN( MAXTYP, NTYPES )
+ ELSE
+ MTYPES = MIN( MAXTYP+1, NTYPES )
+ END IF
+*
+ DO 1210 JTYPE = 1, MTYPES
+ IF( .NOT.DOTYPE( JTYPE ) )
+ $ GO TO 1210
+ NMATS = NMATS + 1
+ NTEST = 0
+*
+ DO 30 J = 1, 4
+ IOLDSD( J ) = ISEED( J )
+ 30 CONTINUE
+*
+* 2) Compute "A"
+*
+* Control parameters:
+*
+* KMAGN KMODE KTYPE
+* =1 O(1) clustered 1 zero
+* =2 large clustered 2 identity
+* =3 small exponential (none)
+* =4 arithmetic diagonal, (w/ eigenvalues)
+* =5 random log Hermitian, w/ eigenvalues
+* =6 random (none)
+* =7 random diagonal
+* =8 random Hermitian
+* =9 band Hermitian, w/ eigenvalues
+*
+ IF( MTYPES.GT.MAXTYP )
+ $ GO TO 110
+*
+ ITYPE = KTYPE( JTYPE )
+ IMODE = KMODE( JTYPE )
+*
+* Compute norm
+*
+ GO TO ( 40, 50, 60 )KMAGN( JTYPE )
+*
+ 40 CONTINUE
+ ANORM = ONE
+ GO TO 70
+*
+ 50 CONTINUE
+ ANORM = ( RTOVFL*ULP )*ANINV
+ GO TO 70
+*
+ 60 CONTINUE
+ ANORM = RTUNFL*N*ULPINV
+ GO TO 70
+*
+ 70 CONTINUE
+*
+ CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
+ IINFO = 0
+ COND = ULPINV
+*
+* Special Matrices -- Identity & Jordan block
+*
+* Zero
+*
+ IF( ITYPE.EQ.1 ) THEN
+ IINFO = 0
+*
+ ELSE IF( ITYPE.EQ.2 ) THEN
+*
+* Identity
+*
+ DO 80 JCOL = 1, N
+ A( JCOL, JCOL ) = ANORM
+ 80 CONTINUE
+*
+ ELSE IF( ITYPE.EQ.4 ) THEN
+*
+* Diagonal Matrix, [Eigen]values Specified
+*
+ CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
+ $ ANORM, 0, 0, 'N', A, LDA, WORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.5 ) THEN
+*
+* Hermitian, eigenvalues specified
+*
+ CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
+ $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.7 ) THEN
+*
+* Diagonal, random eigenvalues
+*
+ CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.8 ) THEN
+*
+* Hermitian, random eigenvalues
+*
+ CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.9 ) THEN
+*
+* Hermitian banded, eigenvalues specified
+*
+ IHBW = INT( ( N-1 )*SLARND( 1, ISEED3 ) )
+ CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
+ $ ANORM, IHBW, IHBW, 'Z', U, LDU, WORK,
+ $ IINFO )
+*
+* Store as dense matrix for most routines.
+*
+ CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
+ DO 100 IDIAG = -IHBW, IHBW
+ IROW = IHBW - IDIAG + 1
+ J1 = MAX( 1, IDIAG+1 )
+ J2 = MIN( N, N+IDIAG )
+ DO 90 J = J1, J2
+ I = J - IDIAG
+ A( I, J ) = U( IROW, J )
+ 90 CONTINUE
+ 100 CONTINUE
+ ELSE
+ IINFO = 1
+ END IF
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ RETURN
+ END IF
+*
+ 110 CONTINUE
+*
+ ABSTOL = UNFL + UNFL
+ IF( N.LE.1 ) THEN
+ IL = 1
+ IU = N
+ ELSE
+ IL = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) )
+ IU = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) )
+ IF( IL.GT.IU ) THEN
+ ITEMP = IL
+ IL = IU
+ IU = ITEMP
+ END IF
+ END IF
+*
+* Perform tests storing upper or lower triangular
+* part of matrix.
+*
+ DO 1200 IUPLO = 0, 1
+ IF( IUPLO.EQ.0 ) THEN
+ UPLO = 'L'
+ ELSE
+ UPLO = 'U'
+ END IF
+*
+* Call CHEEVD and CHEEVX.
+*
+ CALL CLACPY( ' ', N, N, A, LDA, V, LDU )
+*
+ NTEST = NTEST + 1
+ CALL CHEEVD( 'V', UPLO, N, A, LDU, D1, WORK, LWEDC,
+ $ RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHEEVD(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 130
+ END IF
+ END IF
+*
+* Do tests 1 and 2.
+*
+ CALL CHET21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ NTEST = NTEST + 2
+ CALL CHEEVD_2STAGE( 'N', UPLO, N, A, LDU, D3, WORK,
+ $ LWORK, RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'CHEEVD_2STAGE(N,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 130
+ END IF
+ END IF
+*
+* Do test 3.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 120 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 120 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 130 CONTINUE
+ CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ NTEST = NTEST + 1
+*
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
+ IF( IL.NE.1 ) THEN
+ VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ ELSE IF( N.GT.0 ) THEN
+ VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ ELSE IF( N.GT.0 ) THEN
+ VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ ELSE
+ TEMP3 = ZERO
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ CALL CHEEVX( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M, WA1, Z, LDU, WORK, LWORK, RWORK,
+ $ IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHEEVX(V,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+* Do tests 4 and 5.
+*
+ CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ CALL CHEEVX_2STAGE( 'N', 'A', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M2, WA2, Z, LDU,
+ $ WORK, LWORK, RWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'CHEEVX_2STAGE(N,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+* Do test 6.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 140 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
+ 140 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 150 CONTINUE
+ CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ NTEST = NTEST + 1
+*
+ CALL CHEEVX( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK,
+ $ IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHEEVX(V,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 160
+ END IF
+ END IF
+*
+* Do tests 7 and 8.
+*
+ CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ CALL CHEEVX_2STAGE( 'N', 'I', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M3, WA3, Z, LDU,
+ $ WORK, LWORK, RWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'CHEEVX_2STAGE(N,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 160
+ END IF
+ END IF
+*
+* Do test 9.
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 160 CONTINUE
+ CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ NTEST = NTEST + 1
+*
+ CALL CHEEVX( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK,
+ $ IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHEEVX(V,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 170
+ END IF
+ END IF
+*
+* Do tests 10 and 11.
+*
+ CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ CALL CHEEVX_2STAGE( 'N', 'V', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M3, WA3, Z, LDU,
+ $ WORK, LWORK, RWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'CHEEVX_2STAGE(N,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 170
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( NTEST ) = ULPINV
+ GO TO 170
+ END IF
+*
+* Do test 12.
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 170 CONTINUE
+*
+* Call CHPEVD and CHPEVX.
+*
+ CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+* Load array WORK with the upper or lower triangular
+* part of the matrix in packed form.
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 190 J = 1, N
+ DO 180 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 180 CONTINUE
+ 190 CONTINUE
+ ELSE
+ INDX = 1
+ DO 210 J = 1, N
+ DO 200 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 200 CONTINUE
+ 210 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ INDWRK = N*( N+1 ) / 2 + 1
+ CALL CHPEVD( 'V', UPLO, N, WORK, D1, Z, LDU,
+ $ WORK( INDWRK ), LWEDC, RWORK, LRWEDC, IWORK,
+ $ LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHPEVD(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 270
+ END IF
+ END IF
+*
+* Do tests 13 and 14.
+*
+ CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 230 J = 1, N
+ DO 220 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 220 CONTINUE
+ 230 CONTINUE
+ ELSE
+ INDX = 1
+ DO 250 J = 1, N
+ DO 240 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 240 CONTINUE
+ 250 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 2
+ INDWRK = N*( N+1 ) / 2 + 1
+ CALL CHPEVD( 'N', UPLO, N, WORK, D3, Z, LDU,
+ $ WORK( INDWRK ), LWEDC, RWORK, LRWEDC, IWORK,
+ $ LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHPEVD(N,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 270
+ END IF
+ END IF
+*
+* Do test 15.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 260 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 260 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Load array WORK with the upper or lower triangular part
+* of the matrix in packed form.
+*
+ 270 CONTINUE
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 290 J = 1, N
+ DO 280 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 280 CONTINUE
+ 290 CONTINUE
+ ELSE
+ INDX = 1
+ DO 310 J = 1, N
+ DO 300 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 300 CONTINUE
+ 310 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+*
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
+ IF( IL.NE.1 ) THEN
+ VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ ELSE IF( N.GT.0 ) THEN
+ VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ ELSE IF( N.GT.0 ) THEN
+ VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ ELSE
+ TEMP3 = ZERO
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ CALL CHPEVX( 'V', 'A', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M, WA1, Z, LDU, V, RWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHPEVX(V,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 370
+ END IF
+ END IF
+*
+* Do tests 16 and 17.
+*
+ CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 330 J = 1, N
+ DO 320 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 320 CONTINUE
+ 330 CONTINUE
+ ELSE
+ INDX = 1
+ DO 350 J = 1, N
+ DO 340 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 340 CONTINUE
+ 350 CONTINUE
+ END IF
+*
+ CALL CHPEVX( 'N', 'A', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHPEVX(N,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 370
+ END IF
+ END IF
+*
+* Do test 18.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 360 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
+ 360 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 370 CONTINUE
+ NTEST = NTEST + 1
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 390 J = 1, N
+ DO 380 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 380 CONTINUE
+ 390 CONTINUE
+ ELSE
+ INDX = 1
+ DO 410 J = 1, N
+ DO 400 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 400 CONTINUE
+ 410 CONTINUE
+ END IF
+*
+ CALL CHPEVX( 'V', 'I', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHPEVX(V,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 460
+ END IF
+ END IF
+*
+* Do tests 19 and 20.
+*
+ CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 430 J = 1, N
+ DO 420 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 420 CONTINUE
+ 430 CONTINUE
+ ELSE
+ INDX = 1
+ DO 450 J = 1, N
+ DO 440 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 440 CONTINUE
+ 450 CONTINUE
+ END IF
+*
+ CALL CHPEVX( 'N', 'I', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M3, WA3, Z, LDU, V, RWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHPEVX(N,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 460
+ END IF
+ END IF
+*
+* Do test 21.
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 460 CONTINUE
+ NTEST = NTEST + 1
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 480 J = 1, N
+ DO 470 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 470 CONTINUE
+ 480 CONTINUE
+ ELSE
+ INDX = 1
+ DO 500 J = 1, N
+ DO 490 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 490 CONTINUE
+ 500 CONTINUE
+ END IF
+*
+ CALL CHPEVX( 'V', 'V', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHPEVX(V,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 550
+ END IF
+ END IF
+*
+* Do tests 22 and 23.
+*
+ CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 520 J = 1, N
+ DO 510 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 510 CONTINUE
+ 520 CONTINUE
+ ELSE
+ INDX = 1
+ DO 540 J = 1, N
+ DO 530 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 530 CONTINUE
+ 540 CONTINUE
+ END IF
+*
+ CALL CHPEVX( 'N', 'V', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M3, WA3, Z, LDU, V, RWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHPEVX(N,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 550
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( NTEST ) = ULPINV
+ GO TO 550
+ END IF
+*
+* Do test 24.
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 550 CONTINUE
+*
+* Call CHBEVD and CHBEVX.
+*
+ IF( JTYPE.LE.7 ) THEN
+ KD = 0
+ ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
+ KD = MAX( N-1, 0 )
+ ELSE
+ KD = IHBW
+ END IF
+*
+* Load array V with the upper or lower triangular part
+* of the matrix in band form.
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 570 J = 1, N
+ DO 560 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 560 CONTINUE
+ 570 CONTINUE
+ ELSE
+ DO 590 J = 1, N
+ DO 580 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 580 CONTINUE
+ 590 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ CALL CHBEVD( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
+ $ LWEDC, RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'CHBEVD(V,' // UPLO //
+ $ ')', IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 650
+ END IF
+ END IF
+*
+* Do tests 25 and 26.
+*
+ CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 610 J = 1, N
+ DO 600 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 600 CONTINUE
+ 610 CONTINUE
+ ELSE
+ DO 630 J = 1, N
+ DO 620 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 620 CONTINUE
+ 630 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 2
+ CALL CHBEVD_2STAGE( 'N', UPLO, N, KD, V, LDU, D3,
+ $ Z, LDU, WORK, LWORK, RWORK,
+ $ LRWEDC, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )
+ $ 'CHBEVD_2STAGE(N,' // UPLO //
+ $ ')', IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 650
+ END IF
+ END IF
+*
+* Do test 27.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 640 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 640 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Load array V with the upper or lower triangular part
+* of the matrix in band form.
+*
+ 650 CONTINUE
+ IF( IUPLO.EQ.1 ) THEN
+ DO 670 J = 1, N
+ DO 660 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 660 CONTINUE
+ 670 CONTINUE
+ ELSE
+ DO 690 J = 1, N
+ DO 680 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 680 CONTINUE
+ 690 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ CALL CHBEVX( 'V', 'A', UPLO, N, KD, V, LDU, U, LDU, VL,
+ $ VU, IL, IU, ABSTOL, M, WA1, Z, LDU, WORK,
+ $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHBEVX(V,A,' // UPLO //
+ $ ')', IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 750
+ END IF
+ END IF
+*
+* Do tests 28 and 29.
+*
+ CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 710 J = 1, N
+ DO 700 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 700 CONTINUE
+ 710 CONTINUE
+ ELSE
+ DO 730 J = 1, N
+ DO 720 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 720 CONTINUE
+ 730 CONTINUE
+ END IF
+*
+ CALL CHBEVX_2STAGE( 'N', 'A', UPLO, N, KD, V, LDU,
+ $ U, LDU, VL, VU, IL, IU, ABSTOL,
+ $ M2, WA2, Z, LDU, WORK, LWORK,
+ $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )
+ $ 'CHBEVX_2STAGE(N,A,' // UPLO //
+ $ ')', IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 750
+ END IF
+ END IF
+*
+* Do test 30.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 740 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
+ 740 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Load array V with the upper or lower triangular part
+* of the matrix in band form.
+*
+ 750 CONTINUE
+ NTEST = NTEST + 1
+ IF( IUPLO.EQ.1 ) THEN
+ DO 770 J = 1, N
+ DO 760 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 760 CONTINUE
+ 770 CONTINUE
+ ELSE
+ DO 790 J = 1, N
+ DO 780 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 780 CONTINUE
+ 790 CONTINUE
+ END IF
+*
+ CALL CHBEVX( 'V', 'I', UPLO, N, KD, V, LDU, U, LDU, VL,
+ $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
+ $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'CHBEVX(V,I,' // UPLO //
+ $ ')', IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 840
+ END IF
+ END IF
+*
+* Do tests 31 and 32.
+*
+ CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 810 J = 1, N
+ DO 800 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 800 CONTINUE
+ 810 CONTINUE
+ ELSE
+ DO 830 J = 1, N
+ DO 820 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 820 CONTINUE
+ 830 CONTINUE
+ END IF
+ CALL CHBEVX_2STAGE( 'N', 'I', UPLO, N, KD, V, LDU,
+ $ U, LDU, VL, VU, IL, IU, ABSTOL,
+ $ M3, WA3, Z, LDU, WORK, LWORK,
+ $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )
+ $ 'CHBEVX_2STAGE(N,I,' // UPLO //
+ $ ')', IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 840
+ END IF
+ END IF
+*
+* Do test 33.
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+* Load array V with the upper or lower triangular part
+* of the matrix in band form.
+*
+ 840 CONTINUE
+ NTEST = NTEST + 1
+ IF( IUPLO.EQ.1 ) THEN
+ DO 860 J = 1, N
+ DO 850 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 850 CONTINUE
+ 860 CONTINUE
+ ELSE
+ DO 880 J = 1, N
+ DO 870 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 870 CONTINUE
+ 880 CONTINUE
+ END IF
+ CALL CHBEVX( 'V', 'V', UPLO, N, KD, V, LDU, U, LDU, VL,
+ $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
+ $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'CHBEVX(V,V,' // UPLO //
+ $ ')', IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 930
+ END IF
+ END IF
+*
+* Do tests 34 and 35.
+*
+ CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 900 J = 1, N
+ DO 890 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 890 CONTINUE
+ 900 CONTINUE
+ ELSE
+ DO 920 J = 1, N
+ DO 910 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 910 CONTINUE
+ 920 CONTINUE
+ END IF
+ CALL CHBEVX_2STAGE( 'N', 'V', UPLO, N, KD, V, LDU,
+ $ U, LDU, VL, VU, IL, IU, ABSTOL,
+ $ M3, WA3, Z, LDU, WORK, LWORK,
+ $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )
+ $ 'CHBEVX_2STAGE(N,V,' // UPLO //
+ $ ')', IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 930
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( NTEST ) = ULPINV
+ GO TO 930
+ END IF
+*
+* Do test 36.
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 930 CONTINUE
+*
+* Call CHEEV
+*
+ CALL CLACPY( ' ', N, N, A, LDA, V, LDU )
+*
+ NTEST = NTEST + 1
+ CALL CHEEV( 'V', UPLO, N, A, LDU, D1, WORK, LWORK, RWORK,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHEEV(V,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 950
+ END IF
+ END IF
+*
+* Do tests 37 and 38
+*
+ CALL CHET21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ NTEST = NTEST + 2
+ CALL CHEEV_2STAGE( 'N', UPLO, N, A, LDU, D3,
+ $ WORK, LWORK, RWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'CHEEV_2STAGE(N,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 950
+ END IF
+ END IF
+*
+* Do test 39
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 940 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 940 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 950 CONTINUE
+*
+ CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+* Call CHPEV
+*
+* Load array WORK with the upper or lower triangular
+* part of the matrix in packed form.
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 970 J = 1, N
+ DO 960 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 960 CONTINUE
+ 970 CONTINUE
+ ELSE
+ INDX = 1
+ DO 990 J = 1, N
+ DO 980 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 980 CONTINUE
+ 990 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ INDWRK = N*( N+1 ) / 2 + 1
+ CALL CHPEV( 'V', UPLO, N, WORK, D1, Z, LDU,
+ $ WORK( INDWRK ), RWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHPEV(V,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1050
+ END IF
+ END IF
+*
+* Do tests 40 and 41.
+*
+ CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 1010 J = 1, N
+ DO 1000 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1000 CONTINUE
+ 1010 CONTINUE
+ ELSE
+ INDX = 1
+ DO 1030 J = 1, N
+ DO 1020 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1020 CONTINUE
+ 1030 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 2
+ INDWRK = N*( N+1 ) / 2 + 1
+ CALL CHPEV( 'N', UPLO, N, WORK, D3, Z, LDU,
+ $ WORK( INDWRK ), RWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHPEV(N,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1050
+ END IF
+ END IF
+*
+* Do test 42
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 1040 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 1040 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 1050 CONTINUE
+*
+* Call CHBEV
+*
+ IF( JTYPE.LE.7 ) THEN
+ KD = 0
+ ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
+ KD = MAX( N-1, 0 )
+ ELSE
+ KD = IHBW
+ END IF
+*
+* Load array V with the upper or lower triangular part
+* of the matrix in band form.
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1070 J = 1, N
+ DO 1060 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1060 CONTINUE
+ 1070 CONTINUE
+ ELSE
+ DO 1090 J = 1, N
+ DO 1080 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1080 CONTINUE
+ 1090 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ CALL CHBEV( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
+ $ RWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'CHBEV(V,' // UPLO // ')',
+ $ IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1140
+ END IF
+ END IF
+*
+* Do tests 43 and 44.
+*
+ CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1110 J = 1, N
+ DO 1100 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1100 CONTINUE
+ 1110 CONTINUE
+ ELSE
+ DO 1130 J = 1, N
+ DO 1120 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1120 CONTINUE
+ 1130 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 2
+ CALL CHBEV_2STAGE( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU,
+ $ WORK, LWORK, RWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )
+ $ 'CHBEV_2STAGE(N,' // UPLO // ')',
+ $ IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1140
+ END IF
+ END IF
+*
+ 1140 CONTINUE
+*
+* Do test 45.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 1150 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 1150 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ CALL CLACPY( ' ', N, N, A, LDA, V, LDU )
+ NTEST = NTEST + 1
+ CALL CHEEVR( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M, WA1, Z, LDU, IWORK, WORK, LWORK,
+ $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHEEVR(V,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1170
+ END IF
+ END IF
+*
+* Do tests 45 and 46 (or ... )
+*
+ CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ CALL CHEEVR_2STAGE( 'N', 'A', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M2, WA2, Z, LDU,
+ $ IWORK, WORK, LWORK, RWORK, LRWORK,
+ $ IWORK( 2*N+1 ), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'CHEEVR_2STAGE(N,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1170
+ END IF
+ END IF
+*
+* Do test 47 (or ... )
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 1160 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
+ 1160 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 1170 CONTINUE
+*
+ NTEST = NTEST + 1
+ CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
+ CALL CHEEVR( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
+ $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHEEVR(V,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1180
+ END IF
+ END IF
+*
+* Do tests 48 and 49 (or +??)
+*
+ CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
+ CALL CHEEVR_2STAGE( 'N', 'I', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M3, WA3, Z, LDU,
+ $ IWORK, WORK, LWORK, RWORK, LRWORK,
+ $ IWORK( 2*N+1 ), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'CHEEVR_2STAGE(N,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1180
+ END IF
+ END IF
+*
+* Do test 50 (or +??)
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, ULP*TEMP3 )
+ 1180 CONTINUE
+*
+ NTEST = NTEST + 1
+ CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
+ CALL CHEEVR( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
+ $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'CHEEVR(V,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1190
+ END IF
+ END IF
+*
+* Do tests 51 and 52 (or +??)
+*
+ CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
+ CALL CHEEVR_2STAGE( 'N', 'V', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M3, WA3, Z, LDU,
+ $ IWORK, WORK, LWORK, RWORK, LRWORK,
+ $ IWORK( 2*N+1 ), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'CHEEVR_2STAGE(N,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1190
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( NTEST ) = ULPINV
+ GO TO 1190
+ END IF
+*
+* Do test 52 (or +??)
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+*
+*
+*
+* Load array V with the upper or lower triangular part
+* of the matrix in band form.
+*
+ 1190 CONTINUE
+*
+ 1200 CONTINUE
+*
+* End of Loop -- Check for RESULT(j) > THRESH
+*
+ NTESTT = NTESTT + NTEST
+ CALL SLAFTS( 'CST', N, N, JTYPE, NTEST, RESULT, IOLDSD,
+ $ THRESH, NOUNIT, NERRS )
+*
+ 1210 CONTINUE
+ 1220 CONTINUE
+*
+* Summary
+*
+ CALL ALASVM( 'CST', NOUNIT, NERRS, NTESTT, 0 )
+*
+ 9999 FORMAT( ' CDRVST2STG: ', A, ' returned INFO=', I6, / 9X, 'N=', I6,
+ $ ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
+ 9998 FORMAT( ' CDRVST2STG: ', A, ' returned INFO=', I6, / 9X, 'N=', I6,
+ $ ', KD=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
+ $ ')' )
+*
+ RETURN
+*
+* End of CDRVST2STG
+*
+ END
diff --git a/TESTING/EIG/cerrst.f b/TESTING/EIG/cerrst.f
index 14e4bfbe..c15bf5f4 100644
--- a/TESTING/EIG/cerrst.f
+++ b/TESTING/EIG/cerrst.f
@@ -25,6 +25,10 @@
*> CUNGTR, CUPMTR, CSTEQR, CSTEIN, CPTEQR, CHBTRD,
*> CHEEV, CHEEVX, CHEEVD, CHBEV, CHBEVX, CHBEVD,
*> CHPEV, CHPEVX, CHPEVD, and CSTEDC.
+*> CHEEVD_2STAGE, CHEEVR_2STAGE, CHEEVX_2STAGE,
+*> CHEEV_2STAGE, CHBEV_2STAGE, CHBEVD_2STAGE,
+*> CHBEVX_2STAGE, CHETRD_2STAGE, CHETRD_SY2SB,
+*> CHETRD_SB2ST
*> \endverbatim
*
* Arguments:
@@ -93,7 +97,11 @@
EXTERNAL CHBEV, CHBEVD, CHBEVX, CHBTRD, CHEEV, CHEEVD,
$ CHEEVR, CHEEVX, CHETRD, CHKXER, CHPEV, CHPEVD,
$ CHPEVX, CHPTRD, CPTEQR, CSTEDC, CSTEIN, CSTEQR,
- $ CUNGTR, CUNMTR, CUPGTR, CUPMTR
+ $ CUNGTR, CUNMTR, CUPGTR, CUPMTR,
+ $ CHEEVD_2STAGE, CHEEVR_2STAGE, CHEEVX_2STAGE,
+ $ CHEEV_2STAGE, CHBEV_2STAGE, CHBEVD_2STAGE,
+ $ CHBEVX_2STAGE, CHETRD_2STAGE, CHETRD_SY2SB,
+ $ CHETRD_SB2ST
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@@ -151,6 +159,103 @@
CALL CHKXER( 'CHETRD', INFOT, NOUT, LERR, OK )
NT = NT + 4
*
+* CHETRD_2STAGE
+*
+ SRNAMT = 'CHETRD_2STAGE'
+ INFOT = 1
+ CALL CHETRD_2STAGE( '/', 'U', 0, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL CHETRD_2STAGE( 'H', 'U', 0, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL CHETRD_2STAGE( 'N', '/', 0, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL CHETRD_2STAGE( 'N', 'U', -1, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL CHETRD_2STAGE( 'N', 'U', 2, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL CHETRD_2STAGE( 'N', 'U', 0, A, 1, D, E, TAU,
+ $ C, 0, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 12
+ CALL CHETRD_2STAGE( 'N', 'U', 0, A, 1, D, E, TAU,
+ $ C, 1, W, 0, INFO )
+ CALL CHKXER( 'CHETRD_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 7
+*
+* CHETRD_HE2HB
+*
+ SRNAMT = 'CHETRD_HE2HB'
+ INFOT = 1
+ CALL CHETRD_HE2HB( '/', 0, 0, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HE2HB', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL CHETRD_HE2HB( 'U', -1, 0, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HE2HB', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL CHETRD_HE2HB( 'U', 0, -1, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HE2HB', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL CHETRD_HE2HB( 'U', 2, 0, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HE2HB', INFOT, NOUT, LERR, OK )
+ INFOT = 7
+ CALL CHETRD_HE2HB( 'U', 0, 2, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HE2HB', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL CHETRD_HE2HB( 'U', 0, 0, A, 1, C, 1, TAU, W, 0, INFO )
+ CALL CHKXER( 'CHETRD_HE2HB', INFOT, NOUT, LERR, OK )
+ NT = NT + 6
+*
+* CHETRD_HB2ST
+*
+ SRNAMT = 'CHETRD_HB2ST'
+ INFOT = 1
+ CALL CHETRD_HB2ST( '/', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL CHETRD_HB2ST( 'Y', '/', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL CHETRD_HB2ST( 'Y', 'H', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL CHETRD_HB2ST( 'Y', 'N', '/', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL CHETRD_HB2ST( 'Y', 'N', 'U', -1, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL CHETRD_HB2ST( 'Y', 'N', 'U', 0, -1, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 7
+ CALL CHETRD_HB2ST( 'Y', 'N', 'U', 0, 1, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL CHETRD_HB2ST( 'Y', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 0, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL CHETRD_HB2ST( 'Y', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 0, INFO )
+ CALL CHKXER( 'CHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ NT = NT + 9
+*
* CUNGTR
*
SRNAMT = 'CUNGTR'
@@ -377,6 +482,63 @@
CALL CHKXER( 'CHEEVD', INFOT, NOUT, LERR, OK )
NT = NT + 12
*
+* CHEEVD_2STAGE
+*
+ SRNAMT = 'CHEEVD_2STAGE'
+ INFOT = 1
+ CALL CHEEVD_2STAGE( '/', 'U', 0, A, 1, X, W, 1,
+ $ RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'CHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL CHEEVD_2STAGE( 'V', 'U', 0, A, 1, X, W, 1,
+ $ RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'CHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL CHEEVD_2STAGE( 'N', '/', 0, A, 1, X, W, 1,
+ $ RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'CHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL CHEEVD_2STAGE( 'N', 'U', -1, A, 1, X, W, 1,
+ $ RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'CHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL CHEEVD_2STAGE( 'N', 'U', 2, A, 1, X, W, 3,
+ $ RW, 2, IW, 1, INFO )
+ CALL CHKXER( 'CHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL CHEEVD_2STAGE( 'N', 'U', 1, A, 1, X, W, 0,
+ $ RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'CHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL CHEEVD_2STAGE( 'N', 'U', 2, A, 2, X, W, 2,
+ $ RW, 2, IW, 1, INFO )
+ CALL CHKXER( 'CHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 8
+* CALL CHEEVD_2STAGE( 'V', 'U', 2, A, 2, X, W, 3,
+* $ RW, 25, IW, 12, INFO )
+* CALL CHKXER( 'CHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL CHEEVD_2STAGE( 'N', 'U', 1, A, 1, X, W, 1,
+ $ RW, 0, IW, 1, INFO )
+ CALL CHKXER( 'CHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL CHEEVD_2STAGE( 'N', 'U', 2, A, 2, X, W, 25,
+ $ RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'CHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 10
+* CALL CHEEVD_2STAGE( 'V', 'U', 2, A, 2, X, W, 8,
+* $ RW, 18, IW, 12, INFO )
+* CALL CHKXER( 'CHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 12
+ CALL CHEEVD_2STAGE( 'N', 'U', 1, A, 1, X, W, 1,
+ $ RW, 1, IW, 0, INFO )
+ CALL CHKXER( 'CHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 12
+* CALL CHEEVD_2STAGE( 'V', 'U', 2, A, 2, X, W, 8,
+* $ RW, 25, IW, 11, INFO )
+* CALL CHKXER( 'CHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 10
+*
* CHEEV
*
SRNAMT = 'CHEEV '
@@ -397,6 +559,29 @@
CALL CHKXER( 'CHEEV ', INFOT, NOUT, LERR, OK )
NT = NT + 5
*
+* CHEEV_2STAGE
+*
+ SRNAMT = 'CHEEV_2STAGE '
+ INFOT = 1
+ CALL CHEEV_2STAGE( '/', 'U', 0, A, 1, X, W, 1, RW, INFO )
+ CALL CHKXER( 'CHEEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL CHEEV_2STAGE( 'V', 'U', 0, A, 1, X, W, 1, RW, INFO )
+ CALL CHKXER( 'CHEEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL CHEEV_2STAGE( 'N', '/', 0, A, 1, X, W, 1, RW, INFO )
+ CALL CHKXER( 'CHEEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL CHEEV_2STAGE( 'N', 'U', -1, A, 1, X, W, 1, RW, INFO )
+ CALL CHKXER( 'CHEEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL CHEEV_2STAGE( 'N', 'U', 2, A, 1, X, W, 3, RW, INFO )
+ CALL CHKXER( 'CHEEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL CHEEV_2STAGE( 'N', 'U', 2, A, 2, X, W, 2, RW, INFO )
+ CALL CHKXER( 'CHEEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ NT = NT + 6
+*
* CHEEVX
*
SRNAMT = 'CHEEVX'
@@ -441,6 +626,65 @@
CALL CHKXER( 'CHEEVX', INFOT, NOUT, LERR, OK )
NT = NT + 10
*
+* CHEEVX_2STAGE
+*
+ SRNAMT = 'CHEEVX_2STAGE'
+ INFOT = 1
+ CALL CHEEVX_2STAGE( '/', 'A', 'U', 0, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL CHEEVX_2STAGE( 'V', 'A', 'U', 0, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL CHEEVX_2STAGE( 'N', '/', 'U', 0, A, 1,
+ $ 0.0D0, 1.0D0, 1, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL CHEEVX_2STAGE( 'N', 'A', '/', 0, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, RW, IW, I3, INFO )
+ INFOT = 4
+ CALL CHEEVX_2STAGE( 'N', 'A', 'U', -1, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL CHEEVX_2STAGE( 'N', 'A', 'U', 2, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 2, W, 3, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL CHEEVX_2STAGE( 'N', 'V', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 9
+ CALL CHEEVX_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL CHEEVX_2STAGE( 'N', 'I', 'U', 2, A, 2,
+ $ 0.0D0, 0.0D0, 2, 1, 0.0D0,
+ $ M, X, Z, 2, W, 3, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 15
+ CALL CHEEVX_2STAGE( 'N', 'A', 'U', 2, A, 2,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 0, W, 3, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 17
+ CALL CHEEVX_2STAGE( 'N', 'A', 'U', 2, A, 2,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 2, W, 0, RW, IW, I1, INFO )
+ CALL CHKXER( 'CHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 11
+*
* CHEEVR
*
SRNAMT = 'CHEEVR'
@@ -508,6 +752,90 @@
CALL CHKXER( 'CHEEVR', INFOT, NOUT, LERR, OK )
NT = NT + 12
*
+* CHEEVR_2STAGE
+*
+ SRNAMT = 'CHEEVR_2STAGE'
+ N = 1
+ INFOT = 1
+ CALL CHEEVR_2STAGE( '/', 'A', 'U', 0, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'CHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL CHEEVR_2STAGE( 'V', 'A', 'U', 0, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'CHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL CHEEVR_2STAGE( 'N', '/', 'U', 0, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'CHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL CHEEVR_2STAGE( 'N', 'A', '/', -1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N,
+ $ IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'CHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL CHEEVR_2STAGE( 'N', 'A', 'U', -1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N,
+ $ IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'CHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL CHEEVR_2STAGE( 'N', 'A', 'U', 2, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'CHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL CHEEVR_2STAGE( 'N', 'V', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'CHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 9
+ CALL CHEEVR_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 0, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'CHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL CHEEVR_2STAGE( 'N', 'I', 'U', 2, A, 2,
+ $ 0.0D0, 0.0D0, 2, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'CHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 15
+ CALL CHEEVR_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 0, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'CHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 18
+ CALL CHEEVR_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N-1, RW, 24*N, IW( 2*N+1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'CHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 20
+ CALL CHEEVR_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 26*N, RW, 24*N-1, IW( 2*N-1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'CHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 22
+ CALL CHEEVR_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 26*N, RW, 24*N, IW, 10*N-1,
+ $ INFO )
+ CALL CHKXER( 'CHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 13
+*
* CHPEVD
*
SRNAMT = 'CHPEVD'
@@ -646,6 +974,47 @@
CALL CHKXER( 'CHBTRD', INFOT, NOUT, LERR, OK )
NT = NT + 6
*
+* CHETRD_HB2ST
+*
+ SRNAMT = 'CHETRD_HB2ST'
+ INFOT = 1
+ CALL CHETRD_HB2ST( '/', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL CHETRD_HB2ST( 'N', '/', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL CHETRD_HB2ST( 'N', 'H', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL CHETRD_HB2ST( 'N', 'N', '/', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL CHETRD_HB2ST( 'N', 'N', 'U', -1, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL CHETRD_HB2ST( 'N', 'N', 'U', 0, -1, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 7
+ CALL CHETRD_HB2ST( 'N', 'N', 'U', 0, 1, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL CHETRD_HB2ST( 'N', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 0, W, 1, INFO )
+ CALL CHKXER( 'CHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL CHETRD_HB2ST( 'N', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 0, INFO )
+ CALL CHKXER( 'CHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ NT = NT + 9
+*
* CHBEVD
*
SRNAMT = 'CHBEVD'
@@ -711,6 +1080,75 @@
CALL CHKXER( 'CHBEVD', INFOT, NOUT, LERR, OK )
NT = NT + 15
*
+* CHBEVD_2STAGE
+*
+ SRNAMT = 'CHBEVD_2STAGE'
+ INFOT = 1
+ CALL CHBEVD_2STAGE( '/', 'U', 0, 0, A, 1, X, Z, 1,
+ $ W, 1, RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'CHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL CHBEVD_2STAGE( 'V', 'U', 0, 0, A, 1, X, Z, 1,
+ $ W, 1, RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'CHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL CHBEVD_2STAGE( 'N', '/', 0, 0, A, 1, X, Z, 1,
+ $ W, 1, RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'CHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL CHBEVD_2STAGE( 'N', 'U', -1, 0, A, 1, X, Z, 1,
+ $ W, 1, RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'CHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL CHBEVD_2STAGE( 'N', 'U', 0, -1, A, 1, X, Z, 1,
+ $ W, 1, RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'CHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL CHBEVD_2STAGE( 'N', 'U', 2, 1, A, 1, X, Z, 1,
+ $ W, 2, RW, 2, IW, 1, INFO )
+ CALL CHKXER( 'CHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 9
+ CALL CHBEVD_2STAGE( 'N', 'U', 2, 1, A, 2, X, Z, 0,
+ $ W, 8, RW, 25, IW, 12, INFO )
+ CALL CHKXER( 'CHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL CHBEVD_2STAGE( 'N', 'U', 1, 0, A, 1, X, Z, 1,
+ $ W, 0, RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'CHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL CHBEVD_2STAGE( 'N', 'U', 2, 1, A, 2, X, Z, 2,
+ $ W, 1, RW, 2, IW, 1, INFO )
+ CALL CHKXER( 'CHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 11
+* CALL CHBEVD_2STAGE( 'V', 'U', 2, 1, A, 2, X, Z, 2,
+* $ W, 2, RW, 25, IW, 12, INFO )
+* CALL CHKXER( 'CHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL CHBEVD_2STAGE( 'N', 'U', 1, 0, A, 1, X, Z, 1,
+ $ W, 1, RW, 0, IW, 1, INFO )
+ CALL CHKXER( 'CHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL CHBEVD_2STAGE( 'N', 'U', 2, 1, A, 2, X, Z, 2,
+ $ W, 25, RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'CHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 13
+* CALL CHBEVD_2STAGE( 'V', 'U', 2, 1, A, 2, X, Z, 2,
+* $ W, 25, RW, 2, IW, 12, INFO )
+* CALL CHKXER( 'CHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 15
+ CALL CHBEVD_2STAGE( 'N', 'U', 1, 0, A, 1, X, Z, 1,
+ $ W, 1, RW, 1, IW, 0, INFO )
+ CALL CHKXER( 'CHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 15
+ CALL CHBEVD_2STAGE( 'N', 'U', 2, 1, A, 2, X, Z, 2,
+ $ W, 25, RW, 2, IW, 0, INFO )
+ CALL CHKXER( 'CHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 15
+* CALL CHBEVD_2STAGE( 'V', 'U', 2, 1, A, 2, X, Z, 2,
+* $ W, 25, RW, 25, IW, 2, INFO )
+* CALL CHKXER( 'CHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 13
+*
* CHBEV
*
SRNAMT = 'CHBEV '
@@ -734,6 +1172,43 @@
CALL CHKXER( 'CHBEV ', INFOT, NOUT, LERR, OK )
NT = NT + 6
*
+* CHBEV_2STAGE
+*
+ SRNAMT = 'CHBEV_2STAGE '
+ INFOT = 1
+ CALL CHBEV_2STAGE( '/', 'U', 0, 0, A, 1, X,
+ $ Z, 1, W, 0, RW, INFO )
+ CALL CHKXER( 'CHBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL CHBEV_2STAGE( 'V', 'U', 0, 0, A, 1, X,
+ $ Z, 1, W, 0, RW, INFO )
+ CALL CHKXER( 'CHBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL CHBEV_2STAGE( 'N', '/', 0, 0, A, 1, X,
+ $ Z, 1, W, 0, RW, INFO )
+ CALL CHKXER( 'CHBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL CHBEV_2STAGE( 'N', 'U', -1, 0, A, 1, X,
+ $ Z, 1, W, 0, RW, INFO )
+ CALL CHKXER( 'CHBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL CHBEV_2STAGE( 'N', 'U', 0, -1, A, 1, X,
+ $ Z, 1, W, 0, RW, INFO )
+ CALL CHKXER( 'CHBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL CHBEV_2STAGE( 'N', 'U', 2, 1, A, 1, X,
+ $ Z, 1, W, 0, RW, INFO )
+ CALL CHKXER( 'CHBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 9
+ CALL CHBEV_2STAGE( 'N', 'U', 2, 0, A, 1, X,
+ $ Z, 0, W, 0, RW, INFO )
+ CALL CHKXER( 'CHBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL CHBEV_2STAGE( 'N', 'U', 2, 0, A, 1, X,
+ $ Z, 1, W, 0, RW, INFO )
+ CALL CHKXER( 'CHBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ NT = NT + 8
+*
* CHBEVX
*
SRNAMT = 'CHBEVX'
@@ -781,6 +1256,74 @@
$ 0.0, M, X, Z, 1, W, RW, IW, I3, INFO )
CALL CHKXER( 'CHBEVX', INFOT, NOUT, LERR, OK )
NT = NT + 11
+*
+* CHBEVX_2STAGE
+*
+ SRNAMT = 'CHBEVX_2STAGE'
+ INFOT = 1
+ CALL CHBEVX_2STAGE( '/', 'A', 'U', 0, 0, A, 1, Q, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ INFOT = 1
+ CALL CHBEVX_2STAGE( 'V', 'A', 'U', 0, 0, A, 1, Q, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL CHBEVX_2STAGE( 'N', '/', 'U', 0, 0, A, 1, Q, 1,
+ $ 0.0D0, 1.0D0, 1, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL CHBEVX_2STAGE( 'N', 'A', '/', 0, 0, A, 1, Q, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ INFOT = 4
+ CALL CHBEVX_2STAGE( 'N', 'A', 'U', -1, 0, A, 1, Q, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL CHBEVX_2STAGE( 'N', 'A', 'U', 0, -1, A, 1, Q, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 7
+ CALL CHBEVX_2STAGE( 'N', 'A', 'U', 2, 1, A, 1, Q, 2,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 2, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 9
+* CALL CHBEVX_2STAGE( 'V', 'A', 'U', 2, 0, A, 1, Q, 1,
+* $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+* $ M, X, Z, 2, W, 0, RW, IW, I3, INFO )
+* CALL CHKXER( 'CHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL CHBEVX_2STAGE( 'N', 'V', 'U', 1, 0, A, 1, Q, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 12
+ CALL CHBEVX_2STAGE( 'N', 'I', 'U', 1, 0, A, 1, Q, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL CHBEVX_2STAGE( 'N', 'I', 'U', 1, 0, A, 1, Q, 1,
+ $ 0.0D0, 0.0D0, 1, 2, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 18
+ CALL CHBEVX_2STAGE( 'N', 'A', 'U', 2, 0, A, 1, Q, 2,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 0, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 20
+ CALL CHBEVX_2STAGE( 'N', 'A', 'U', 2, 0, A, 1, Q, 2,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'CHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 12
END IF
*
* Print a summary line.
diff --git a/TESTING/EIG/dchkee.f b/TESTING/EIG/dchkee.f
index b723687a..4d342085 100644
--- a/TESTING/EIG/dchkee.f
+++ b/TESTING/EIG/dchkee.f
@@ -1106,7 +1106,8 @@
$ DDRGEV, DDRGSX, DDRGVX, DDRVBD, DDRVES, DDRVEV,
$ DDRVSG, DDRVST, DDRVSX, DDRVVX, DERRBD,
$ DERRED, DERRGG, DERRHS, DERRST, ILAVER, XLAENV,
- $ DDRGES3, DDRGEV3
+ $ DDRGES3, DDRGEV3,
+ $ DCHKST2STG, DDRVST2STG, DCHKSB2STG, DDRVSG2STG
* ..
* .. Intrinsic Functions ..
INTRINSIC LEN, MIN
@@ -1153,7 +1154,7 @@
PATH = LINE( 1: 3 )
NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'DHS' )
SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'DST' ) .OR.
- $ LSAMEN( 3, PATH, 'DSG' )
+ $ LSAMEN( 3, PATH, 'DSG' ) .OR. LSAMEN( 3, PATH, 'SE2' )
SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'DBD' )
DEV = LSAMEN( 3, PATH, 'DEV' )
DES = LSAMEN( 3, PATH, 'DES' )
@@ -1839,7 +1840,8 @@
$ WRITE( NOUT, FMT = 9980 )'DCHKHS', INFO
270 CONTINUE
*
- ELSE IF( LSAMEN( 3, C3, 'DST' ) .OR. LSAMEN( 3, C3, 'SEP' ) ) THEN
+ ELSE IF( LSAMEN( 3, C3, 'DST' ) .OR. LSAMEN( 3, C3, 'SEP' )
+ $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN
*
* ----------------------------------
* SEP: Symmetric Eigenvalue Problem
@@ -1869,6 +1871,15 @@
WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
$ NXVAL( I )
IF( TSTCHK ) THEN
+ IF( LSAMEN( 3, C3, 'SE2' ) ) THEN
+ CALL DCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+ $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
+ $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ),
+ $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ),
+ $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX,
+ $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ),
+ $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO )
+ ELSE
CALL DCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
$ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
$ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ),
@@ -1876,16 +1887,26 @@
$ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX,
$ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ),
$ WORK, LWORK, IWORK, LIWORK, RESULT, INFO )
+ ENDIF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'DCHKST', INFO
END IF
IF( TSTDRV ) THEN
+ IF( LSAMEN( 3, C3, 'SE2' ) ) THEN
+ CALL DDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH,
+ $ NOUT, A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ),
+ $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ),
+ $ D( 1, 10 ), D( 1, 11 ), A( 1, 2 ), NMAX,
+ $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK,
+ $ LWORK, IWORK, LIWORK, RESULT, INFO )
+ ELSE
CALL DDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT,
$ A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ),
$ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ),
$ D( 1, 10 ), D( 1, 11 ), A( 1, 2 ), NMAX,
$ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK,
$ LWORK, IWORK, LIWORK, RESULT, INFO )
+ ENDIF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'DDRVST', INFO
END IF
@@ -1918,11 +1939,17 @@
WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
$ NXVAL( I )
IF( TSTCHK ) THEN
- CALL DDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
- $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
- $ D( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ),
- $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK,
- $ LWORK, IWORK, LIWORK, RESULT, INFO )
+* CALL DDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+* $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
+* $ D( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ),
+* $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK,
+* $ LWORK, IWORK, LIWORK, RESULT, INFO )
+ CALL DDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+ $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
+ $ D( 1, 3 ), D( 1, 3 ), A( 1, 3 ), NMAX,
+ $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ),
+ $ A( 1, 7 ), WORK, LWORK, IWORK, LIWORK,
+ $ RESULT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'DDRVSG', INFO
END IF
@@ -2282,9 +2309,13 @@
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
IF( TSTERR )
$ CALL DERRST( 'DSB', NOUT )
- CALL DCHKSB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH,
- $ NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), D( 1, 2 ),
- $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO )
+* CALL DCHKSB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+* $ NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), D( 1, 2 ),
+* $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO )
+ CALL DCHKSB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED,
+ $ THRESH, NOUT, A( 1, 1 ), NMAX, D( 1, 1 ),
+ $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ),
+ $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'DCHKSB', INFO
*
diff --git a/TESTING/EIG/dchksb2stg.f b/TESTING/EIG/dchksb2stg.f
new file mode 100644
index 00000000..adac168c
--- /dev/null
+++ b/TESTING/EIG/dchksb2stg.f
@@ -0,0 +1,870 @@
+*> \brief \b DCHKSBSTG
+*
+* @precisions fortran d -> s
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE DCHKSB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
+* ISEED, THRESH, NOUNIT, A, LDA, SD, SE, D1,
+* D2, D3, U, LDU, WORK, LWORK, RESULT, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
+* $ NWDTHS
+* DOUBLE PRECISION THRESH
+* ..
+* .. Array Arguments ..
+* LOGICAL DOTYPE( * )
+* INTEGER ISEED( 4 ), KK( * ), NN( * )
+* DOUBLE PRECISION A( LDA, * ), RESULT( * ), SD( * ), SE( * ),
+* $ U( LDU, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DCHKSBSTG tests the reduction of a symmetric band matrix to tridiagonal
+*> form, used with the symmetric eigenvalue problem.
+*>
+*> DSBTRD factors a symmetric band matrix A as U S U' , where ' means
+*> transpose, S is symmetric tridiagonal, and U is orthogonal.
+*> DSBTRD can use either just the lower or just the upper triangle
+*> of A; DCHKSBSTG checks both cases.
+*>
+*> DSYTRD_SB2ST factors a symmetric band matrix A as U S U' ,
+*> where ' means transpose, S is symmetric tridiagonal, and U is
+*> orthogonal. DSYTRD_SB2ST can use either just the lower or just
+*> the upper triangle of A; DCHKSBSTG checks both cases.
+*>
+*> DSTEQR factors S as Z D1 Z'.
+*> D1 is the matrix of eigenvalues computed when Z is not computed
+*> and from the S resulting of DSBTRD "U" (used as reference for DSYTRD_SB2ST)
+*> D2 is the matrix of eigenvalues computed when Z is not computed
+*> and from the S resulting of DSYTRD_SB2ST "U".
+*> D3 is the matrix of eigenvalues computed when Z is not computed
+*> and from the S resulting of DSYTRD_SB2ST "L".
+*>
+*> When DCHKSBSTG is called, a number of matrix "sizes" ("n's"), a number
+*> of bandwidths ("k's"), and a number of matrix "types" are
+*> specified. For each size ("n"), each bandwidth ("k") less than or
+*> equal to "n", and each type of matrix, one matrix will be generated
+*> and used to test the symmetric banded reduction routine. For each
+*> matrix, a number of tests will be performed:
+*>
+*> (1) | A - V S V' | / ( |A| n ulp ) computed by DSBTRD with
+*> UPLO='U'
+*>
+*> (2) | I - UU' | / ( n ulp )
+*>
+*> (3) | A - V S V' | / ( |A| n ulp ) computed by DSBTRD with
+*> UPLO='L'
+*>
+*> (4) | I - UU' | / ( n ulp )
+*>
+*> (5) | D1 - D2 | / ( |D1| ulp ) where D1 is computed by
+*> DSBTRD with UPLO='U' and
+*> D2 is computed by
+*> DSYTRD_SB2ST with UPLO='U'
+*>
+*> (6) | D1 - D3 | / ( |D1| ulp ) where D1 is computed by
+*> DSBTRD with UPLO='U' and
+*> D3 is computed by
+*> DSYTRD_SB2ST with UPLO='L'
+*>
+*> The "sizes" are specified by an array NN(1:NSIZES); the value of
+*> each element NN(j) specifies one size.
+*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
+*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
+*> Currently, the list of possible types is:
+*>
+*> (1) The zero matrix.
+*> (2) The identity matrix.
+*>
+*> (3) A diagonal matrix with evenly spaced entries
+*> 1, ..., ULP and random signs.
+*> (ULP = (first number larger than 1) - 1 )
+*> (4) A diagonal matrix with geometrically spaced entries
+*> 1, ..., ULP and random signs.
+*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
+*> and random signs.
+*>
+*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
+*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
+*>
+*> (8) A matrix of the form U' D U, where U is orthogonal and
+*> D has evenly spaced entries 1, ..., ULP with random signs
+*> on the diagonal.
+*>
+*> (9) A matrix of the form U' D U, where U is orthogonal and
+*> D has geometrically spaced entries 1, ..., ULP with random
+*> signs on the diagonal.
+*>
+*> (10) A matrix of the form U' D U, where U is orthogonal and
+*> D has "clustered" entries 1, ULP,..., ULP with random
+*> signs on the diagonal.
+*>
+*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
+*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
+*>
+*> (13) Symmetric matrix with random entries chosen from (-1,1).
+*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
+*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] NSIZES
+*> \verbatim
+*> NSIZES is INTEGER
+*> The number of sizes of matrices to use. If it is zero,
+*> DCHKSBSTG does nothing. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NN
+*> \verbatim
+*> NN is INTEGER array, dimension (NSIZES)
+*> An array containing the sizes to be used for the matrices.
+*> Zero values will be skipped. The values must be at least
+*> zero.
+*> \endverbatim
+*>
+*> \param[in] NWDTHS
+*> \verbatim
+*> NWDTHS is INTEGER
+*> The number of bandwidths to use. If it is zero,
+*> DCHKSBSTG does nothing. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] KK
+*> \verbatim
+*> KK is INTEGER array, dimension (NWDTHS)
+*> An array containing the bandwidths to be used for the band
+*> matrices. The values must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NTYPES
+*> \verbatim
+*> NTYPES is INTEGER
+*> The number of elements in DOTYPE. If it is zero, DCHKSBSTG
+*> does nothing. It must be at least zero. If it is MAXTYP+1
+*> and NSIZES is 1, then an additional type, MAXTYP+1 is
+*> defined, which is to use whatever matrix is in A. This
+*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
+*> DOTYPE(MAXTYP+1) is .TRUE. .
+*> \endverbatim
+*>
+*> \param[in] DOTYPE
+*> \verbatim
+*> DOTYPE is LOGICAL array, dimension (NTYPES)
+*> If DOTYPE(j) is .TRUE., then for each size in NN a
+*> matrix of that size and of type j will be generated.
+*> If NTYPES is smaller than the maximum number of types
+*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
+*> MAXTYP will not be generated. If NTYPES is larger
+*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
+*> will be ignored.
+*> \endverbatim
+*>
+*> \param[in,out] ISEED
+*> \verbatim
+*> ISEED is INTEGER array, dimension (4)
+*> On entry ISEED specifies the seed of the random number
+*> generator. The array elements should be between 0 and 4095;
+*> if not they will be reduced mod 4096. Also, ISEED(4) must
+*> be odd. The random number generator uses a linear
+*> congruential sequence limited to small integers, and so
+*> should produce machine independent random numbers. The
+*> values of ISEED are changed on exit, and can be used in the
+*> next call to DCHKSBSTG to continue the same random number
+*> sequence.
+*> \endverbatim
+*>
+*> \param[in] THRESH
+*> \verbatim
+*> THRESH is DOUBLE PRECISION
+*> A test will count as "failed" if the "error", computed as
+*> described above, exceeds THRESH. Note that the error
+*> is scaled to be O(1), so THRESH should be a reasonably
+*> small multiple of 1, e.g., 10 or 100. In particular,
+*> it should not depend on the precision (single vs. double)
+*> or the size of the matrix. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NOUNIT
+*> \verbatim
+*> NOUNIT is INTEGER
+*> The FORTRAN unit number for printing out error messages
+*> (e.g., if a routine returns IINFO not equal to 0.)
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is DOUBLE PRECISION array, dimension
+*> (LDA, max(NN))
+*> Used to hold the matrix whose eigenvalues are to be
+*> computed.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of A. It must be at least 2 (not 1!)
+*> and at least max( KK )+1.
+*> \endverbatim
+*>
+*> \param[out] SD
+*> \verbatim
+*> SD is DOUBLE PRECISION array, dimension (max(NN))
+*> Used to hold the diagonal of the tridiagonal matrix computed
+*> by DSBTRD.
+*> \endverbatim
+*>
+*> \param[out] SE
+*> \verbatim
+*> SE is DOUBLE PRECISION array, dimension (max(NN))
+*> Used to hold the off-diagonal of the tridiagonal matrix
+*> computed by DSBTRD.
+*> \endverbatim
+*>
+*> \param[out] U
+*> \verbatim
+*> U is DOUBLE PRECISION array, dimension (LDU, max(NN))
+*> Used to hold the orthogonal matrix computed by DSBTRD.
+*> \endverbatim
+*>
+*> \param[in] LDU
+*> \verbatim
+*> LDU is INTEGER
+*> The leading dimension of U. It must be at least 1
+*> and at least max( NN ).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is DOUBLE PRECISION array, dimension (LWORK)
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The number of entries in WORK. This must be at least
+*> max( LDA+1, max(NN)+1 )*max(NN).
+*> \endverbatim
+*>
+*> \param[out] RESULT
+*> \verbatim
+*> RESULT is DOUBLE PRECISION array, dimension (4)
+*> The values computed by the tests described above.
+*> The values are currently limited to 1/ulp, to avoid
+*> overflow.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> If 0, then everything ran OK.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> Some Local Variables and Parameters:
+*> ---- ----- --------- --- ----------
+*> ZERO, ONE Real 0 and 1.
+*> MAXTYP The number of types defined.
+*> NTEST The number of tests performed, or which can
+*> be performed so far, for the current matrix.
+*> NTESTT The total number of tests performed so far.
+*> NMAX Largest value in NN.
+*> NMATS The number of matrices generated so far.
+*> NERRS The number of tests which have exceeded THRESH
+*> so far.
+*> COND, IMODE Values to be passed to the matrix generators.
+*> ANORM Norm of A; passed to matrix generators.
+*>
+*> OVFL, UNFL Overflow and underflow thresholds.
+*> ULP, ULPINV Finest relative precision and its inverse.
+*> RTOVFL, RTUNFL Square roots of the previous 2 values.
+*> The following four arrays decode JTYPE:
+*> KTYPE(j) The general type (1-10) for type "j".
+*> KMODE(j) The MODE value to be passed to the matrix
+*> generator for type "j".
+*> KMAGN(j) The order of magnitude ( O(1),
+*> O(overflow^(1/2) ), O(underflow^(1/2) )
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup double_eig
+*
+* =====================================================================
+ SUBROUTINE DCHKSB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
+ $ ISEED, THRESH, NOUNIT, A, LDA, SD, SE, D1,
+ $ D2, D3, U, LDU, WORK, LWORK, RESULT, INFO )
+*
+* -- LAPACK test routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
+ $ NWDTHS
+ DOUBLE PRECISION THRESH
+* ..
+* .. Array Arguments ..
+ LOGICAL DOTYPE( * )
+ INTEGER ISEED( 4 ), KK( * ), NN( * )
+ DOUBLE PRECISION A( LDA, * ), RESULT( * ), SD( * ), SE( * ),
+ $ D1( * ), D2( * ), D3( * ),
+ $ U( LDU, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE, TWO, TEN
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
+ $ TEN = 10.0D0 )
+ DOUBLE PRECISION HALF
+ PARAMETER ( HALF = ONE / TWO )
+ INTEGER MAXTYP
+ PARAMETER ( MAXTYP = 15 )
+* ..
+* .. Local Scalars ..
+ LOGICAL BADNN, BADNNB
+ INTEGER I, IINFO, IMODE, ITYPE, J, JC, JCOL, JR, JSIZE,
+ $ JTYPE, JWIDTH, K, KMAX, MTYPES, N, NERRS,
+ $ NMATS, NMAX, NTEST, NTESTT
+ DOUBLE PRECISION ANINV, ANORM, COND, OVFL, RTOVFL, RTUNFL,
+ $ TEMP1, TEMP2, TEMP3, TEMP4, ULP, ULPINV, UNFL
+* ..
+* .. Local Arrays ..
+ INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
+ $ KMODE( MAXTYP ), KTYPE( MAXTYP )
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL DLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLACPY, DLASET, DLASUM, DLATMR, DLATMS, DSBT21,
+ $ DSBTRD, XERBLA, DSBTRD_SB2ST, DSTEQR
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, MAX, MIN, SQRT
+* ..
+* .. Data statements ..
+ DATA KTYPE / 1, 2, 5*4, 5*5, 3*8 /
+ DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
+ $ 2, 3 /
+ DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
+ $ 0, 0 /
+* ..
+* .. Executable Statements ..
+*
+* Check for errors
+*
+ NTESTT = 0
+ INFO = 0
+*
+* Important constants
+*
+ BADNN = .FALSE.
+ NMAX = 1
+ DO 10 J = 1, NSIZES
+ NMAX = MAX( NMAX, NN( J ) )
+ IF( NN( J ).LT.0 )
+ $ BADNN = .TRUE.
+ 10 CONTINUE
+*
+ BADNNB = .FALSE.
+ KMAX = 0
+ DO 20 J = 1, NSIZES
+ KMAX = MAX( KMAX, KK( J ) )
+ IF( KK( J ).LT.0 )
+ $ BADNNB = .TRUE.
+ 20 CONTINUE
+ KMAX = MIN( NMAX-1, KMAX )
+*
+* Check for errors
+*
+ IF( NSIZES.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( BADNN ) THEN
+ INFO = -2
+ ELSE IF( NWDTHS.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( BADNNB ) THEN
+ INFO = -4
+ ELSE IF( NTYPES.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.KMAX+1 ) THEN
+ INFO = -11
+ ELSE IF( LDU.LT.NMAX ) THEN
+ INFO = -15
+ ELSE IF( ( MAX( LDA, NMAX )+1 )*NMAX.GT.LWORK ) THEN
+ INFO = -17
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DCHKSBSTG', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 .OR. NWDTHS.EQ.0 )
+ $ RETURN
+*
+* More Important constants
+*
+ UNFL = DLAMCH( 'Safe minimum' )
+ OVFL = ONE / UNFL
+ ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
+ ULPINV = ONE / ULP
+ RTUNFL = SQRT( UNFL )
+ RTOVFL = SQRT( OVFL )
+*
+* Loop over sizes, types
+*
+ NERRS = 0
+ NMATS = 0
+*
+ DO 190 JSIZE = 1, NSIZES
+ N = NN( JSIZE )
+ ANINV = ONE / DBLE( MAX( 1, N ) )
+*
+ DO 180 JWIDTH = 1, NWDTHS
+ K = KK( JWIDTH )
+ IF( K.GT.N )
+ $ GO TO 180
+ K = MAX( 0, MIN( N-1, K ) )
+*
+ IF( NSIZES.NE.1 ) THEN
+ MTYPES = MIN( MAXTYP, NTYPES )
+ ELSE
+ MTYPES = MIN( MAXTYP+1, NTYPES )
+ END IF
+*
+ DO 170 JTYPE = 1, MTYPES
+ IF( .NOT.DOTYPE( JTYPE ) )
+ $ GO TO 170
+ NMATS = NMATS + 1
+ NTEST = 0
+*
+ DO 30 J = 1, 4
+ IOLDSD( J ) = ISEED( J )
+ 30 CONTINUE
+*
+* Compute "A".
+* Store as "Upper"; later, we will copy to other format.
+*
+* Control parameters:
+*
+* KMAGN KMODE KTYPE
+* =1 O(1) clustered 1 zero
+* =2 large clustered 2 identity
+* =3 small exponential (none)
+* =4 arithmetic diagonal, (w/ eigenvalues)
+* =5 random log symmetric, w/ eigenvalues
+* =6 random (none)
+* =7 random diagonal
+* =8 random symmetric
+* =9 positive definite
+* =10 diagonally dominant tridiagonal
+*
+ IF( MTYPES.GT.MAXTYP )
+ $ GO TO 100
+*
+ ITYPE = KTYPE( JTYPE )
+ IMODE = KMODE( JTYPE )
+*
+* Compute norm
+*
+ GO TO ( 40, 50, 60 )KMAGN( JTYPE )
+*
+ 40 CONTINUE
+ ANORM = ONE
+ GO TO 70
+*
+ 50 CONTINUE
+ ANORM = ( RTOVFL*ULP )*ANINV
+ GO TO 70
+*
+ 60 CONTINUE
+ ANORM = RTUNFL*N*ULPINV
+ GO TO 70
+*
+ 70 CONTINUE
+*
+ CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
+ IINFO = 0
+ IF( JTYPE.LE.15 ) THEN
+ COND = ULPINV
+ ELSE
+ COND = ULPINV*ANINV / TEN
+ END IF
+*
+* Special Matrices -- Identity & Jordan block
+*
+* Zero
+*
+ IF( ITYPE.EQ.1 ) THEN
+ IINFO = 0
+*
+ ELSE IF( ITYPE.EQ.2 ) THEN
+*
+* Identity
+*
+ DO 80 JCOL = 1, N
+ A( K+1, JCOL ) = ANORM
+ 80 CONTINUE
+*
+ ELSE IF( ITYPE.EQ.4 ) THEN
+*
+* Diagonal Matrix, [Eigen]values Specified
+*
+ CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, 0, 0, 'Q', A( K+1, 1 ), LDA,
+ $ WORK( N+1 ), IINFO )
+*
+ ELSE IF( ITYPE.EQ.5 ) THEN
+*
+* Symmetric, eigenvalues specified
+*
+ CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, K, K, 'Q', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+ ELSE IF( ITYPE.EQ.7 ) THEN
+*
+* Diagonal, random eigenvalues
+*
+ CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
+ $ ZERO, ANORM, 'Q', A( K+1, 1 ), LDA,
+ $ IDUMMA, IINFO )
+*
+ ELSE IF( ITYPE.EQ.8 ) THEN
+*
+* Symmetric, random eigenvalues
+*
+ CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, K, K,
+ $ ZERO, ANORM, 'Q', A, LDA, IDUMMA, IINFO )
+*
+ ELSE IF( ITYPE.EQ.9 ) THEN
+*
+* Positive definite, eigenvalues specified.
+*
+ CALL DLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
+ $ ANORM, K, K, 'Q', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+ ELSE IF( ITYPE.EQ.10 ) THEN
+*
+* Positive definite tridiagonal, eigenvalues specified.
+*
+ IF( N.GT.1 )
+ $ K = MAX( 1, K )
+ CALL DLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
+ $ ANORM, 1, 1, 'Q', A( K, 1 ), LDA,
+ $ WORK( N+1 ), IINFO )
+ DO 90 I = 2, N
+ TEMP1 = ABS( A( K, I ) ) /
+ $ SQRT( ABS( A( K+1, I-1 )*A( K+1, I ) ) )
+ IF( TEMP1.GT.HALF ) THEN
+ A( K, I ) = HALF*SQRT( ABS( A( K+1,
+ $ I-1 )*A( K+1, I ) ) )
+ END IF
+ 90 CONTINUE
+*
+ ELSE
+*
+ IINFO = 1
+ END IF
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ RETURN
+ END IF
+*
+ 100 CONTINUE
+*
+* Call DSBTRD to compute S and U from upper triangle.
+*
+ CALL DLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
+*
+ NTEST = 1
+ CALL DSBTRD( 'V', 'U', N, K, WORK, LDA, SD, SE, U, LDU,
+ $ WORK( LDA*N+1 ), IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSBTRD(U)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 1 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+* Do tests 1 and 2
+*
+ CALL DSBT21( 'Upper', N, K, 1, A, LDA, SD, SE, U, LDU,
+ $ WORK, RESULT( 1 ) )
+*
+* Before converting A into lower for DSBTRD, run DSYTRD_SB2ST
+* otherwise matrix A will be converted to lower and then need
+* to be converted back to upper in order to run the upper case
+* ofDSYTRD_SB2ST
+*
+* Compute D1 the eigenvalues resulting from the tridiagonal
+* form using the DSBTRD and used as reference to compare
+* with the DSYTRD_SB2ST routine
+*
+* Compute D1 from the DSBTRD and used as reference for the
+* DSYTRD_SB2ST
+*
+ CALL DCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+*
+ CALL DSTEQR( 'N', N, D1, WORK, WORK( N+1 ), LDU,
+ $ WORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEQR(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 5 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+* DSYTRD_SB2ST Upper case is used to compute D2.
+* Note to set SD and SE to zero to be sure not reusing
+* the one from above. Compare it with D1 computed
+* using the DSBTRD.
+*
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, 1 )
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, 1 )
+ CALL DLACPY( ' ', K+1, N, A, LDA, U, LDU )
+ LH = MAX(1, 4*N)
+ LW = LWORK - LH
+ CALL DSYTRD_SB2ST( 'N', 'N', "U", N, K, U, LDU, SD, SE,
+ $ WORK, LH, WORK( LH+1 ), LW, IINFO )
+*
+* Compute D2 from the DSYTRD_SB2ST Upper case
+*
+ CALL DCOPY( N, SD, 1, D2, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+*
+ CALL DSTEQR( 'N', N, D2, WORK, WORK( N+1 ), LDU,
+ $ WORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEQR(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 5 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+* Convert A from Upper-Triangle-Only storage to
+* Lower-Triangle-Only storage.
+*
+ DO 120 JC = 1, N
+ DO 110 JR = 0, MIN( K, N-JC )
+ A( JR+1, JC ) = A( K+1-JR, JC+JR )
+ 110 CONTINUE
+ 120 CONTINUE
+ DO 140 JC = N + 1 - K, N
+ DO 130 JR = MIN( K, N-JC ) + 1, K
+ A( JR+1, JC ) = ZERO
+ 130 CONTINUE
+ 140 CONTINUE
+*
+* Call DSBTRD to compute S and U from lower triangle
+*
+ CALL DLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
+*
+ NTEST = 3
+ CALL DSBTRD( 'V', 'L', N, K, WORK, LDA, SD, SE, U, LDU,
+ $ WORK( LDA*N+1 ), IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSBTRD(L)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 3 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+ NTEST = 4
+*
+* Do tests 3 and 4
+*
+ CALL DSBT21( 'Lower', N, K, 1, A, LDA, SD, SE, U, LDU,
+ $ WORK, RESULT( 3 ) )
+*
+* DSYTRD_SB2ST Lower case is used to compute D3.
+* Note to set SD and SE to zero to be sure not reusing
+* the one from above. Compare it with D1 computed
+* using the DSBTRD.
+*
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, 1 )
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, 1 )
+ CALL DLACPY( ' ', K+1, N, A, LDA, U, LDU )
+ LH = MAX(1, 4*N)
+ LW = LWORK - LH
+ CALL DSYTRD_SB2ST( 'N', 'N', "L", N, K, U, LDU, SD, SE,
+ $ WORK, LH, WORK( LH+1 ), LW, IINFO )
+*
+* Compute D3 from the 2-stage Upper case
+*
+ CALL DCOPY( N, SD, 1, D3, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+*
+ CALL DSTEQR( 'N', N, D3, WORK, WORK( N+1 ), LDU,
+ $ WORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEQR(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 6 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+*
+* Do Tests 3 and 4 which are similar to 11 and 12 but with the
+* D1 computed using the standard 1-stage reduction as reference
+*
+ NTEST = 6
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ TEMP3 = ZERO
+ TEMP4 = ZERO
+*
+ DO 151 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
+ 151 CONTINUE
+*
+ RESULT(5) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+ RESULT(6) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
+*
+* End of Loop -- Check for RESULT(j) > THRESH
+*
+ 150 CONTINUE
+ NTESTT = NTESTT + NTEST
+*
+* Print out tests which fail.
+*
+ DO 160 JR = 1, NTEST
+ IF( RESULT( JR ).GE.THRESH ) THEN
+*
+* If this is the first test to fail,
+* print a header to the data file.
+*
+ IF( NERRS.EQ.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'DSB'
+ WRITE( NOUNIT, FMT = 9997 )
+ WRITE( NOUNIT, FMT = 9996 )
+ WRITE( NOUNIT, FMT = 9995 )'Symmetric'
+ WRITE( NOUNIT, FMT = 9994 )'orthogonal', '''',
+ $ 'transpose', ( '''', J = 1, 6 )
+ END IF
+ NERRS = NERRS + 1
+ WRITE( NOUNIT, FMT = 9993 )N, K, IOLDSD, JTYPE,
+ $ JR, RESULT( JR )
+ END IF
+ 160 CONTINUE
+*
+ 170 CONTINUE
+ 180 CONTINUE
+ 190 CONTINUE
+*
+* Summary
+*
+ CALL DLASUM( 'DSB', NOUNIT, NERRS, NTESTT )
+ RETURN
+*
+ 9999 FORMAT( ' DCHKSBSTG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
+ $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
+*
+ 9998 FORMAT( / 1X, A3,
+ $ ' -- Real Symmetric Banded Tridiagonal Reduction Routines' )
+ 9997 FORMAT( ' Matrix types (see DCHKSBSTG for details): ' )
+*
+ 9996 FORMAT( / ' Special Matrices:',
+ $ / ' 1=Zero matrix. ',
+ $ ' 5=Diagonal: clustered entries.',
+ $ / ' 2=Identity matrix. ',
+ $ ' 6=Diagonal: large, evenly spaced.',
+ $ / ' 3=Diagonal: evenly spaced entries. ',
+ $ ' 7=Diagonal: small, evenly spaced.',
+ $ / ' 4=Diagonal: geometr. spaced entries.' )
+ 9995 FORMAT( ' Dense ', A, ' Banded Matrices:',
+ $ / ' 8=Evenly spaced eigenvals. ',
+ $ ' 12=Small, evenly spaced eigenvals.',
+ $ / ' 9=Geometrically spaced eigenvals. ',
+ $ ' 13=Matrix with random O(1) entries.',
+ $ / ' 10=Clustered eigenvalues. ',
+ $ ' 14=Matrix with large random entries.',
+ $ / ' 11=Large, evenly spaced eigenvals. ',
+ $ ' 15=Matrix with small random entries.' )
+*
+ 9994 FORMAT( / ' Tests performed: (S is Tridiag, U is ', A, ',',
+ $ / 20X, A, ' means ', A, '.', / ' UPLO=''U'':',
+ $ / ' 1= | A - U S U', A1, ' | / ( |A| n ulp ) ',
+ $ ' 2= | I - U U', A1, ' | / ( n ulp )', / ' UPLO=''L'':',
+ $ / ' 3= | A - U S U', A1, ' | / ( |A| n ulp ) ',
+ $ ' 4= | I - U U', A1, ' | / ( n ulp )' / ' Eig check:',
+ $ /' 5= | D1 - D2', '', ' | / ( |D1| ulp ) ',
+ $ ' 6= | D1 - D3', '', ' | / ( |D1| ulp ) ' )
+ 9993 FORMAT( ' N=', I5, ', K=', I4, ', seed=', 4( I4, ',' ), ' type ',
+ $ I2, ', test(', I2, ')=', G10.3 )
+*
+* End of DCHKSBSTG
+*
+ END
diff --git a/TESTING/EIG/dchkst2stg.f b/TESTING/EIG/dchkst2stg.f
new file mode 100644
index 00000000..29190691
--- /dev/null
+++ b/TESTING/EIG/dchkst2stg.f
@@ -0,0 +1,2120 @@
+*> \brief \b DCHKST2STG
+*
+* @precisions fortran d -> s
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE DCHKST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+* NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
+* WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
+* LWORK, IWORK, LIWORK, RESULT, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDU, LIWORK, LWORK, NOUNIT, NSIZES,
+* $ NTYPES
+* DOUBLE PRECISION THRESH
+* ..
+* .. Array Arguments ..
+* LOGICAL DOTYPE( * )
+* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+* DOUBLE PRECISION A( LDA, * ), AP( * ), D1( * ), D2( * ),
+* $ D3( * ), D4( * ), D5( * ), RESULT( * ),
+* $ SD( * ), SE( * ), TAU( * ), U( LDU, * ),
+* $ V( LDU, * ), VP( * ), WA1( * ), WA2( * ),
+* $ WA3( * ), WORK( * ), WR( * ), Z( LDU, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DCHKST2STG checks the symmetric eigenvalue problem routines
+*> using the 2-stage reduction techniques. Since the generation
+*> of Q or the vectors is not available in this release, we only
+*> compare the eigenvalue resulting when using the 2-stage to the
+*> one considered as reference using the standard 1-stage reduction
+*> DSYTRD. For that, we call the standard DSYTRD and compute D1 using
+*> DSTEQR, then we call the 2-stage DSYTRD_2STAGE with Upper and Lower
+*> and we compute D2 and D3 using DSTEQR and then we replaced tests
+*> 3 and 4 by tests 11 and 12. test 1 and 2 remain to verify that
+*> the 1-stage results are OK and can be trusted.
+*> This testing routine will converge to the DCHKST in the next
+*> release when vectors and generation of Q will be implemented.
+*>
+*> DSYTRD factors A as U S U' , where ' means transpose,
+*> S is symmetric tridiagonal, and U is orthogonal.
+*> DSYTRD can use either just the lower or just the upper triangle
+*> of A; DCHKST2STG checks both cases.
+*> U is represented as a product of Householder
+*> transformations, whose vectors are stored in the first
+*> n-1 columns of V, and whose scale factors are in TAU.
+*>
+*> DSPTRD does the same as DSYTRD, except that A and V are stored
+*> in "packed" format.
+*>
+*> DORGTR constructs the matrix U from the contents of V and TAU.
+*>
+*> DOPGTR constructs the matrix U from the contents of VP and TAU.
+*>
+*> DSTEQR factors S as Z D1 Z' , where Z is the orthogonal
+*> matrix of eigenvectors and D1 is a diagonal matrix with
+*> the eigenvalues on the diagonal. D2 is the matrix of
+*> eigenvalues computed when Z is not computed.
+*>
+*> DSTERF computes D3, the matrix of eigenvalues, by the
+*> PWK method, which does not yield eigenvectors.
+*>
+*> DPTEQR factors S as Z4 D4 Z4' , for a
+*> symmetric positive definite tridiagonal matrix.
+*> D5 is the matrix of eigenvalues computed when Z is not
+*> computed.
+*>
+*> DSTEBZ computes selected eigenvalues. WA1, WA2, and
+*> WA3 will denote eigenvalues computed to high
+*> absolute accuracy, with different range options.
+*> WR will denote eigenvalues computed to high relative
+*> accuracy.
+*>
+*> DSTEIN computes Y, the eigenvectors of S, given the
+*> eigenvalues.
+*>
+*> DSTEDC factors S as Z D1 Z' , where Z is the orthogonal
+*> matrix of eigenvectors and D1 is a diagonal matrix with
+*> the eigenvalues on the diagonal ('I' option). It may also
+*> update an input orthogonal matrix, usually the output
+*> from DSYTRD/DORGTR or DSPTRD/DOPGTR ('V' option). It may
+*> also just compute eigenvalues ('N' option).
+*>
+*> DSTEMR factors S as Z D1 Z' , where Z is the orthogonal
+*> matrix of eigenvectors and D1 is a diagonal matrix with
+*> the eigenvalues on the diagonal ('I' option). DSTEMR
+*> uses the Relatively Robust Representation whenever possible.
+*>
+*> When DCHKST2STG is called, a number of matrix "sizes" ("n's") and a
+*> number of matrix "types" are specified. For each size ("n")
+*> and each type of matrix, one matrix will be generated and used
+*> to test the symmetric eigenroutines. For each matrix, a number
+*> of tests will be performed:
+*>
+*> (1) | A - V S V' | / ( |A| n ulp ) DSYTRD( UPLO='U', ... )
+*>
+*> (2) | I - UV' | / ( n ulp ) DORGTR( UPLO='U', ... )
+*>
+*> (3) | A - V S V' | / ( |A| n ulp ) DSYTRD( UPLO='L', ... )
+*> replaced by | D1 - D2 | / ( |D1| ulp ) where D1 is the
+*> eigenvalue matrix computed using S and D2 is the
+*> eigenvalue matrix computed using S_2stage the output of
+*> DSYTRD_2STAGE("N", "U",....). D1 and D2 are computed
+*> via DSTEQR('N',...)
+*>
+*> (4) | I - UV' | / ( n ulp ) DORGTR( UPLO='L', ... )
+*> replaced by | D1 - D3 | / ( |D1| ulp ) where D1 is the
+*> eigenvalue matrix computed using S and D3 is the
+*> eigenvalue matrix computed using S_2stage the output of
+*> DSYTRD_2STAGE("N", "L",....). D1 and D3 are computed
+*> via DSTEQR('N',...)
+*>
+*> (5-8) Same as 1-4, but for DSPTRD and DOPGTR.
+*>
+*> (9) | S - Z D Z' | / ( |S| n ulp ) DSTEQR('V',...)
+*>
+*> (10) | I - ZZ' | / ( n ulp ) DSTEQR('V',...)
+*>
+*> (11) | D1 - D2 | / ( |D1| ulp ) DSTEQR('N',...)
+*>
+*> (12) | D1 - D3 | / ( |D1| ulp ) DSTERF
+*>
+*> (13) 0 if the true eigenvalues (computed by sturm count)
+*> of S are within THRESH of
+*> those in D1. 2*THRESH if they are not. (Tested using
+*> DSTECH)
+*>
+*> For S positive definite,
+*>
+*> (14) | S - Z4 D4 Z4' | / ( |S| n ulp ) DPTEQR('V',...)
+*>
+*> (15) | I - Z4 Z4' | / ( n ulp ) DPTEQR('V',...)
+*>
+*> (16) | D4 - D5 | / ( 100 |D4| ulp ) DPTEQR('N',...)
+*>
+*> When S is also diagonally dominant by the factor gamma < 1,
+*>
+*> (17) max | D4(i) - WR(i) | / ( |D4(i)| omega ) ,
+*> i
+*> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
+*> DSTEBZ( 'A', 'E', ...)
+*>
+*> (18) | WA1 - D3 | / ( |D3| ulp ) DSTEBZ( 'A', 'E', ...)
+*>
+*> (19) ( max { min | WA2(i)-WA3(j) | } +
+*> i j
+*> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
+*> i j
+*> DSTEBZ( 'I', 'E', ...)
+*>
+*> (20) | S - Y WA1 Y' | / ( |S| n ulp ) DSTEBZ, SSTEIN
+*>
+*> (21) | I - Y Y' | / ( n ulp ) DSTEBZ, SSTEIN
+*>
+*> (22) | S - Z D Z' | / ( |S| n ulp ) DSTEDC('I')
+*>
+*> (23) | I - ZZ' | / ( n ulp ) DSTEDC('I')
+*>
+*> (24) | S - Z D Z' | / ( |S| n ulp ) DSTEDC('V')
+*>
+*> (25) | I - ZZ' | / ( n ulp ) DSTEDC('V')
+*>
+*> (26) | D1 - D2 | / ( |D1| ulp ) DSTEDC('V') and
+*> DSTEDC('N')
+*>
+*> Test 27 is disabled at the moment because DSTEMR does not
+*> guarantee high relatvie accuracy.
+*>
+*> (27) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
+*> i
+*> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
+*> DSTEMR('V', 'A')
+*>
+*> (28) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
+*> i
+*> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
+*> DSTEMR('V', 'I')
+*>
+*> Tests 29 through 34 are disable at present because DSTEMR
+*> does not handle partial specturm requests.
+*>
+*> (29) | S - Z D Z' | / ( |S| n ulp ) DSTEMR('V', 'I')
+*>
+*> (30) | I - ZZ' | / ( n ulp ) DSTEMR('V', 'I')
+*>
+*> (31) ( max { min | WA2(i)-WA3(j) | } +
+*> i j
+*> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
+*> i j
+*> DSTEMR('N', 'I') vs. SSTEMR('V', 'I')
+*>
+*> (32) | S - Z D Z' | / ( |S| n ulp ) DSTEMR('V', 'V')
+*>
+*> (33) | I - ZZ' | / ( n ulp ) DSTEMR('V', 'V')
+*>
+*> (34) ( max { min | WA2(i)-WA3(j) | } +
+*> i j
+*> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
+*> i j
+*> DSTEMR('N', 'V') vs. SSTEMR('V', 'V')
+*>
+*> (35) | S - Z D Z' | / ( |S| n ulp ) DSTEMR('V', 'A')
+*>
+*> (36) | I - ZZ' | / ( n ulp ) DSTEMR('V', 'A')
+*>
+*> (37) ( max { min | WA2(i)-WA3(j) | } +
+*> i j
+*> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
+*> i j
+*> DSTEMR('N', 'A') vs. SSTEMR('V', 'A')
+*>
+*> The "sizes" are specified by an array NN(1:NSIZES); the value of
+*> each element NN(j) specifies one size.
+*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
+*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
+*> Currently, the list of possible types is:
+*>
+*> (1) The zero matrix.
+*> (2) The identity matrix.
+*>
+*> (3) A diagonal matrix with evenly spaced entries
+*> 1, ..., ULP and random signs.
+*> (ULP = (first number larger than 1) - 1 )
+*> (4) A diagonal matrix with geometrically spaced entries
+*> 1, ..., ULP and random signs.
+*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
+*> and random signs.
+*>
+*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
+*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
+*>
+*> (8) A matrix of the form U' D U, where U is orthogonal and
+*> D has evenly spaced entries 1, ..., ULP with random signs
+*> on the diagonal.
+*>
+*> (9) A matrix of the form U' D U, where U is orthogonal and
+*> D has geometrically spaced entries 1, ..., ULP with random
+*> signs on the diagonal.
+*>
+*> (10) A matrix of the form U' D U, where U is orthogonal and
+*> D has "clustered" entries 1, ULP,..., ULP with random
+*> signs on the diagonal.
+*>
+*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
+*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
+*>
+*> (13) Symmetric matrix with random entries chosen from (-1,1).
+*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
+*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
+*> (16) Same as (8), but diagonal elements are all positive.
+*> (17) Same as (9), but diagonal elements are all positive.
+*> (18) Same as (10), but diagonal elements are all positive.
+*> (19) Same as (16), but multiplied by SQRT( overflow threshold )
+*> (20) Same as (16), but multiplied by SQRT( underflow threshold )
+*> (21) A diagonally dominant tridiagonal matrix with geometrically
+*> spaced diagonal entries 1, ..., ULP.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] NSIZES
+*> \verbatim
+*> NSIZES is INTEGER
+*> The number of sizes of matrices to use. If it is zero,
+*> DCHKST2STG does nothing. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NN
+*> \verbatim
+*> NN is INTEGER array, dimension (NSIZES)
+*> An array containing the sizes to be used for the matrices.
+*> Zero values will be skipped. The values must be at least
+*> zero.
+*> \endverbatim
+*>
+*> \param[in] NTYPES
+*> \verbatim
+*> NTYPES is INTEGER
+*> The number of elements in DOTYPE. If it is zero, DCHKST2STG
+*> does nothing. It must be at least zero. If it is MAXTYP+1
+*> and NSIZES is 1, then an additional type, MAXTYP+1 is
+*> defined, which is to use whatever matrix is in A. This
+*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
+*> DOTYPE(MAXTYP+1) is .TRUE. .
+*> \endverbatim
+*>
+*> \param[in] DOTYPE
+*> \verbatim
+*> DOTYPE is LOGICAL array, dimension (NTYPES)
+*> If DOTYPE(j) is .TRUE., then for each size in NN a
+*> matrix of that size and of type j will be generated.
+*> If NTYPES is smaller than the maximum number of types
+*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
+*> MAXTYP will not be generated. If NTYPES is larger
+*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
+*> will be ignored.
+*> \endverbatim
+*>
+*> \param[in,out] ISEED
+*> \verbatim
+*> ISEED is INTEGER array, dimension (4)
+*> On entry ISEED specifies the seed of the random number
+*> generator. The array elements should be between 0 and 4095;
+*> if not they will be reduced mod 4096. Also, ISEED(4) must
+*> be odd. The random number generator uses a linear
+*> congruential sequence limited to small integers, and so
+*> should produce machine independent random numbers. The
+*> values of ISEED are changed on exit, and can be used in the
+*> next call to DCHKST2STG to continue the same random number
+*> sequence.
+*> \endverbatim
+*>
+*> \param[in] THRESH
+*> \verbatim
+*> THRESH is DOUBLE PRECISION
+*> A test will count as "failed" if the "error", computed as
+*> described above, exceeds THRESH. Note that the error
+*> is scaled to be O(1), so THRESH should be a reasonably
+*> small multiple of 1, e.g., 10 or 100. In particular,
+*> it should not depend on the precision (single vs. double)
+*> or the size of the matrix. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NOUNIT
+*> \verbatim
+*> NOUNIT is INTEGER
+*> The FORTRAN unit number for printing out error messages
+*> (e.g., if a routine returns IINFO not equal to 0.)
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is DOUBLE PRECISION array of
+*> dimension ( LDA , max(NN) )
+*> Used to hold the matrix whose eigenvalues are to be
+*> computed. On exit, A contains the last matrix actually
+*> used.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of A. It must be at
+*> least 1 and at least max( NN ).
+*> \endverbatim
+*>
+*> \param[out] AP
+*> \verbatim
+*> AP is DOUBLE PRECISION array of
+*> dimension( max(NN)*max(NN+1)/2 )
+*> The matrix A stored in packed format.
+*> \endverbatim
+*>
+*> \param[out] SD
+*> \verbatim
+*> SD is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> The diagonal of the tridiagonal matrix computed by DSYTRD.
+*> On exit, SD and SE contain the tridiagonal form of the
+*> matrix in A.
+*> \endverbatim
+*>
+*> \param[out] SE
+*> \verbatim
+*> SE is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> The off-diagonal of the tridiagonal matrix computed by
+*> DSYTRD. On exit, SD and SE contain the tridiagonal form of
+*> the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D1
+*> \verbatim
+*> D1 is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by DSTEQR simlutaneously
+*> with Z. On exit, the eigenvalues in D1 correspond with the
+*> matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D2
+*> \verbatim
+*> D2 is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by DSTEQR if Z is not
+*> computed. On exit, the eigenvalues in D2 correspond with
+*> the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D3
+*> \verbatim
+*> D3 is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by DSTERF. On exit, the
+*> eigenvalues in D3 correspond with the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D4
+*> \verbatim
+*> D4 is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by DPTEQR(V).
+*> DPTEQR factors S as Z4 D4 Z4*
+*> On exit, the eigenvalues in D4 correspond with the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D5
+*> \verbatim
+*> D5 is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by DPTEQR(N)
+*> when Z is not computed. On exit, the
+*> eigenvalues in D4 correspond with the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] WA1
+*> \verbatim
+*> WA1 is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> All eigenvalues of A, computed to high
+*> absolute accuracy, with different range options.
+*> as computed by DSTEBZ.
+*> \endverbatim
+*>
+*> \param[out] WA2
+*> \verbatim
+*> WA2 is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> Selected eigenvalues of A, computed to high
+*> absolute accuracy, with different range options.
+*> as computed by DSTEBZ.
+*> Choose random values for IL and IU, and ask for the
+*> IL-th through IU-th eigenvalues.
+*> \endverbatim
+*>
+*> \param[out] WA3
+*> \verbatim
+*> WA3 is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> Selected eigenvalues of A, computed to high
+*> absolute accuracy, with different range options.
+*> as computed by DSTEBZ.
+*> Determine the values VL and VU of the IL-th and IU-th
+*> eigenvalues and ask for all eigenvalues in this range.
+*> \endverbatim
+*>
+*> \param[out] WR
+*> \verbatim
+*> WR is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> All eigenvalues of A, computed to high
+*> absolute accuracy, with different options.
+*> as computed by DSTEBZ.
+*> \endverbatim
+*>
+*> \param[out] U
+*> \verbatim
+*> U is DOUBLE PRECISION array of
+*> dimension( LDU, max(NN) ).
+*> The orthogonal matrix computed by DSYTRD + DORGTR.
+*> \endverbatim
+*>
+*> \param[in] LDU
+*> \verbatim
+*> LDU is INTEGER
+*> The leading dimension of U, Z, and V. It must be at least 1
+*> and at least max( NN ).
+*> \endverbatim
+*>
+*> \param[out] V
+*> \verbatim
+*> V is DOUBLE PRECISION array of
+*> dimension( LDU, max(NN) ).
+*> The Housholder vectors computed by DSYTRD in reducing A to
+*> tridiagonal form. The vectors computed with UPLO='U' are
+*> in the upper triangle, and the vectors computed with UPLO='L'
+*> are in the lower triangle. (As described in DSYTRD, the
+*> sub- and superdiagonal are not set to 1, although the
+*> true Householder vector has a 1 in that position. The
+*> routines that use V, such as DORGTR, set those entries to
+*> 1 before using them, and then restore them later.)
+*> \endverbatim
+*>
+*> \param[out] VP
+*> \verbatim
+*> VP is DOUBLE PRECISION array of
+*> dimension( max(NN)*max(NN+1)/2 )
+*> The matrix V stored in packed format.
+*> \endverbatim
+*>
+*> \param[out] TAU
+*> \verbatim
+*> TAU is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> The Householder factors computed by DSYTRD in reducing A
+*> to tridiagonal form.
+*> \endverbatim
+*>
+*> \param[out] Z
+*> \verbatim
+*> Z is DOUBLE PRECISION array of
+*> dimension( LDU, max(NN) ).
+*> The orthogonal matrix of eigenvectors computed by DSTEQR,
+*> DPTEQR, and DSTEIN.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is DOUBLE PRECISION array of
+*> dimension( LWORK )
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The number of entries in WORK. This must be at least
+*> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 3 * Nmax**2
+*> where Nmax = max( NN(j), 2 ) and lg = log base 2.
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array,
+*> Workspace.
+*> \endverbatim
+*>
+*> \param[out] LIWORK
+*> \verbatim
+*> LIWORK is INTEGER
+*> The number of entries in IWORK. This must be at least
+*> 6 + 6*Nmax + 5 * Nmax * lg Nmax
+*> where Nmax = max( NN(j), 2 ) and lg = log base 2.
+*> \endverbatim
+*>
+*> \param[out] RESULT
+*> \verbatim
+*> RESULT is DOUBLE PRECISION array, dimension (26)
+*> The values computed by the tests described above.
+*> The values are currently limited to 1/ulp, to avoid
+*> overflow.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> If 0, then everything ran OK.
+*> -1: NSIZES < 0
+*> -2: Some NN(j) < 0
+*> -3: NTYPES < 0
+*> -5: THRESH < 0
+*> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
+*> -23: LDU < 1 or LDU < NMAX.
+*> -29: LWORK too small.
+*> If DLATMR, SLATMS, DSYTRD, DORGTR, DSTEQR, SSTERF,
+*> or DORMC2 returns an error code, the
+*> absolute value of it is returned.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> Some Local Variables and Parameters:
+*> ---- ----- --------- --- ----------
+*> ZERO, ONE Real 0 and 1.
+*> MAXTYP The number of types defined.
+*> NTEST The number of tests performed, or which can
+*> be performed so far, for the current matrix.
+*> NTESTT The total number of tests performed so far.
+*> NBLOCK Blocksize as returned by ENVIR.
+*> NMAX Largest value in NN.
+*> NMATS The number of matrices generated so far.
+*> NERRS The number of tests which have exceeded THRESH
+*> so far.
+*> COND, IMODE Values to be passed to the matrix generators.
+*> ANORM Norm of A; passed to matrix generators.
+*>
+*> OVFL, UNFL Overflow and underflow thresholds.
+*> ULP, ULPINV Finest relative precision and its inverse.
+*> RTOVFL, RTUNFL Square roots of the previous 2 values.
+*> The following four arrays decode JTYPE:
+*> KTYPE(j) The general type (1-10) for type "j".
+*> KMODE(j) The MODE value to be passed to the matrix
+*> generator for type "j".
+*> KMAGN(j) The order of magnitude ( O(1),
+*> O(overflow^(1/2) ), O(underflow^(1/2) )
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup double_eig
+*
+* =====================================================================
+ SUBROUTINE DCHKST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+ $ NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
+ $ WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
+ $ LWORK, IWORK, LIWORK, RESULT, INFO )
+*
+* -- LAPACK test routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDU, LIWORK, LWORK, NOUNIT, NSIZES,
+ $ NTYPES
+ DOUBLE PRECISION THRESH
+* ..
+* .. Array Arguments ..
+ LOGICAL DOTYPE( * )
+ INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+ DOUBLE PRECISION A( LDA, * ), AP( * ), D1( * ), D2( * ),
+ $ D3( * ), D4( * ), D5( * ), RESULT( * ),
+ $ SD( * ), SE( * ), TAU( * ), U( LDU, * ),
+ $ V( LDU, * ), VP( * ), WA1( * ), WA2( * ),
+ $ WA3( * ), WORK( * ), WR( * ), Z( LDU, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE, TWO, EIGHT, TEN, HUN
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
+ $ EIGHT = 8.0D0, TEN = 10.0D0, HUN = 100.0D0 )
+ DOUBLE PRECISION HALF
+ PARAMETER ( HALF = ONE / TWO )
+ INTEGER MAXTYP
+ PARAMETER ( MAXTYP = 21 )
+ LOGICAL SRANGE
+ PARAMETER ( SRANGE = .FALSE. )
+ LOGICAL SREL
+ PARAMETER ( SREL = .FALSE. )
+* ..
+* .. Local Scalars ..
+ LOGICAL BADNN, TRYRAC
+ INTEGER I, IINFO, IL, IMODE, ITEMP, ITYPE, IU, J, JC,
+ $ JR, JSIZE, JTYPE, LGN, LIWEDC, LOG2UI, LWEDC,
+ $ M, M2, M3, MTYPES, N, NAP, NBLOCK, NERRS,
+ $ NMATS, NMAX, NSPLIT, NTEST, NTESTT, LH, LW
+ DOUBLE PRECISION ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
+ $ RTUNFL, TEMP1, TEMP2, TEMP3, TEMP4, ULP,
+ $ ULPINV, UNFL, VL, VU
+* ..
+* .. Local Arrays ..
+ INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
+ $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
+ $ KTYPE( MAXTYP )
+ DOUBLE PRECISION DUMMA( 1 )
+* ..
+* .. External Functions ..
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH, DLARND, DSXT1
+ EXTERNAL ILAENV, DLAMCH, DLARND, DSXT1
+* ..
+* .. External Subroutines ..
+ EXTERNAL DCOPY, DLABAD, DLACPY, DLASET, DLASUM, DLATMR,
+ $ DLATMS, DOPGTR, DORGTR, DPTEQR, DSPT21, DSPTRD,
+ $ DSTEBZ, DSTECH, DSTEDC, DSTEMR, DSTEIN, DSTEQR,
+ $ DSTERF, DSTT21, DSTT22, DSYT21, DSYTRD, XERBLA,
+ $ DSYTRD_2STAGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, INT, LOG, MAX, MIN, SQRT
+* ..
+* .. Data statements ..
+ DATA KTYPE / 1, 2, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 8,
+ $ 8, 8, 9, 9, 9, 9, 9, 10 /
+ DATA KMAGN / 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
+ $ 2, 3, 1, 1, 1, 2, 3, 1 /
+ DATA KMODE / 0, 0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
+ $ 0, 0, 4, 3, 1, 4, 4, 3 /
+* ..
+* .. Executable Statements ..
+*
+* Keep ftnchek happy
+ IDUMMA( 1 ) = 1
+*
+* Check for errors
+*
+ NTESTT = 0
+ INFO = 0
+*
+* Important constants
+*
+ BADNN = .FALSE.
+ TRYRAC = .TRUE.
+ NMAX = 1
+ DO 10 J = 1, NSIZES
+ NMAX = MAX( NMAX, NN( J ) )
+ IF( NN( J ).LT.0 )
+ $ BADNN = .TRUE.
+ 10 CONTINUE
+*
+ NBLOCK = ILAENV( 1, 'DSYTRD', 'L', NMAX, -1, -1, -1 )
+ NBLOCK = MIN( NMAX, MAX( 1, NBLOCK ) )
+*
+* Check for errors
+*
+ IF( NSIZES.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( BADNN ) THEN
+ INFO = -2
+ ELSE IF( NTYPES.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.NMAX ) THEN
+ INFO = -9
+ ELSE IF( LDU.LT.NMAX ) THEN
+ INFO = -23
+ ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
+ INFO = -29
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DCHKST2STG', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
+ $ RETURN
+*
+* More Important constants
+*
+ UNFL = DLAMCH( 'Safe minimum' )
+ OVFL = ONE / UNFL
+ CALL DLABAD( UNFL, OVFL )
+ ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
+ ULPINV = ONE / ULP
+ LOG2UI = INT( LOG( ULPINV ) / LOG( TWO ) )
+ RTUNFL = SQRT( UNFL )
+ RTOVFL = SQRT( OVFL )
+*
+* Loop over sizes, types
+*
+ DO 20 I = 1, 4
+ ISEED2( I ) = ISEED( I )
+ 20 CONTINUE
+ NERRS = 0
+ NMATS = 0
+*
+ DO 310 JSIZE = 1, NSIZES
+ N = NN( JSIZE )
+ IF( N.GT.0 ) THEN
+ LGN = INT( LOG( DBLE( N ) ) / LOG( TWO ) )
+ IF( 2**LGN.LT.N )
+ $ LGN = LGN + 1
+ IF( 2**LGN.LT.N )
+ $ LGN = LGN + 1
+ LWEDC = 1 + 4*N + 2*N*LGN + 4*N**2
+ LIWEDC = 6 + 6*N + 5*N*LGN
+ ELSE
+ LWEDC = 8
+ LIWEDC = 12
+ END IF
+ NAP = ( N*( N+1 ) ) / 2
+ ANINV = ONE / DBLE( MAX( 1, N ) )
+*
+ IF( NSIZES.NE.1 ) THEN
+ MTYPES = MIN( MAXTYP, NTYPES )
+ ELSE
+ MTYPES = MIN( MAXTYP+1, NTYPES )
+ END IF
+*
+ DO 300 JTYPE = 1, MTYPES
+ IF( .NOT.DOTYPE( JTYPE ) )
+ $ GO TO 300
+ NMATS = NMATS + 1
+ NTEST = 0
+*
+ DO 30 J = 1, 4
+ IOLDSD( J ) = ISEED( J )
+ 30 CONTINUE
+*
+* Compute "A"
+*
+* Control parameters:
+*
+* KMAGN KMODE KTYPE
+* =1 O(1) clustered 1 zero
+* =2 large clustered 2 identity
+* =3 small exponential (none)
+* =4 arithmetic diagonal, (w/ eigenvalues)
+* =5 random log symmetric, w/ eigenvalues
+* =6 random (none)
+* =7 random diagonal
+* =8 random symmetric
+* =9 positive definite
+* =10 diagonally dominant tridiagonal
+*
+ IF( MTYPES.GT.MAXTYP )
+ $ GO TO 100
+*
+ ITYPE = KTYPE( JTYPE )
+ IMODE = KMODE( JTYPE )
+*
+* Compute norm
+*
+ GO TO ( 40, 50, 60 )KMAGN( JTYPE )
+*
+ 40 CONTINUE
+ ANORM = ONE
+ GO TO 70
+*
+ 50 CONTINUE
+ ANORM = ( RTOVFL*ULP )*ANINV
+ GO TO 70
+*
+ 60 CONTINUE
+ ANORM = RTUNFL*N*ULPINV
+ GO TO 70
+*
+ 70 CONTINUE
+*
+ CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
+ IINFO = 0
+ IF( JTYPE.LE.15 ) THEN
+ COND = ULPINV
+ ELSE
+ COND = ULPINV*ANINV / TEN
+ END IF
+*
+* Special Matrices -- Identity & Jordan block
+*
+* Zero
+*
+ IF( ITYPE.EQ.1 ) THEN
+ IINFO = 0
+*
+ ELSE IF( ITYPE.EQ.2 ) THEN
+*
+* Identity
+*
+ DO 80 JC = 1, N
+ A( JC, JC ) = ANORM
+ 80 CONTINUE
+*
+ ELSE IF( ITYPE.EQ.4 ) THEN
+*
+* Diagonal Matrix, [Eigen]values Specified
+*
+ CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+*
+ ELSE IF( ITYPE.EQ.5 ) THEN
+*
+* Symmetric, eigenvalues specified
+*
+ CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+ ELSE IF( ITYPE.EQ.7 ) THEN
+*
+* Diagonal, random eigenvalues
+*
+ CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.8 ) THEN
+*
+* Symmetric, random eigenvalues
+*
+ CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.9 ) THEN
+*
+* Positive definite, eigenvalues specified.
+*
+ CALL DLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
+ $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+ ELSE IF( ITYPE.EQ.10 ) THEN
+*
+* Positive definite tridiagonal, eigenvalues specified.
+*
+ CALL DLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
+ $ ANORM, 1, 1, 'N', A, LDA, WORK( N+1 ),
+ $ IINFO )
+ DO 90 I = 2, N
+ TEMP1 = ABS( A( I-1, I ) ) /
+ $ SQRT( ABS( A( I-1, I-1 )*A( I, I ) ) )
+ IF( TEMP1.GT.HALF ) THEN
+ A( I-1, I ) = HALF*SQRT( ABS( A( I-1, I-1 )*A( I,
+ $ I ) ) )
+ A( I, I-1 ) = A( I-1, I )
+ END IF
+ 90 CONTINUE
+*
+ ELSE
+*
+ IINFO = 1
+ END IF
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ RETURN
+ END IF
+*
+ 100 CONTINUE
+*
+* Call DSYTRD and DORGTR to compute S and U from
+* upper triangle.
+*
+ CALL DLACPY( 'U', N, N, A, LDA, V, LDU )
+*
+ NTEST = 1
+ CALL DSYTRD( 'U', N, V, LDU, SD, SE, TAU, WORK, LWORK,
+ $ IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSYTRD(U)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 1 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL DLACPY( 'U', N, N, V, LDU, U, LDU )
+*
+ NTEST = 2
+ CALL DORGTR( 'U', N, U, LDU, TAU, WORK, LWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DORGTR(U)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 2 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do tests 1 and 2
+*
+ CALL DSYT21( 2, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
+ $ LDU, TAU, WORK, RESULT( 1 ) )
+ CALL DSYT21( 3, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
+ $ LDU, TAU, WORK, RESULT( 2 ) )
+*
+* Compute D1 the eigenvalues resulting from the tridiagonal
+* form using the standard 1-stage algorithm and use it as a
+* reference to compare with the 2-stage technique
+*
+* Compute D1 from the 1-stage and used as reference for the
+* 2-stage
+*
+ CALL DCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+*
+ CALL DSTEQR( 'N', N, D1, WORK, WORK( N+1 ), LDU,
+ $ WORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEQR(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 3 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* 2-STAGE TRD Upper case is used to compute D2.
+* Note to set SD and SE to zero to be sure not reusing
+* the one from above. Compare it with D1 computed
+* using the 1-stage.
+*
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, 1 )
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, 1 )
+ CALL DLACPY( "U", N, N, A, LDA, V, LDU )
+ LH = MAX(1, 4*N)
+ LW = LWORK - LH
+ CALL DSYTRD_2STAGE( 'N', "U", N, V, LDU, SD, SE, TAU,
+ $ WORK, LH, WORK( LH+1 ), LW, IINFO )
+*
+* Compute D2 from the 2-stage Upper case
+*
+ CALL DCOPY( N, SD, 1, D2, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+*
+ CALL DSTEQR( 'N', N, D2, WORK, WORK( N+1 ), LDU,
+ $ WORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEQR(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 3 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* 2-STAGE TRD Lower case is used to compute D3.
+* Note to set SD and SE to zero to be sure not reusing
+* the one from above. Compare it with D1 computed
+* using the 1-stage.
+*
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, 1 )
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, 1 )
+ CALL DLACPY( "L", N, N, A, LDA, V, LDU )
+ CALL DSYTRD_2STAGE( 'N', "L", N, V, LDU, SD, SE, TAU,
+ $ WORK, LH, WORK( LH+1 ), LW, IINFO )
+*
+* Compute D3 from the 2-stage Upper case
+*
+ CALL DCOPY( N, SD, 1, D3, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+*
+ CALL DSTEQR( 'N', N, D3, WORK, WORK( N+1 ), LDU,
+ $ WORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEQR(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 4 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+*
+* Do Tests 3 and 4 which are similar to 11 and 12 but with the
+* D1 computed using the standard 1-stage reduction as reference
+*
+ NTEST = 4
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ TEMP3 = ZERO
+ TEMP4 = ZERO
+*
+ DO 151 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
+ 151 CONTINUE
+*
+ RESULT( 3 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+ RESULT( 4 ) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
+*
+* Skip the DSYTRD for lower that since we replaced its testing
+* 3 and 4 by the 2-stage one.
+ GOTO 101
+*
+* Call DSYTRD and DORGTR to compute S and U from
+* lower triangle, do tests.
+*
+ CALL DLACPY( 'L', N, N, A, LDA, V, LDU )
+*
+ NTEST = 3
+ CALL DSYTRD( 'L', N, V, LDU, SD, SE, TAU, WORK, LWORK,
+ $ IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSYTRD(L)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 3 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL DLACPY( 'L', N, N, V, LDU, U, LDU )
+*
+ NTEST = 4
+ CALL DORGTR( 'L', N, U, LDU, TAU, WORK, LWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DORGTR(L)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 4 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL DSYT21( 2, 'Lower', N, 1, A, LDA, SD, SE, U, LDU, V,
+ $ LDU, TAU, WORK, RESULT( 3 ) )
+ CALL DSYT21( 3, 'Lower', N, 1, A, LDA, SD, SE, U, LDU, V,
+ $ LDU, TAU, WORK, RESULT( 4 ) )
+*
+*after skipping old tests 3 4 back to the normal
+*
+ 101 CONTINUE
+*
+* Store the upper triangle of A in AP
+*
+ I = 0
+ DO 120 JC = 1, N
+ DO 110 JR = 1, JC
+ I = I + 1
+ AP( I ) = A( JR, JC )
+ 110 CONTINUE
+ 120 CONTINUE
+*
+* Call DSPTRD and DOPGTR to compute S and U from AP
+*
+ CALL DCOPY( NAP, AP, 1, VP, 1 )
+*
+ NTEST = 5
+ CALL DSPTRD( 'U', N, VP, SD, SE, TAU, IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSPTRD(U)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 5 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ NTEST = 6
+ CALL DOPGTR( 'U', N, VP, TAU, U, LDU, WORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DOPGTR(U)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 6 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do tests 5 and 6
+*
+ CALL DSPT21( 2, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
+ $ WORK, RESULT( 5 ) )
+ CALL DSPT21( 3, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
+ $ WORK, RESULT( 6 ) )
+*
+* Store the lower triangle of A in AP
+*
+ I = 0
+ DO 140 JC = 1, N
+ DO 130 JR = JC, N
+ I = I + 1
+ AP( I ) = A( JR, JC )
+ 130 CONTINUE
+ 140 CONTINUE
+*
+* Call DSPTRD and DOPGTR to compute S and U from AP
+*
+ CALL DCOPY( NAP, AP, 1, VP, 1 )
+*
+ NTEST = 7
+ CALL DSPTRD( 'L', N, VP, SD, SE, TAU, IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSPTRD(L)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 7 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ NTEST = 8
+ CALL DOPGTR( 'L', N, VP, TAU, U, LDU, WORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DOPGTR(L)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 8 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL DSPT21( 2, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
+ $ WORK, RESULT( 7 ) )
+ CALL DSPT21( 3, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
+ $ WORK, RESULT( 8 ) )
+*
+* Call DSTEQR to compute D1, D2, and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL DCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+ CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
+*
+ NTEST = 9
+ CALL DSTEQR( 'V', N, D1, WORK, Z, LDU, WORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEQR(V)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 9 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Compute D2
+*
+ CALL DCOPY( N, SD, 1, D2, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+*
+ NTEST = 11
+ CALL DSTEQR( 'N', N, D2, WORK, WORK( N+1 ), LDU,
+ $ WORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEQR(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 11 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Compute D3 (using PWK method)
+*
+ CALL DCOPY( N, SD, 1, D3, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+*
+ NTEST = 12
+ CALL DSTERF( N, D3, WORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTERF', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 12 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 9 and 10
+*
+ CALL DSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
+ $ RESULT( 9 ) )
+*
+* Do Tests 11 and 12
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ TEMP3 = ZERO
+ TEMP4 = ZERO
+*
+ DO 150 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
+ 150 CONTINUE
+*
+ RESULT( 11 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+ RESULT( 12 ) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
+*
+* Do Test 13 -- Sturm Sequence Test of Eigenvalues
+* Go up by factors of two until it succeeds
+*
+ NTEST = 13
+ TEMP1 = THRESH*( HALF-ULP )
+*
+ DO 160 J = 0, LOG2UI
+ CALL DSTECH( N, SD, SE, D1, TEMP1, WORK, IINFO )
+ IF( IINFO.EQ.0 )
+ $ GO TO 170
+ TEMP1 = TEMP1*TWO
+ 160 CONTINUE
+*
+ 170 CONTINUE
+ RESULT( 13 ) = TEMP1
+*
+* For positive definite matrices ( JTYPE.GT.15 ) call DPTEQR
+* and do tests 14, 15, and 16 .
+*
+ IF( JTYPE.GT.15 ) THEN
+*
+* Compute D4 and Z4
+*
+ CALL DCOPY( N, SD, 1, D4, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+ CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
+*
+ NTEST = 14
+ CALL DPTEQR( 'V', N, D4, WORK, Z, LDU, WORK( N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DPTEQR(V)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 14 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 14 and 15
+*
+ CALL DSTT21( N, 0, SD, SE, D4, DUMMA, Z, LDU, WORK,
+ $ RESULT( 14 ) )
+*
+* Compute D5
+*
+ CALL DCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+*
+ NTEST = 16
+ CALL DPTEQR( 'N', N, D5, WORK, Z, LDU, WORK( N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DPTEQR(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 16 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 16
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 180 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D4( J ) ), ABS( D5( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D4( J )-D5( J ) ) )
+ 180 CONTINUE
+*
+ RESULT( 16 ) = TEMP2 / MAX( UNFL,
+ $ HUN*ULP*MAX( TEMP1, TEMP2 ) )
+ ELSE
+ RESULT( 14 ) = ZERO
+ RESULT( 15 ) = ZERO
+ RESULT( 16 ) = ZERO
+ END IF
+*
+* Call DSTEBZ with different options and do tests 17-18.
+*
+* If S is positive definite and diagonally dominant,
+* ask for all eigenvalues with high relative accuracy.
+*
+ VL = ZERO
+ VU = ZERO
+ IL = 0
+ IU = 0
+ IF( JTYPE.EQ.21 ) THEN
+ NTEST = 17
+ ABSTOL = UNFL + UNFL
+ CALL DSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
+ $ M, NSPLIT, WR, IWORK( 1 ), IWORK( N+1 ),
+ $ WORK, IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(A,rel)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 17 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do test 17
+*
+ TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
+ $ ( ONE-HALF )**4
+*
+ TEMP1 = ZERO
+ DO 190 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
+ $ ( ABSTOL+ABS( D4( J ) ) ) )
+ 190 CONTINUE
+*
+ RESULT( 17 ) = TEMP1 / TEMP2
+ ELSE
+ RESULT( 17 ) = ZERO
+ END IF
+*
+* Now ask for all eigenvalues with high absolute accuracy.
+*
+ NTEST = 18
+ ABSTOL = UNFL + UNFL
+ CALL DSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
+ $ NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), WORK,
+ $ IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(A)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 18 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do test 18
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 200 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D3( J ) ), ABS( WA1( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D3( J )-WA1( J ) ) )
+ 200 CONTINUE
+*
+ RESULT( 18 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Choose random values for IL and IU, and ask for the
+* IL-th through IU-th eigenvalues.
+*
+ NTEST = 19
+ IF( N.LE.1 ) THEN
+ IL = 1
+ IU = N
+ ELSE
+ IL = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
+ IU = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
+ IF( IU.LT.IL ) THEN
+ ITEMP = IU
+ IU = IL
+ IL = ITEMP
+ END IF
+ END IF
+*
+ CALL DSTEBZ( 'I', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
+ $ M2, NSPLIT, WA2, IWORK( 1 ), IWORK( N+1 ),
+ $ WORK, IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(I)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 19 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Determine the values VL and VU of the IL-th and IU-th
+* eigenvalues and ask for all eigenvalues in this range.
+*
+ IF( N.GT.0 ) THEN
+ IF( IL.NE.1 ) THEN
+ VL = WA1( IL ) - MAX( HALF*( WA1( IL )-WA1( IL-1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ ELSE
+ VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = WA1( IU ) + MAX( HALF*( WA1( IU+1 )-WA1( IU ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ ELSE
+ VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ END IF
+ ELSE
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ CALL DSTEBZ( 'V', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
+ $ M3, NSPLIT, WA3, IWORK( 1 ), IWORK( N+1 ),
+ $ WORK, IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(V)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 19 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.NE.0 ) THEN
+ RESULT( 19 ) = ULPINV
+ GO TO 280
+ END IF
+*
+* Do test 19
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( N ) ), ABS( WA1( 1 ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+*
+ RESULT( 19 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP )
+*
+* Call DSTEIN to compute eigenvectors corresponding to
+* eigenvalues in WA1. (First call DSTEBZ again, to make sure
+* it returns these eigenvalues in the correct order.)
+*
+ NTEST = 21
+ CALL DSTEBZ( 'A', 'B', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
+ $ NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), WORK,
+ $ IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(A,B)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 20 ) = ULPINV
+ RESULT( 21 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL DSTEIN( N, SD, SE, M, WA1, IWORK( 1 ), IWORK( N+1 ), Z,
+ $ LDU, WORK, IWORK( 2*N+1 ), IWORK( 3*N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEIN', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 20 ) = ULPINV
+ RESULT( 21 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do tests 20 and 21
+*
+ CALL DSTT21( N, 0, SD, SE, WA1, DUMMA, Z, LDU, WORK,
+ $ RESULT( 20 ) )
+*
+* Call DSTEDC(I) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL DCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+ CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
+*
+ NTEST = 22
+ CALL DSTEDC( 'I', N, D1, WORK, Z, LDU, WORK( N+1 ), LWEDC-N,
+ $ IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEDC(I)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 22 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 22 and 23
+*
+ CALL DSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
+ $ RESULT( 22 ) )
+*
+* Call DSTEDC(V) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL DCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+ CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
+*
+ NTEST = 24
+ CALL DSTEDC( 'V', N, D1, WORK, Z, LDU, WORK( N+1 ), LWEDC-N,
+ $ IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEDC(V)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 24 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 24 and 25
+*
+ CALL DSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
+ $ RESULT( 24 ) )
+*
+* Call DSTEDC(N) to compute D2, do tests.
+*
+* Compute D2
+*
+ CALL DCOPY( N, SD, 1, D2, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+ CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
+*
+ NTEST = 26
+ CALL DSTEDC( 'N', N, D2, WORK, Z, LDU, WORK( N+1 ), LWEDC-N,
+ $ IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEDC(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 26 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 26
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+*
+ DO 210 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ 210 CONTINUE
+*
+ RESULT( 26 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Only test DSTEMR if IEEE compliant
+*
+ IF( ILAENV( 10, 'DSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 .AND.
+ $ ILAENV( 11, 'DSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 ) THEN
+*
+* Call DSTEMR, do test 27 (relative eigenvalue accuracy)
+*
+* If S is positive definite and diagonally dominant,
+* ask for all eigenvalues with high relative accuracy.
+*
+ VL = ZERO
+ VU = ZERO
+ IL = 0
+ IU = 0
+ IF( JTYPE.EQ.21 .AND. SREL ) THEN
+ NTEST = 27
+ ABSTOL = UNFL + UNFL
+ CALL DSTEMR( 'V', 'A', N, SD, SE, VL, VU, IL, IU,
+ $ M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ WORK, LWORK, IWORK( 2*N+1 ), LWORK-2*N,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEMR(V,A,rel)',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 27 ) = ULPINV
+ GO TO 270
+ END IF
+ END IF
+*
+* Do test 27
+*
+ TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
+ $ ( ONE-HALF )**4
+*
+ TEMP1 = ZERO
+ DO 220 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
+ $ ( ABSTOL+ABS( D4( J ) ) ) )
+ 220 CONTINUE
+*
+ RESULT( 27 ) = TEMP1 / TEMP2
+*
+ IL = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
+ IU = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
+ IF( IU.LT.IL ) THEN
+ ITEMP = IU
+ IU = IL
+ IL = ITEMP
+ END IF
+*
+ IF( SRANGE ) THEN
+ NTEST = 28
+ ABSTOL = UNFL + UNFL
+ CALL DSTEMR( 'V', 'I', N, SD, SE, VL, VU, IL, IU,
+ $ M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ WORK, LWORK, IWORK( 2*N+1 ),
+ $ LWORK-2*N, IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEMR(V,I,rel)',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 28 ) = ULPINV
+ GO TO 270
+ END IF
+ END IF
+*
+*
+* Do test 28
+*
+ TEMP2 = TWO*( TWO*N-ONE )*ULP*
+ $ ( ONE+EIGHT*HALF**2 ) / ( ONE-HALF )**4
+*
+ TEMP1 = ZERO
+ DO 230 J = IL, IU
+ TEMP1 = MAX( TEMP1, ABS( WR( J-IL+1 )-D4( N-J+
+ $ 1 ) ) / ( ABSTOL+ABS( WR( J-IL+1 ) ) ) )
+ 230 CONTINUE
+*
+ RESULT( 28 ) = TEMP1 / TEMP2
+ ELSE
+ RESULT( 28 ) = ZERO
+ END IF
+ ELSE
+ RESULT( 27 ) = ZERO
+ RESULT( 28 ) = ZERO
+ END IF
+*
+* Call DSTEMR(V,I) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL DCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+ CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
+*
+ IF( SRANGE ) THEN
+ NTEST = 29
+ IL = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
+ IU = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
+ IF( IU.LT.IL ) THEN
+ ITEMP = IU
+ IU = IL
+ IL = ITEMP
+ END IF
+ CALL DSTEMR( 'V', 'I', N, D5, WORK, VL, VU, IL, IU,
+ $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEMR(V,I)', IINFO,
+ $ N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 29 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 29 and 30
+*
+ CALL DSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
+ $ M, RESULT( 29 ) )
+*
+* Call DSTEMR to compute D2, do tests.
+*
+* Compute D2
+*
+ CALL DCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+*
+ NTEST = 31
+ CALL DSTEMR( 'N', 'I', N, D5, WORK, VL, VU, IL, IU,
+ $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEMR(N,I)', IINFO,
+ $ N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 31 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 31
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+*
+ DO 240 J = 1, IU - IL + 1
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
+ $ ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ 240 CONTINUE
+*
+ RESULT( 31 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+*
+* Call DSTEMR(V,V) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL DCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+ CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
+*
+ NTEST = 32
+*
+ IF( N.GT.0 ) THEN
+ IF( IL.NE.1 ) THEN
+ VL = D2( IL ) - MAX( HALF*
+ $ ( D2( IL )-D2( IL-1 ) ), ULP*ANORM,
+ $ TWO*RTUNFL )
+ ELSE
+ VL = D2( 1 ) - MAX( HALF*( D2( N )-D2( 1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = D2( IU ) + MAX( HALF*
+ $ ( D2( IU+1 )-D2( IU ) ), ULP*ANORM,
+ $ TWO*RTUNFL )
+ ELSE
+ VU = D2( N ) + MAX( HALF*( D2( N )-D2( 1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ END IF
+ ELSE
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ CALL DSTEMR( 'V', 'V', N, D5, WORK, VL, VU, IL, IU,
+ $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEMR(V,V)', IINFO,
+ $ N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 32 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 32 and 33
+*
+ CALL DSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
+ $ M, RESULT( 32 ) )
+*
+* Call DSTEMR to compute D2, do tests.
+*
+* Compute D2
+*
+ CALL DCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+*
+ NTEST = 34
+ CALL DSTEMR( 'N', 'V', N, D5, WORK, VL, VU, IL, IU,
+ $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEMR(N,V)', IINFO,
+ $ N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 34 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 34
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+*
+ DO 250 J = 1, IU - IL + 1
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
+ $ ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ 250 CONTINUE
+*
+ RESULT( 34 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+ ELSE
+ RESULT( 29 ) = ZERO
+ RESULT( 30 ) = ZERO
+ RESULT( 31 ) = ZERO
+ RESULT( 32 ) = ZERO
+ RESULT( 33 ) = ZERO
+ RESULT( 34 ) = ZERO
+ END IF
+*
+*
+* Call DSTEMR(V,A) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL DCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+*
+ NTEST = 35
+*
+ CALL DSTEMR( 'V', 'A', N, D5, WORK, VL, VU, IL, IU,
+ $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEMR(V,A)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 35 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 35 and 36
+*
+ CALL DSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, M,
+ $ RESULT( 35 ) )
+*
+* Call DSTEMR to compute D2, do tests.
+*
+* Compute D2
+*
+ CALL DCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
+*
+ NTEST = 37
+ CALL DSTEMR( 'N', 'A', N, D5, WORK, VL, VU, IL, IU,
+ $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEMR(N,A)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 37 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 34
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+*
+ DO 260 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ 260 CONTINUE
+*
+ RESULT( 37 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+ END IF
+ 270 CONTINUE
+ 280 CONTINUE
+ NTESTT = NTESTT + NTEST
+*
+* End of Loop -- Check for RESULT(j) > THRESH
+*
+*
+* Print out tests which fail.
+*
+ DO 290 JR = 1, NTEST
+ IF( RESULT( JR ).GE.THRESH ) THEN
+*
+* If this is the first test to fail,
+* print a header to the data file.
+*
+ IF( NERRS.EQ.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'DST'
+ WRITE( NOUNIT, FMT = 9997 )
+ WRITE( NOUNIT, FMT = 9996 )
+ WRITE( NOUNIT, FMT = 9995 )'Symmetric'
+ WRITE( NOUNIT, FMT = 9994 )
+*
+* Tests performed
+*
+ WRITE( NOUNIT, FMT = 9988 )
+ END IF
+ NERRS = NERRS + 1
+ WRITE( NOUNIT, FMT = 9990 )N, IOLDSD, JTYPE, JR,
+ $ RESULT( JR )
+ END IF
+ 290 CONTINUE
+ 300 CONTINUE
+ 310 CONTINUE
+*
+* Summary
+*
+ CALL DLASUM( 'DST', NOUNIT, NERRS, NTESTT )
+ RETURN
+*
+ 9999 FORMAT( ' DCHKST2STG: ', A, ' returned INFO=', I6, '.', / 9X,
+ $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
+*
+ 9998 FORMAT( / 1X, A3, ' -- Real Symmetric eigenvalue problem' )
+ 9997 FORMAT( ' Matrix types (see DCHKST2STG for details): ' )
+*
+ 9996 FORMAT( / ' Special Matrices:',
+ $ / ' 1=Zero matrix. ',
+ $ ' 5=Diagonal: clustered entries.',
+ $ / ' 2=Identity matrix. ',
+ $ ' 6=Diagonal: large, evenly spaced.',
+ $ / ' 3=Diagonal: evenly spaced entries. ',
+ $ ' 7=Diagonal: small, evenly spaced.',
+ $ / ' 4=Diagonal: geometr. spaced entries.' )
+ 9995 FORMAT( ' Dense ', A, ' Matrices:',
+ $ / ' 8=Evenly spaced eigenvals. ',
+ $ ' 12=Small, evenly spaced eigenvals.',
+ $ / ' 9=Geometrically spaced eigenvals. ',
+ $ ' 13=Matrix with random O(1) entries.',
+ $ / ' 10=Clustered eigenvalues. ',
+ $ ' 14=Matrix with large random entries.',
+ $ / ' 11=Large, evenly spaced eigenvals. ',
+ $ ' 15=Matrix with small random entries.' )
+ 9994 FORMAT( ' 16=Positive definite, evenly spaced eigenvalues',
+ $ / ' 17=Positive definite, geometrically spaced eigenvlaues',
+ $ / ' 18=Positive definite, clustered eigenvalues',
+ $ / ' 19=Positive definite, small evenly spaced eigenvalues',
+ $ / ' 20=Positive definite, large evenly spaced eigenvalues',
+ $ / ' 21=Diagonally dominant tridiagonal, geometrically',
+ $ ' spaced eigenvalues' )
+*
+ 9990 FORMAT( ' N=', I5, ', seed=', 4( I4, ',' ), ' type ', I2,
+ $ ', test(', I2, ')=', G10.3 )
+*
+ 9988 FORMAT( / 'Test performed: see DCHKST2STG for details.', / )
+* End of DCHKST2STG
+*
+ END
diff --git a/TESTING/EIG/ddrvsg2stg.f b/TESTING/EIG/ddrvsg2stg.f
new file mode 100644
index 00000000..b26b7777
--- /dev/null
+++ b/TESTING/EIG/ddrvsg2stg.f
@@ -0,0 +1,1364 @@
+*> \brief \b DDRVSG2STG
+*
+* @precisions fortran d -> s
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE DDRVSG2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+* NOUNIT, A, LDA, B, LDB, D, D2, Z, LDZ, AB,
+* BB, AP, BP, WORK, NWORK, IWORK, LIWORK,
+* RESULT, INFO )
+*
+* IMPLICIT NONE
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDB, LDZ, LIWORK, NOUNIT, NSIZES,
+* $ NTYPES, NWORK
+* DOUBLE PRECISION THRESH
+* ..
+* .. Array Arguments ..
+* LOGICAL DOTYPE( * )
+* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+* DOUBLE PRECISION A( LDA, * ), AB( LDA, * ), AP( * ),
+* $ B( LDB, * ), BB( LDB, * ), BP( * ), D( * ),
+* $ RESULT( * ), WORK( * ), Z( LDZ, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DDRVSG2STG checks the real symmetric generalized eigenproblem
+*> drivers.
+*>
+*> DSYGV computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric-definite generalized
+*> eigenproblem.
+*>
+*> DSYGVD computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric-definite generalized
+*> eigenproblem using a divide and conquer algorithm.
+*>
+*> DSYGVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a real symmetric-definite generalized
+*> eigenproblem.
+*>
+*> DSPGV computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric-definite generalized
+*> eigenproblem in packed storage.
+*>
+*> DSPGVD computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric-definite generalized
+*> eigenproblem in packed storage using a divide and
+*> conquer algorithm.
+*>
+*> DSPGVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a real symmetric-definite generalized
+*> eigenproblem in packed storage.
+*>
+*> DSBGV computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric-definite banded
+*> generalized eigenproblem.
+*>
+*> DSBGVD computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric-definite banded
+*> generalized eigenproblem using a divide and conquer
+*> algorithm.
+*>
+*> DSBGVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a real symmetric-definite banded
+*> generalized eigenproblem.
+*>
+*> When DDRVSG2STG is called, a number of matrix "sizes" ("n's") and a
+*> number of matrix "types" are specified. For each size ("n")
+*> and each type of matrix, one matrix A of the given type will be
+*> generated; a random well-conditioned matrix B is also generated
+*> and the pair (A,B) is used to test the drivers.
+*>
+*> For each pair (A,B), the following tests are performed:
+*>
+*> (1) DSYGV with ITYPE = 1 and UPLO ='U':
+*>
+*> | A Z - B Z D | / ( |A| |Z| n ulp )
+*> | D - D2 | / ( |D| ulp ) where D is computed by
+*> DSYGV and D2 is computed by
+*> DSYGV_2STAGE. This test is
+*> only performed for DSYGV
+*>
+*> (2) as (1) but calling DSPGV
+*> (3) as (1) but calling DSBGV
+*> (4) as (1) but with UPLO = 'L'
+*> (5) as (4) but calling DSPGV
+*> (6) as (4) but calling DSBGV
+*>
+*> (7) DSYGV with ITYPE = 2 and UPLO ='U':
+*>
+*> | A B Z - Z D | / ( |A| |Z| n ulp )
+*>
+*> (8) as (7) but calling DSPGV
+*> (9) as (7) but with UPLO = 'L'
+*> (10) as (9) but calling DSPGV
+*>
+*> (11) DSYGV with ITYPE = 3 and UPLO ='U':
+*>
+*> | B A Z - Z D | / ( |A| |Z| n ulp )
+*>
+*> (12) as (11) but calling DSPGV
+*> (13) as (11) but with UPLO = 'L'
+*> (14) as (13) but calling DSPGV
+*>
+*> DSYGVD, DSPGVD and DSBGVD performed the same 14 tests.
+*>
+*> DSYGVX, DSPGVX and DSBGVX performed the above 14 tests with
+*> the parameter RANGE = 'A', 'N' and 'I', respectively.
+*>
+*> The "sizes" are specified by an array NN(1:NSIZES); the value
+*> of each element NN(j) specifies one size.
+*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
+*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
+*> This type is used for the matrix A which has half-bandwidth KA.
+*> B is generated as a well-conditioned positive definite matrix
+*> with half-bandwidth KB (<= KA).
+*> Currently, the list of possible types for A is:
+*>
+*> (1) The zero matrix.
+*> (2) The identity matrix.
+*>
+*> (3) A diagonal matrix with evenly spaced entries
+*> 1, ..., ULP and random signs.
+*> (ULP = (first number larger than 1) - 1 )
+*> (4) A diagonal matrix with geometrically spaced entries
+*> 1, ..., ULP and random signs.
+*> (5) A diagonal matrix with "clustered" entries
+*> 1, ULP, ..., ULP and random signs.
+*>
+*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
+*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
+*>
+*> (8) A matrix of the form U* D U, where U is orthogonal and
+*> D has evenly spaced entries 1, ..., ULP with random signs
+*> on the diagonal.
+*>
+*> (9) A matrix of the form U* D U, where U is orthogonal and
+*> D has geometrically spaced entries 1, ..., ULP with random
+*> signs on the diagonal.
+*>
+*> (10) A matrix of the form U* D U, where U is orthogonal and
+*> D has "clustered" entries 1, ULP,..., ULP with random
+*> signs on the diagonal.
+*>
+*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
+*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
+*>
+*> (13) symmetric matrix with random entries chosen from (-1,1).
+*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
+*> (15) Same as (13), but multiplied by SQRT( underflow threshold)
+*>
+*> (16) Same as (8), but with KA = 1 and KB = 1
+*> (17) Same as (8), but with KA = 2 and KB = 1
+*> (18) Same as (8), but with KA = 2 and KB = 2
+*> (19) Same as (8), but with KA = 3 and KB = 1
+*> (20) Same as (8), but with KA = 3 and KB = 2
+*> (21) Same as (8), but with KA = 3 and KB = 3
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \verbatim
+*> NSIZES INTEGER
+*> The number of sizes of matrices to use. If it is zero,
+*> DDRVSG2STG does nothing. It must be at least zero.
+*> Not modified.
+*>
+*> NN INTEGER array, dimension (NSIZES)
+*> An array containing the sizes to be used for the matrices.
+*> Zero values will be skipped. The values must be at least
+*> zero.
+*> Not modified.
+*>
+*> NTYPES INTEGER
+*> The number of elements in DOTYPE. If it is zero, DDRVSG2STG
+*> does nothing. It must be at least zero. If it is MAXTYP+1
+*> and NSIZES is 1, then an additional type, MAXTYP+1 is
+*> defined, which is to use whatever matrix is in A. This
+*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
+*> DOTYPE(MAXTYP+1) is .TRUE. .
+*> Not modified.
+*>
+*> DOTYPE LOGICAL array, dimension (NTYPES)
+*> If DOTYPE(j) is .TRUE., then for each size in NN a
+*> matrix of that size and of type j will be generated.
+*> If NTYPES is smaller than the maximum number of types
+*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
+*> MAXTYP will not be generated. If NTYPES is larger
+*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
+*> will be ignored.
+*> Not modified.
+*>
+*> ISEED INTEGER array, dimension (4)
+*> On entry ISEED specifies the seed of the random number
+*> generator. The array elements should be between 0 and 4095;
+*> if not they will be reduced mod 4096. Also, ISEED(4) must
+*> be odd. The random number generator uses a linear
+*> congruential sequence limited to small integers, and so
+*> should produce machine independent random numbers. The
+*> values of ISEED are changed on exit, and can be used in the
+*> next call to DDRVSG2STG to continue the same random number
+*> sequence.
+*> Modified.
+*>
+*> THRESH DOUBLE PRECISION
+*> A test will count as "failed" if the "error", computed as
+*> described above, exceeds THRESH. Note that the error
+*> is scaled to be O(1), so THRESH should be a reasonably
+*> small multiple of 1, e.g., 10 or 100. In particular,
+*> it should not depend on the precision (single vs. double)
+*> or the size of the matrix. It must be at least zero.
+*> Not modified.
+*>
+*> NOUNIT INTEGER
+*> The FORTRAN unit number for printing out error messages
+*> (e.g., if a routine returns IINFO not equal to 0.)
+*> Not modified.
+*>
+*> A DOUBLE PRECISION array, dimension (LDA , max(NN))
+*> Used to hold the matrix whose eigenvalues are to be
+*> computed. On exit, A contains the last matrix actually
+*> used.
+*> Modified.
+*>
+*> LDA INTEGER
+*> The leading dimension of A and AB. It must be at
+*> least 1 and at least max( NN ).
+*> Not modified.
+*>
+*> B DOUBLE PRECISION array, dimension (LDB , max(NN))
+*> Used to hold the symmetric positive definite matrix for
+*> the generailzed problem.
+*> On exit, B contains the last matrix actually
+*> used.
+*> Modified.
+*>
+*> LDB INTEGER
+*> The leading dimension of B and BB. It must be at
+*> least 1 and at least max( NN ).
+*> Not modified.
+*>
+*> D DOUBLE PRECISION array, dimension (max(NN))
+*> The eigenvalues of A. On exit, the eigenvalues in D
+*> correspond with the matrix in A.
+*> Modified.
+*>
+*> Z DOUBLE PRECISION array, dimension (LDZ, max(NN))
+*> The matrix of eigenvectors.
+*> Modified.
+*>
+*> LDZ INTEGER
+*> The leading dimension of Z. It must be at least 1 and
+*> at least max( NN ).
+*> Not modified.
+*>
+*> AB DOUBLE PRECISION array, dimension (LDA, max(NN))
+*> Workspace.
+*> Modified.
+*>
+*> BB DOUBLE PRECISION array, dimension (LDB, max(NN))
+*> Workspace.
+*> Modified.
+*>
+*> AP DOUBLE PRECISION array, dimension (max(NN)**2)
+*> Workspace.
+*> Modified.
+*>
+*> BP DOUBLE PRECISION array, dimension (max(NN)**2)
+*> Workspace.
+*> Modified.
+*>
+*> WORK DOUBLE PRECISION array, dimension (NWORK)
+*> Workspace.
+*> Modified.
+*>
+*> NWORK INTEGER
+*> The number of entries in WORK. This must be at least
+*> 1+5*N+2*N*lg(N)+3*N**2 where N = max( NN(j) ) and
+*> lg( N ) = smallest integer k such that 2**k >= N.
+*> Not modified.
+*>
+*> IWORK INTEGER array, dimension (LIWORK)
+*> Workspace.
+*> Modified.
+*>
+*> LIWORK INTEGER
+*> The number of entries in WORK. This must be at least 6*N.
+*> Not modified.
+*>
+*> RESULT DOUBLE PRECISION array, dimension (70)
+*> The values computed by the 70 tests described above.
+*> Modified.
+*>
+*> INFO INTEGER
+*> If 0, then everything ran OK.
+*> -1: NSIZES < 0
+*> -2: Some NN(j) < 0
+*> -3: NTYPES < 0
+*> -5: THRESH < 0
+*> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
+*> -16: LDZ < 1 or LDZ < NMAX.
+*> -21: NWORK too small.
+*> -23: LIWORK too small.
+*> If DLATMR, SLATMS, DSYGV, DSPGV, DSBGV, SSYGVD, SSPGVD,
+*> DSBGVD, DSYGVX, DSPGVX or SSBGVX returns an error code,
+*> the absolute value of it is returned.
+*> Modified.
+*>
+*> ----------------------------------------------------------------------
+*>
+*> Some Local Variables and Parameters:
+*> ---- ----- --------- --- ----------
+*> ZERO, ONE Real 0 and 1.
+*> MAXTYP The number of types defined.
+*> NTEST The number of tests that have been run
+*> on this matrix.
+*> NTESTT The total number of tests for this call.
+*> NMAX Largest value in NN.
+*> NMATS The number of matrices generated so far.
+*> NERRS The number of tests which have exceeded THRESH
+*> so far (computed by DLAFTS).
+*> COND, IMODE Values to be passed to the matrix generators.
+*> ANORM Norm of A; passed to matrix generators.
+*>
+*> OVFL, UNFL Overflow and underflow thresholds.
+*> ULP, ULPINV Finest relative precision and its inverse.
+*> RTOVFL, RTUNFL Square roots of the previous 2 values.
+*> The following four arrays decode JTYPE:
+*> KTYPE(j) The general type (1-10) for type "j".
+*> KMODE(j) The MODE value to be passed to the matrix
+*> generator for type "j".
+*> KMAGN(j) The order of magnitude ( O(1),
+*> O(overflow^(1/2) ), O(underflow^(1/2) )
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup double_eig
+*
+* =====================================================================
+ SUBROUTINE DDRVSG2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+ $ NOUNIT, A, LDA, B, LDB, D, D2, Z, LDZ, AB,
+ $ BB, AP, BP, WORK, NWORK, IWORK, LIWORK,
+ $ RESULT, INFO )
+*
+ IMPLICIT NONE
+*
+* -- LAPACK test routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDB, LDZ, LIWORK, NOUNIT, NSIZES,
+ $ NTYPES, NWORK
+ DOUBLE PRECISION THRESH
+* ..
+* .. Array Arguments ..
+ LOGICAL DOTYPE( * )
+ INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+ DOUBLE PRECISION A( LDA, * ), AB( LDA, * ), AP( * ),
+ $ B( LDB, * ), BB( LDB, * ), BP( * ), D( * ),
+ $ D2( * ), RESULT( * ), WORK( * ), Z( LDZ, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE, TEN
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TEN = 10.0D0 )
+ INTEGER MAXTYP
+ PARAMETER ( MAXTYP = 21 )
+* ..
+* .. Local Scalars ..
+ LOGICAL BADNN
+ CHARACTER UPLO
+ INTEGER I, IBTYPE, IBUPLO, IINFO, IJ, IL, IMODE, ITEMP,
+ $ ITYPE, IU, J, JCOL, JSIZE, JTYPE, KA, KA9, KB,
+ $ KB9, M, MTYPES, N, NERRS, NMATS, NMAX, NTEST,
+ $ NTESTT
+ DOUBLE PRECISION ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
+ $ RTUNFL, ULP, ULPINV, UNFL, VL, VU, TEMP1, TEMP2
+* ..
+* .. Local Arrays ..
+ INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
+ $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
+ $ KTYPE( MAXTYP )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ DOUBLE PRECISION DLAMCH, DLARND
+ EXTERNAL LSAME, DLAMCH, DLARND
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLABAD, DLACPY, DLAFTS, DLASET, DLASUM, DLATMR,
+ $ DLATMS, DSBGV, DSBGVD, DSBGVX, DSGT01, DSPGV,
+ $ DSPGVD, DSPGVX, DSYGV, DSYGVD, DSYGVX, XERBLA,
+ $ DSYGV_2STAGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, MAX, MIN, SQRT
+* ..
+* .. Data statements ..
+ DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 6*9 /
+ DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
+ $ 2, 3, 6*1 /
+ DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
+ $ 0, 0, 6*4 /
+* ..
+* .. Executable Statements ..
+*
+* 1) Check for errors
+*
+ NTESTT = 0
+ INFO = 0
+*
+ BADNN = .FALSE.
+ NMAX = 0
+ DO 10 J = 1, NSIZES
+ NMAX = MAX( NMAX, NN( J ) )
+ IF( NN( J ).LT.0 )
+ $ BADNN = .TRUE.
+ 10 CONTINUE
+*
+* Check for errors
+*
+ IF( NSIZES.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( BADNN ) THEN
+ INFO = -2
+ ELSE IF( NTYPES.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
+ INFO = -9
+ ELSE IF( LDZ.LE.1 .OR. LDZ.LT.NMAX ) THEN
+ INFO = -16
+ ELSE IF( 2*MAX( NMAX, 3 )**2.GT.NWORK ) THEN
+ INFO = -21
+ ELSE IF( 2*MAX( NMAX, 3 )**2.GT.LIWORK ) THEN
+ INFO = -23
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DDRVSG2STG', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
+ $ RETURN
+*
+* More Important constants
+*
+ UNFL = DLAMCH( 'Safe minimum' )
+ OVFL = DLAMCH( 'Overflow' )
+ CALL DLABAD( UNFL, OVFL )
+ ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
+ ULPINV = ONE / ULP
+ RTUNFL = SQRT( UNFL )
+ RTOVFL = SQRT( OVFL )
+*
+ DO 20 I = 1, 4
+ ISEED2( I ) = ISEED( I )
+ 20 CONTINUE
+*
+* Loop over sizes, types
+*
+ NERRS = 0
+ NMATS = 0
+*
+ DO 650 JSIZE = 1, NSIZES
+ N = NN( JSIZE )
+ ANINV = ONE / DBLE( MAX( 1, N ) )
+*
+ IF( NSIZES.NE.1 ) THEN
+ MTYPES = MIN( MAXTYP, NTYPES )
+ ELSE
+ MTYPES = MIN( MAXTYP+1, NTYPES )
+ END IF
+*
+ KA9 = 0
+ KB9 = 0
+ DO 640 JTYPE = 1, MTYPES
+ IF( .NOT.DOTYPE( JTYPE ) )
+ $ GO TO 640
+ NMATS = NMATS + 1
+ NTEST = 0
+*
+ DO 30 J = 1, 4
+ IOLDSD( J ) = ISEED( J )
+ 30 CONTINUE
+*
+* 2) Compute "A"
+*
+* Control parameters:
+*
+* KMAGN KMODE KTYPE
+* =1 O(1) clustered 1 zero
+* =2 large clustered 2 identity
+* =3 small exponential (none)
+* =4 arithmetic diagonal, w/ eigenvalues
+* =5 random log hermitian, w/ eigenvalues
+* =6 random (none)
+* =7 random diagonal
+* =8 random hermitian
+* =9 banded, w/ eigenvalues
+*
+ IF( MTYPES.GT.MAXTYP )
+ $ GO TO 90
+*
+ ITYPE = KTYPE( JTYPE )
+ IMODE = KMODE( JTYPE )
+*
+* Compute norm
+*
+ GO TO ( 40, 50, 60 )KMAGN( JTYPE )
+*
+ 40 CONTINUE
+ ANORM = ONE
+ GO TO 70
+*
+ 50 CONTINUE
+ ANORM = ( RTOVFL*ULP )*ANINV
+ GO TO 70
+*
+ 60 CONTINUE
+ ANORM = RTUNFL*N*ULPINV
+ GO TO 70
+*
+ 70 CONTINUE
+*
+ IINFO = 0
+ COND = ULPINV
+*
+* Special Matrices -- Identity & Jordan block
+*
+ IF( ITYPE.EQ.1 ) THEN
+*
+* Zero
+*
+ KA = 0
+ KB = 0
+ CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
+*
+ ELSE IF( ITYPE.EQ.2 ) THEN
+*
+* Identity
+*
+ KA = 0
+ KB = 0
+ CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
+ DO 80 JCOL = 1, N
+ A( JCOL, JCOL ) = ANORM
+ 80 CONTINUE
+*
+ ELSE IF( ITYPE.EQ.4 ) THEN
+*
+* Diagonal Matrix, [Eigen]values Specified
+*
+ KA = 0
+ KB = 0
+ CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+ ELSE IF( ITYPE.EQ.5 ) THEN
+*
+* symmetric, eigenvalues specified
+*
+ KA = MAX( 0, N-1 )
+ KB = KA
+ CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+ ELSE IF( ITYPE.EQ.7 ) THEN
+*
+* Diagonal, random eigenvalues
+*
+ KA = 0
+ KB = 0
+ CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.8 ) THEN
+*
+* symmetric, random eigenvalues
+*
+ KA = MAX( 0, N-1 )
+ KB = KA
+ CALL DLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, ONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.9 ) THEN
+*
+* symmetric banded, eigenvalues specified
+*
+* The following values are used for the half-bandwidths:
+*
+* ka = 1 kb = 1
+* ka = 2 kb = 1
+* ka = 2 kb = 2
+* ka = 3 kb = 1
+* ka = 3 kb = 2
+* ka = 3 kb = 3
+*
+ KB9 = KB9 + 1
+ IF( KB9.GT.KA9 ) THEN
+ KA9 = KA9 + 1
+ KB9 = 1
+ END IF
+ KA = MAX( 0, MIN( N-1, KA9 ) )
+ KB = MAX( 0, MIN( N-1, KB9 ) )
+ CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, KA, KA, 'N', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+ ELSE
+*
+ IINFO = 1
+ END IF
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ RETURN
+ END IF
+*
+ 90 CONTINUE
+*
+ ABSTOL = UNFL + UNFL
+ IF( N.LE.1 ) THEN
+ IL = 1
+ IU = N
+ ELSE
+ IL = 1 + INT( ( N-1 )*DLARND( 1, ISEED2 ) )
+ IU = 1 + INT( ( N-1 )*DLARND( 1, ISEED2 ) )
+ IF( IL.GT.IU ) THEN
+ ITEMP = IL
+ IL = IU
+ IU = ITEMP
+ END IF
+ END IF
+*
+* 3) Call DSYGV, DSPGV, DSBGV, SSYGVD, SSPGVD, SSBGVD,
+* DSYGVX, DSPGVX, and DSBGVX, do tests.
+*
+* loop over the three generalized problems
+* IBTYPE = 1: A*x = (lambda)*B*x
+* IBTYPE = 2: A*B*x = (lambda)*x
+* IBTYPE = 3: B*A*x = (lambda)*x
+*
+ DO 630 IBTYPE = 1, 3
+*
+* loop over the setting UPLO
+*
+ DO 620 IBUPLO = 1, 2
+ IF( IBUPLO.EQ.1 )
+ $ UPLO = 'U'
+ IF( IBUPLO.EQ.2 )
+ $ UPLO = 'L'
+*
+* Generate random well-conditioned positive definite
+* matrix B, of bandwidth not greater than that of A.
+*
+ CALL DLATMS( N, N, 'U', ISEED, 'P', WORK, 5, TEN, ONE,
+ $ KB, KB, UPLO, B, LDB, WORK( N+1 ),
+ $ IINFO )
+*
+* Test DSYGV
+*
+ NTEST = NTEST + 1
+*
+ CALL DLACPY( ' ', N, N, A, LDA, Z, LDZ )
+ CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL DSYGV( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D,
+ $ WORK, NWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSYGV(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+* Test DSYGV_2STAGE
+*
+ NTEST = NTEST + 1
+*
+ CALL DLACPY( ' ', N, N, A, LDA, Z, LDZ )
+ CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL DSYGV_2STAGE( IBTYPE, 'N', UPLO, N, Z, LDZ,
+ $ BB, LDB, D2, WORK, NWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'DSYGV_2STAGE(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+C CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+C $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+* Do Tests | D1 - D2 | / ( |D1| ulp )
+* D1 computed using the standard 1-stage reduction as reference
+* D2 computed using the 2-stage reduction
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 151 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D( J ) ),
+ $ ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D( J )-D2( J ) ) )
+ 151 CONTINUE
+*
+ RESULT( NTEST ) = TEMP2 /
+ $ MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Test DSYGVD
+*
+ NTEST = NTEST + 1
+*
+ CALL DLACPY( ' ', N, N, A, LDA, Z, LDZ )
+ CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL DSYGVD( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D,
+ $ WORK, NWORK, IWORK, LIWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSYGVD(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+* Test DSYGVX
+*
+ NTEST = NTEST + 1
+*
+ CALL DLACPY( ' ', N, N, A, LDA, AB, LDA )
+ CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL DSYGVX( IBTYPE, 'V', 'A', UPLO, N, AB, LDA, BB,
+ $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
+ $ LDZ, WORK, NWORK, IWORK( N+1 ), IWORK,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSYGVX(V,A' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+ CALL DLACPY( ' ', N, N, A, LDA, AB, LDA )
+ CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+* since we do not know the exact eigenvalues of this
+* eigenpair, we just set VL and VU as constants.
+* It is quite possible that there are no eigenvalues
+* in this interval.
+*
+ VL = ZERO
+ VU = ANORM
+ CALL DSYGVX( IBTYPE, 'V', 'V', UPLO, N, AB, LDA, BB,
+ $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
+ $ LDZ, WORK, NWORK, IWORK( N+1 ), IWORK,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSYGVX(V,V,' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+ CALL DLACPY( ' ', N, N, A, LDA, AB, LDA )
+ CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL DSYGVX( IBTYPE, 'V', 'I', UPLO, N, AB, LDA, BB,
+ $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
+ $ LDZ, WORK, NWORK, IWORK( N+1 ), IWORK,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSYGVX(V,I,' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+ 100 CONTINUE
+*
+* Test DSPGV
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 120 J = 1, N
+ DO 110 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 110 CONTINUE
+ 120 CONTINUE
+ ELSE
+ IJ = 1
+ DO 140 J = 1, N
+ DO 130 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 130 CONTINUE
+ 140 CONTINUE
+ END IF
+*
+ CALL DSPGV( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ,
+ $ WORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSPGV(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+* Test DSPGVD
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 160 J = 1, N
+ DO 150 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 150 CONTINUE
+ 160 CONTINUE
+ ELSE
+ IJ = 1
+ DO 180 J = 1, N
+ DO 170 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 170 CONTINUE
+ 180 CONTINUE
+ END IF
+*
+ CALL DSPGVD( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ,
+ $ WORK, NWORK, IWORK, LIWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSPGVD(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+* Test DSPGVX
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 200 J = 1, N
+ DO 190 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 190 CONTINUE
+ 200 CONTINUE
+ ELSE
+ IJ = 1
+ DO 220 J = 1, N
+ DO 210 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 210 CONTINUE
+ 220 CONTINUE
+ END IF
+*
+ CALL DSPGVX( IBTYPE, 'V', 'A', UPLO, N, AP, BP, VL,
+ $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
+ $ IWORK( N+1 ), IWORK, INFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSPGVX(V,A' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 240 J = 1, N
+ DO 230 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 230 CONTINUE
+ 240 CONTINUE
+ ELSE
+ IJ = 1
+ DO 260 J = 1, N
+ DO 250 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 250 CONTINUE
+ 260 CONTINUE
+ END IF
+*
+ VL = ZERO
+ VU = ANORM
+ CALL DSPGVX( IBTYPE, 'V', 'V', UPLO, N, AP, BP, VL,
+ $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
+ $ IWORK( N+1 ), IWORK, INFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSPGVX(V,V' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 280 J = 1, N
+ DO 270 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 270 CONTINUE
+ 280 CONTINUE
+ ELSE
+ IJ = 1
+ DO 300 J = 1, N
+ DO 290 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 290 CONTINUE
+ 300 CONTINUE
+ END IF
+*
+ CALL DSPGVX( IBTYPE, 'V', 'I', UPLO, N, AP, BP, VL,
+ $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
+ $ IWORK( N+1 ), IWORK, INFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSPGVX(V,I' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+ 310 CONTINUE
+*
+ IF( IBTYPE.EQ.1 ) THEN
+*
+* TEST DSBGV
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 340 J = 1, N
+ DO 320 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 320 CONTINUE
+ DO 330 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 330 CONTINUE
+ 340 CONTINUE
+ ELSE
+ DO 370 J = 1, N
+ DO 350 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 350 CONTINUE
+ DO 360 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 360 CONTINUE
+ 370 CONTINUE
+ END IF
+*
+ CALL DSBGV( 'V', UPLO, N, KA, KB, AB, LDA, BB, LDB,
+ $ D, Z, LDZ, WORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSBGV(V,' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+* TEST DSBGVD
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 400 J = 1, N
+ DO 380 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 380 CONTINUE
+ DO 390 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 390 CONTINUE
+ 400 CONTINUE
+ ELSE
+ DO 430 J = 1, N
+ DO 410 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 410 CONTINUE
+ DO 420 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 420 CONTINUE
+ 430 CONTINUE
+ END IF
+*
+ CALL DSBGVD( 'V', UPLO, N, KA, KB, AB, LDA, BB,
+ $ LDB, D, Z, LDZ, WORK, NWORK, IWORK,
+ $ LIWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSBGVD(V,' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+* Test DSBGVX
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 460 J = 1, N
+ DO 440 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 440 CONTINUE
+ DO 450 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 450 CONTINUE
+ 460 CONTINUE
+ ELSE
+ DO 490 J = 1, N
+ DO 470 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 470 CONTINUE
+ DO 480 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 480 CONTINUE
+ 490 CONTINUE
+ END IF
+*
+ CALL DSBGVX( 'V', 'A', UPLO, N, KA, KB, AB, LDA,
+ $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
+ $ IU, ABSTOL, M, D, Z, LDZ, WORK,
+ $ IWORK( N+1 ), IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSBGVX(V,A' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 520 J = 1, N
+ DO 500 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 500 CONTINUE
+ DO 510 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 510 CONTINUE
+ 520 CONTINUE
+ ELSE
+ DO 550 J = 1, N
+ DO 530 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 530 CONTINUE
+ DO 540 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 540 CONTINUE
+ 550 CONTINUE
+ END IF
+*
+ VL = ZERO
+ VU = ANORM
+ CALL DSBGVX( 'V', 'V', UPLO, N, KA, KB, AB, LDA,
+ $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
+ $ IU, ABSTOL, M, D, Z, LDZ, WORK,
+ $ IWORK( N+1 ), IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSBGVX(V,V' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 580 J = 1, N
+ DO 560 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 560 CONTINUE
+ DO 570 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 570 CONTINUE
+ 580 CONTINUE
+ ELSE
+ DO 610 J = 1, N
+ DO 590 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 590 CONTINUE
+ DO 600 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 600 CONTINUE
+ 610 CONTINUE
+ END IF
+*
+ CALL DSBGVX( 'V', 'I', UPLO, N, KA, KB, AB, LDA,
+ $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
+ $ IU, ABSTOL, M, D, Z, LDZ, WORK,
+ $ IWORK( N+1 ), IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSBGVX(V,I' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+ END IF
+*
+ 620 CONTINUE
+ 630 CONTINUE
+*
+* End of Loop -- Check for RESULT(j) > THRESH
+*
+ NTESTT = NTESTT + NTEST
+ CALL DLAFTS( 'DSG', N, N, JTYPE, NTEST, RESULT, IOLDSD,
+ $ THRESH, NOUNIT, NERRS )
+ 640 CONTINUE
+ 650 CONTINUE
+*
+* Summary
+*
+ CALL DLASUM( 'DSG', NOUNIT, NERRS, NTESTT )
+*
+ RETURN
+*
+* End of DDRVSG2STG
+*
+ 9999 FORMAT( ' DDRVSG2STG: ', A, ' returned INFO=', I6, '.', / 9X,
+ $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
+ END
diff --git a/TESTING/EIG/ddrvst2stg.f b/TESTING/EIG/ddrvst2stg.f
new file mode 100644
index 00000000..75385fda
--- /dev/null
+++ b/TESTING/EIG/ddrvst2stg.f
@@ -0,0 +1,2874 @@
+*> \brief \b DDRVST2STG
+*
+* @precisions fortran d -> s
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE DDRVST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+* NOUNIT, A, LDA, D1, D2, D3, D4, EVEIGS, WA1,
+* WA2, WA3, U, LDU, V, TAU, Z, WORK, LWORK,
+* IWORK, LIWORK, RESULT, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDU, LIWORK, LWORK, NOUNIT, NSIZES,
+* $ NTYPES
+* DOUBLE PRECISION THRESH
+* ..
+* .. Array Arguments ..
+* LOGICAL DOTYPE( * )
+* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+* DOUBLE PRECISION A( LDA, * ), D1( * ), D2( * ), D3( * ),
+* $ D4( * ), EVEIGS( * ), RESULT( * ), TAU( * ),
+* $ U( LDU, * ), V( LDU, * ), WA1( * ), WA2( * ),
+* $ WA3( * ), WORK( * ), Z( LDU, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DDRVST2STG checks the symmetric eigenvalue problem drivers.
+*>
+*> DSTEV computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric tridiagonal matrix.
+*>
+*> DSTEVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a real symmetric tridiagonal matrix.
+*>
+*> DSTEVR computes selected eigenvalues and, optionally,
+*> eigenvectors of a real symmetric tridiagonal matrix
+*> using the Relatively Robust Representation where it can.
+*>
+*> DSYEV computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric matrix.
+*>
+*> DSYEVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a real symmetric matrix.
+*>
+*> DSYEVR computes selected eigenvalues and, optionally,
+*> eigenvectors of a real symmetric matrix
+*> using the Relatively Robust Representation where it can.
+*>
+*> DSPEV computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric matrix in packed
+*> storage.
+*>
+*> DSPEVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a real symmetric matrix in packed
+*> storage.
+*>
+*> DSBEV computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric band matrix.
+*>
+*> DSBEVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a real symmetric band matrix.
+*>
+*> DSYEVD computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric matrix using
+*> a divide and conquer algorithm.
+*>
+*> DSPEVD computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric matrix in packed
+*> storage, using a divide and conquer algorithm.
+*>
+*> DSBEVD computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric band matrix,
+*> using a divide and conquer algorithm.
+*>
+*> When DDRVST2STG is called, a number of matrix "sizes" ("n's") and a
+*> number of matrix "types" are specified. For each size ("n")
+*> and each type of matrix, one matrix will be generated and used
+*> to test the appropriate drivers. For each matrix and each
+*> driver routine called, the following tests will be performed:
+*>
+*> (1) | A - Z D Z' | / ( |A| n ulp )
+*>
+*> (2) | I - Z Z' | / ( n ulp )
+*>
+*> (3) | D1 - D2 | / ( |D1| ulp )
+*>
+*> where Z is the matrix of eigenvectors returned when the
+*> eigenvector option is given and D1 and D2 are the eigenvalues
+*> returned with and without the eigenvector option.
+*>
+*> The "sizes" are specified by an array NN(1:NSIZES); the value of
+*> each element NN(j) specifies one size.
+*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
+*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
+*> Currently, the list of possible types is:
+*>
+*> (1) The zero matrix.
+*> (2) The identity matrix.
+*>
+*> (3) A diagonal matrix with evenly spaced eigenvalues
+*> 1, ..., ULP and random signs.
+*> (ULP = (first number larger than 1) - 1 )
+*> (4) A diagonal matrix with geometrically spaced eigenvalues
+*> 1, ..., ULP and random signs.
+*> (5) A diagonal matrix with "clustered" eigenvalues
+*> 1, ULP, ..., ULP and random signs.
+*>
+*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
+*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
+*>
+*> (8) A matrix of the form U' D U, where U is orthogonal and
+*> D has evenly spaced entries 1, ..., ULP with random signs
+*> on the diagonal.
+*>
+*> (9) A matrix of the form U' D U, where U is orthogonal and
+*> D has geometrically spaced entries 1, ..., ULP with random
+*> signs on the diagonal.
+*>
+*> (10) A matrix of the form U' D U, where U is orthogonal and
+*> D has "clustered" entries 1, ULP,..., ULP with random
+*> signs on the diagonal.
+*>
+*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
+*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
+*>
+*> (13) Symmetric matrix with random entries chosen from (-1,1).
+*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
+*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
+*> (16) A band matrix with half bandwidth randomly chosen between
+*> 0 and N-1, with evenly spaced eigenvalues 1, ..., ULP
+*> with random signs.
+*> (17) Same as (16), but multiplied by SQRT( overflow threshold )
+*> (18) Same as (16), but multiplied by SQRT( underflow threshold )
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \verbatim
+*> NSIZES INTEGER
+*> The number of sizes of matrices to use. If it is zero,
+*> DDRVST2STG does nothing. It must be at least zero.
+*> Not modified.
+*>
+*> NN INTEGER array, dimension (NSIZES)
+*> An array containing the sizes to be used for the matrices.
+*> Zero values will be skipped. The values must be at least
+*> zero.
+*> Not modified.
+*>
+*> NTYPES INTEGER
+*> The number of elements in DOTYPE. If it is zero, DDRVST2STG
+*> does nothing. It must be at least zero. If it is MAXTYP+1
+*> and NSIZES is 1, then an additional type, MAXTYP+1 is
+*> defined, which is to use whatever matrix is in A. This
+*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
+*> DOTYPE(MAXTYP+1) is .TRUE. .
+*> Not modified.
+*>
+*> DOTYPE LOGICAL array, dimension (NTYPES)
+*> If DOTYPE(j) is .TRUE., then for each size in NN a
+*> matrix of that size and of type j will be generated.
+*> If NTYPES is smaller than the maximum number of types
+*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
+*> MAXTYP will not be generated. If NTYPES is larger
+*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
+*> will be ignored.
+*> Not modified.
+*>
+*> ISEED INTEGER array, dimension (4)
+*> On entry ISEED specifies the seed of the random number
+*> generator. The array elements should be between 0 and 4095;
+*> if not they will be reduced mod 4096. Also, ISEED(4) must
+*> be odd. The random number generator uses a linear
+*> congruential sequence limited to small integers, and so
+*> should produce machine independent random numbers. The
+*> values of ISEED are changed on exit, and can be used in the
+*> next call to DDRVST2STG to continue the same random number
+*> sequence.
+*> Modified.
+*>
+*> THRESH DOUBLE PRECISION
+*> A test will count as "failed" if the "error", computed as
+*> described above, exceeds THRESH. Note that the error
+*> is scaled to be O(1), so THRESH should be a reasonably
+*> small multiple of 1, e.g., 10 or 100. In particular,
+*> it should not depend on the precision (single vs. double)
+*> or the size of the matrix. It must be at least zero.
+*> Not modified.
+*>
+*> NOUNIT INTEGER
+*> The FORTRAN unit number for printing out error messages
+*> (e.g., if a routine returns IINFO not equal to 0.)
+*> Not modified.
+*>
+*> A DOUBLE PRECISION array, dimension (LDA , max(NN))
+*> Used to hold the matrix whose eigenvalues are to be
+*> computed. On exit, A contains the last matrix actually
+*> used.
+*> Modified.
+*>
+*> LDA INTEGER
+*> The leading dimension of A. It must be at
+*> least 1 and at least max( NN ).
+*> Not modified.
+*>
+*> D1 DOUBLE PRECISION array, dimension (max(NN))
+*> The eigenvalues of A, as computed by DSTEQR simlutaneously
+*> with Z. On exit, the eigenvalues in D1 correspond with the
+*> matrix in A.
+*> Modified.
+*>
+*> D2 DOUBLE PRECISION array, dimension (max(NN))
+*> The eigenvalues of A, as computed by DSTEQR if Z is not
+*> computed. On exit, the eigenvalues in D2 correspond with
+*> the matrix in A.
+*> Modified.
+*>
+*> D3 DOUBLE PRECISION array, dimension (max(NN))
+*> The eigenvalues of A, as computed by DSTERF. On exit, the
+*> eigenvalues in D3 correspond with the matrix in A.
+*> Modified.
+*>
+*> D4 DOUBLE PRECISION array, dimension
+*>
+*> EVEIGS DOUBLE PRECISION array, dimension (max(NN))
+*> The eigenvalues as computed by DSTEV('N', ... )
+*> (I reserve the right to change this to the output of
+*> whichever algorithm computes the most accurate eigenvalues).
+*>
+*> WA1 DOUBLE PRECISION array, dimension
+*>
+*> WA2 DOUBLE PRECISION array, dimension
+*>
+*> WA3 DOUBLE PRECISION array, dimension
+*>
+*> U DOUBLE PRECISION array, dimension (LDU, max(NN))
+*> The orthogonal matrix computed by DSYTRD + DORGTR.
+*> Modified.
+*>
+*> LDU INTEGER
+*> The leading dimension of U, Z, and V. It must be at
+*> least 1 and at least max( NN ).
+*> Not modified.
+*>
+*> V DOUBLE PRECISION array, dimension (LDU, max(NN))
+*> The Housholder vectors computed by DSYTRD in reducing A to
+*> tridiagonal form.
+*> Modified.
+*>
+*> TAU DOUBLE PRECISION array, dimension (max(NN))
+*> The Householder factors computed by DSYTRD in reducing A
+*> to tridiagonal form.
+*> Modified.
+*>
+*> Z DOUBLE PRECISION array, dimension (LDU, max(NN))
+*> The orthogonal matrix of eigenvectors computed by DSTEQR,
+*> DPTEQR, and DSTEIN.
+*> Modified.
+*>
+*> WORK DOUBLE PRECISION array, dimension (LWORK)
+*> Workspace.
+*> Modified.
+*>
+*> LWORK INTEGER
+*> The number of entries in WORK. This must be at least
+*> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 4 * Nmax**2
+*> where Nmax = max( NN(j), 2 ) and lg = log base 2.
+*> Not modified.
+*>
+*> IWORK INTEGER array,
+*> dimension (6 + 6*Nmax + 5 * Nmax * lg Nmax )
+*> where Nmax = max( NN(j), 2 ) and lg = log base 2.
+*> Workspace.
+*> Modified.
+*>
+*> RESULT DOUBLE PRECISION array, dimension (105)
+*> The values computed by the tests described above.
+*> The values are currently limited to 1/ulp, to avoid
+*> overflow.
+*> Modified.
+*>
+*> INFO INTEGER
+*> If 0, then everything ran OK.
+*> -1: NSIZES < 0
+*> -2: Some NN(j) < 0
+*> -3: NTYPES < 0
+*> -5: THRESH < 0
+*> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
+*> -16: LDU < 1 or LDU < NMAX.
+*> -21: LWORK too small.
+*> If DLATMR, DLATMS, DSYTRD, DORGTR, DSTEQR, DSTERF,
+*> or DORMTR returns an error code, the
+*> absolute value of it is returned.
+*> Modified.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> Some Local Variables and Parameters:
+*> ---- ----- --------- --- ----------
+*> ZERO, ONE Real 0 and 1.
+*> MAXTYP The number of types defined.
+*> NTEST The number of tests performed, or which can
+*> be performed so far, for the current matrix.
+*> NTESTT The total number of tests performed so far.
+*> NMAX Largest value in NN.
+*> NMATS The number of matrices generated so far.
+*> NERRS The number of tests which have exceeded THRESH
+*> so far (computed by DLAFTS).
+*> COND, IMODE Values to be passed to the matrix generators.
+*> ANORM Norm of A; passed to matrix generators.
+*>
+*> OVFL, UNFL Overflow and underflow thresholds.
+*> ULP, ULPINV Finest relative precision and its inverse.
+*> RTOVFL, RTUNFL Square roots of the previous 2 values.
+*> The following four arrays decode JTYPE:
+*> KTYPE(j) The general type (1-10) for type "j".
+*> KMODE(j) The MODE value to be passed to the matrix
+*> generator for type "j".
+*> KMAGN(j) The order of magnitude ( O(1),
+*> O(overflow^(1/2) ), O(underflow^(1/2) )
+*>
+*> The tests performed are: Routine tested
+*> 1= | A - U S U' | / ( |A| n ulp ) DSTEV('V', ... )
+*> 2= | I - U U' | / ( n ulp ) DSTEV('V', ... )
+*> 3= |D(with Z) - D(w/o Z)| / (|D| ulp) DSTEV('N', ... )
+*> 4= | A - U S U' | / ( |A| n ulp ) DSTEVX('V','A', ... )
+*> 5= | I - U U' | / ( n ulp ) DSTEVX('V','A', ... )
+*> 6= |D(with Z) - EVEIGS| / (|D| ulp) DSTEVX('N','A', ... )
+*> 7= | A - U S U' | / ( |A| n ulp ) DSTEVR('V','A', ... )
+*> 8= | I - U U' | / ( n ulp ) DSTEVR('V','A', ... )
+*> 9= |D(with Z) - EVEIGS| / (|D| ulp) DSTEVR('N','A', ... )
+*> 10= | A - U S U' | / ( |A| n ulp ) DSTEVX('V','I', ... )
+*> 11= | I - U U' | / ( n ulp ) DSTEVX('V','I', ... )
+*> 12= |D(with Z) - D(w/o Z)| / (|D| ulp) DSTEVX('N','I', ... )
+*> 13= | A - U S U' | / ( |A| n ulp ) DSTEVX('V','V', ... )
+*> 14= | I - U U' | / ( n ulp ) DSTEVX('V','V', ... )
+*> 15= |D(with Z) - D(w/o Z)| / (|D| ulp) DSTEVX('N','V', ... )
+*> 16= | A - U S U' | / ( |A| n ulp ) DSTEVD('V', ... )
+*> 17= | I - U U' | / ( n ulp ) DSTEVD('V', ... )
+*> 18= |D(with Z) - EVEIGS| / (|D| ulp) DSTEVD('N', ... )
+*> 19= | A - U S U' | / ( |A| n ulp ) DSTEVR('V','I', ... )
+*> 20= | I - U U' | / ( n ulp ) DSTEVR('V','I', ... )
+*> 21= |D(with Z) - D(w/o Z)| / (|D| ulp) DSTEVR('N','I', ... )
+*> 22= | A - U S U' | / ( |A| n ulp ) DSTEVR('V','V', ... )
+*> 23= | I - U U' | / ( n ulp ) DSTEVR('V','V', ... )
+*> 24= |D(with Z) - D(w/o Z)| / (|D| ulp) DSTEVR('N','V', ... )
+*>
+*> 25= | A - U S U' | / ( |A| n ulp ) DSYEV('L','V', ... )
+*> 26= | I - U U' | / ( n ulp ) DSYEV('L','V', ... )
+*> 27= |D(with Z) - D(w/o Z)| / (|D| ulp) DSYEV_2STAGE('L','N', ... )
+*> 28= | A - U S U' | / ( |A| n ulp ) DSYEVX('L','V','A', ... )
+*> 29= | I - U U' | / ( n ulp ) DSYEVX('L','V','A', ... )
+*> 30= |D(with Z) - D(w/o Z)| / (|D| ulp) DSYEVX_2STAGE('L','N','A', ... )
+*> 31= | A - U S U' | / ( |A| n ulp ) DSYEVX('L','V','I', ... )
+*> 32= | I - U U' | / ( n ulp ) DSYEVX('L','V','I', ... )
+*> 33= |D(with Z) - D(w/o Z)| / (|D| ulp) DSYEVX_2STAGE('L','N','I', ... )
+*> 34= | A - U S U' | / ( |A| n ulp ) DSYEVX('L','V','V', ... )
+*> 35= | I - U U' | / ( n ulp ) DSYEVX('L','V','V', ... )
+*> 36= |D(with Z) - D(w/o Z)| / (|D| ulp) DSYEVX_2STAGE('L','N','V', ... )
+*> 37= | A - U S U' | / ( |A| n ulp ) DSPEV('L','V', ... )
+*> 38= | I - U U' | / ( n ulp ) DSPEV('L','V', ... )
+*> 39= |D(with Z) - D(w/o Z)| / (|D| ulp) DSPEV('L','N', ... )
+*> 40= | A - U S U' | / ( |A| n ulp ) DSPEVX('L','V','A', ... )
+*> 41= | I - U U' | / ( n ulp ) DSPEVX('L','V','A', ... )
+*> 42= |D(with Z) - D(w/o Z)| / (|D| ulp) DSPEVX('L','N','A', ... )
+*> 43= | A - U S U' | / ( |A| n ulp ) DSPEVX('L','V','I', ... )
+*> 44= | I - U U' | / ( n ulp ) DSPEVX('L','V','I', ... )
+*> 45= |D(with Z) - D(w/o Z)| / (|D| ulp) DSPEVX('L','N','I', ... )
+*> 46= | A - U S U' | / ( |A| n ulp ) DSPEVX('L','V','V', ... )
+*> 47= | I - U U' | / ( n ulp ) DSPEVX('L','V','V', ... )
+*> 48= |D(with Z) - D(w/o Z)| / (|D| ulp) DSPEVX('L','N','V', ... )
+*> 49= | A - U S U' | / ( |A| n ulp ) DSBEV('L','V', ... )
+*> 50= | I - U U' | / ( n ulp ) DSBEV('L','V', ... )
+*> 51= |D(with Z) - D(w/o Z)| / (|D| ulp) DSBEV_2STAGE('L','N', ... )
+*> 52= | A - U S U' | / ( |A| n ulp ) DSBEVX('L','V','A', ... )
+*> 53= | I - U U' | / ( n ulp ) DSBEVX('L','V','A', ... )
+*> 54= |D(with Z) - D(w/o Z)| / (|D| ulp) DSBEVX_2STAGE('L','N','A', ... )
+*> 55= | A - U S U' | / ( |A| n ulp ) DSBEVX('L','V','I', ... )
+*> 56= | I - U U' | / ( n ulp ) DSBEVX('L','V','I', ... )
+*> 57= |D(with Z) - D(w/o Z)| / (|D| ulp) DSBEVX_2STAGE('L','N','I', ... )
+*> 58= | A - U S U' | / ( |A| n ulp ) DSBEVX('L','V','V', ... )
+*> 59= | I - U U' | / ( n ulp ) DSBEVX('L','V','V', ... )
+*> 60= |D(with Z) - D(w/o Z)| / (|D| ulp) DSBEVX_2STAGE('L','N','V', ... )
+*> 61= | A - U S U' | / ( |A| n ulp ) DSYEVD('L','V', ... )
+*> 62= | I - U U' | / ( n ulp ) DSYEVD('L','V', ... )
+*> 63= |D(with Z) - D(w/o Z)| / (|D| ulp) DSYEVD_2STAGE('L','N', ... )
+*> 64= | A - U S U' | / ( |A| n ulp ) DSPEVD('L','V', ... )
+*> 65= | I - U U' | / ( n ulp ) DSPEVD('L','V', ... )
+*> 66= |D(with Z) - D(w/o Z)| / (|D| ulp) DSPEVD('L','N', ... )
+*> 67= | A - U S U' | / ( |A| n ulp ) DSBEVD('L','V', ... )
+*> 68= | I - U U' | / ( n ulp ) DSBEVD('L','V', ... )
+*> 69= |D(with Z) - D(w/o Z)| / (|D| ulp) DSBEVD_2STAGE('L','N', ... )
+*> 70= | A - U S U' | / ( |A| n ulp ) DSYEVR('L','V','A', ... )
+*> 71= | I - U U' | / ( n ulp ) DSYEVR('L','V','A', ... )
+*> 72= |D(with Z) - D(w/o Z)| / (|D| ulp) DSYEVR_2STAGE('L','N','A', ... )
+*> 73= | A - U S U' | / ( |A| n ulp ) DSYEVR('L','V','I', ... )
+*> 74= | I - U U' | / ( n ulp ) DSYEVR('L','V','I', ... )
+*> 75= |D(with Z) - D(w/o Z)| / (|D| ulp) DSYEVR_2STAGE('L','N','I', ... )
+*> 76= | A - U S U' | / ( |A| n ulp ) DSYEVR('L','V','V', ... )
+*> 77= | I - U U' | / ( n ulp ) DSYEVR('L','V','V', ... )
+*> 78= |D(with Z) - D(w/o Z)| / (|D| ulp) DSYEVR_2STAGE('L','N','V', ... )
+*>
+*> Tests 25 through 78 are repeated (as tests 79 through 132)
+*> with UPLO='U'
+*>
+*> To be added in 1999
+*>
+*> 79= | A - U S U' | / ( |A| n ulp ) DSPEVR('L','V','A', ... )
+*> 80= | I - U U' | / ( n ulp ) DSPEVR('L','V','A', ... )
+*> 81= |D(with Z) - D(w/o Z)| / (|D| ulp) DSPEVR('L','N','A', ... )
+*> 82= | A - U S U' | / ( |A| n ulp ) DSPEVR('L','V','I', ... )
+*> 83= | I - U U' | / ( n ulp ) DSPEVR('L','V','I', ... )
+*> 84= |D(with Z) - D(w/o Z)| / (|D| ulp) DSPEVR('L','N','I', ... )
+*> 85= | A - U S U' | / ( |A| n ulp ) DSPEVR('L','V','V', ... )
+*> 86= | I - U U' | / ( n ulp ) DSPEVR('L','V','V', ... )
+*> 87= |D(with Z) - D(w/o Z)| / (|D| ulp) DSPEVR('L','N','V', ... )
+*> 88= | A - U S U' | / ( |A| n ulp ) DSBEVR('L','V','A', ... )
+*> 89= | I - U U' | / ( n ulp ) DSBEVR('L','V','A', ... )
+*> 90= |D(with Z) - D(w/o Z)| / (|D| ulp) DSBEVR('L','N','A', ... )
+*> 91= | A - U S U' | / ( |A| n ulp ) DSBEVR('L','V','I', ... )
+*> 92= | I - U U' | / ( n ulp ) DSBEVR('L','V','I', ... )
+*> 93= |D(with Z) - D(w/o Z)| / (|D| ulp) DSBEVR('L','N','I', ... )
+*> 94= | A - U S U' | / ( |A| n ulp ) DSBEVR('L','V','V', ... )
+*> 95= | I - U U' | / ( n ulp ) DSBEVR('L','V','V', ... )
+*> 96= |D(with Z) - D(w/o Z)| / (|D| ulp) DSBEVR('L','N','V', ... )
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup double_eig
+*
+* =====================================================================
+ SUBROUTINE DDRVST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+ $ NOUNIT, A, LDA, D1, D2, D3, D4, EVEIGS, WA1,
+ $ WA2, WA3, U, LDU, V, TAU, Z, WORK, LWORK,
+ $ IWORK, LIWORK, RESULT, INFO )
+*
+* -- LAPACK test routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDU, LIWORK, LWORK, NOUNIT, NSIZES,
+ $ NTYPES
+ DOUBLE PRECISION THRESH
+* ..
+* .. Array Arguments ..
+ LOGICAL DOTYPE( * )
+ INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+ DOUBLE PRECISION A( LDA, * ), D1( * ), D2( * ), D3( * ),
+ $ D4( * ), EVEIGS( * ), RESULT( * ), TAU( * ),
+ $ U( LDU, * ), V( LDU, * ), WA1( * ), WA2( * ),
+ $ WA3( * ), WORK( * ), Z( LDU, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE, TWO, TEN
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
+ $ TEN = 10.0D0 )
+ DOUBLE PRECISION HALF
+ PARAMETER ( HALF = 0.5D0 )
+ INTEGER MAXTYP
+ PARAMETER ( MAXTYP = 18 )
+* ..
+* .. Local Scalars ..
+ LOGICAL BADNN
+ CHARACTER UPLO
+ INTEGER I, IDIAG, IHBW, IINFO, IL, IMODE, INDX, IROW,
+ $ ITEMP, ITYPE, IU, IUPLO, J, J1, J2, JCOL,
+ $ JSIZE, JTYPE, KD, LGN, LIWEDC, LWEDC, M, M2,
+ $ M3, MTYPES, N, NERRS, NMATS, NMAX, NTEST,
+ $ NTESTT
+ DOUBLE PRECISION ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
+ $ RTUNFL, TEMP1, TEMP2, TEMP3, ULP, ULPINV, UNFL,
+ $ VL, VU
+* ..
+* .. Local Arrays ..
+ INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
+ $ ISEED3( 4 ), KMAGN( MAXTYP ), KMODE( MAXTYP ),
+ $ KTYPE( MAXTYP )
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMCH, DLARND, DSXT1
+ EXTERNAL DLAMCH, DLARND, DSXT1
+* ..
+* .. External Subroutines ..
+ EXTERNAL ALASVM, DLABAD, DLACPY, DLAFTS, DLASET, DLATMR,
+ $ DLATMS, DSBEV, DSBEVD, DSBEVX, DSPEV, DSPEVD,
+ $ DSPEVX, DSTEV, DSTEVD, DSTEVR, DSTEVX, DSTT21,
+ $ DSTT22, DSYEV, DSYEVD, DSYEVR, DSYEVX, DSYT21,
+ $ DSYEVD_2STAGE, DSYEVR_2STAGE, DSYEVX_2STAGE,
+ $ DSYEV_2STAGE, DSBEV_2STAGE, DSBEVD_2STAGE,
+ $ DSBEVX_2STAGE, DSYTRD_2STAGE, DSYTRD_SY2SB,
+ $ DSYTRD_SB2ST, DSYT22, XERBLA
+* ..
+* .. Scalars in Common ..
+ CHARACTER*32 SRNAMT
+* ..
+* .. Common blocks ..
+ COMMON / SRNAMC / SRNAMT
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, INT, LOG, MAX, MIN, SQRT
+* ..
+* .. Data statements ..
+ DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 3*9 /
+ DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
+ $ 2, 3, 1, 2, 3 /
+ DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
+ $ 0, 0, 4, 4, 4 /
+* ..
+* .. Executable Statements ..
+*
+* Keep ftrnchek happy
+*
+ VL = ZERO
+ VU = ZERO
+*
+* 1) Check for errors
+*
+ NTESTT = 0
+ INFO = 0
+*
+ BADNN = .FALSE.
+ NMAX = 1
+ DO 10 J = 1, NSIZES
+ NMAX = MAX( NMAX, NN( J ) )
+ IF( NN( J ).LT.0 )
+ $ BADNN = .TRUE.
+ 10 CONTINUE
+*
+* Check for errors
+*
+ IF( NSIZES.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( BADNN ) THEN
+ INFO = -2
+ ELSE IF( NTYPES.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.NMAX ) THEN
+ INFO = -9
+ ELSE IF( LDU.LT.NMAX ) THEN
+ INFO = -16
+ ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
+ INFO = -21
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DDRVST2STG', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if nothing to do
+*
+ IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
+ $ RETURN
+*
+* More Important constants
+*
+ UNFL = DLAMCH( 'Safe minimum' )
+ OVFL = DLAMCH( 'Overflow' )
+ CALL DLABAD( UNFL, OVFL )
+ ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
+ ULPINV = ONE / ULP
+ RTUNFL = SQRT( UNFL )
+ RTOVFL = SQRT( OVFL )
+*
+* Loop over sizes, types
+*
+ DO 20 I = 1, 4
+ ISEED2( I ) = ISEED( I )
+ ISEED3( I ) = ISEED( I )
+ 20 CONTINUE
+*
+ NERRS = 0
+ NMATS = 0
+*
+*
+ DO 1740 JSIZE = 1, NSIZES
+ N = NN( JSIZE )
+ IF( N.GT.0 ) THEN
+ LGN = INT( LOG( DBLE( N ) ) / LOG( TWO ) )
+ IF( 2**LGN.LT.N )
+ $ LGN = LGN + 1
+ IF( 2**LGN.LT.N )
+ $ LGN = LGN + 1
+ LWEDC = 1 + 4*N + 2*N*LGN + 4*N**2
+c LIWEDC = 6 + 6*N + 5*N*LGN
+ LIWEDC = 3 + 5*N
+ ELSE
+ LWEDC = 9
+c LIWEDC = 12
+ LIWEDC = 8
+ END IF
+ ANINV = ONE / DBLE( MAX( 1, N ) )
+*
+ IF( NSIZES.NE.1 ) THEN
+ MTYPES = MIN( MAXTYP, NTYPES )
+ ELSE
+ MTYPES = MIN( MAXTYP+1, NTYPES )
+ END IF
+*
+ DO 1730 JTYPE = 1, MTYPES
+*
+ IF( .NOT.DOTYPE( JTYPE ) )
+ $ GO TO 1730
+ NMATS = NMATS + 1
+ NTEST = 0
+*
+ DO 30 J = 1, 4
+ IOLDSD( J ) = ISEED( J )
+ 30 CONTINUE
+*
+* 2) Compute "A"
+*
+* Control parameters:
+*
+* KMAGN KMODE KTYPE
+* =1 O(1) clustered 1 zero
+* =2 large clustered 2 identity
+* =3 small exponential (none)
+* =4 arithmetic diagonal, (w/ eigenvalues)
+* =5 random log symmetric, w/ eigenvalues
+* =6 random (none)
+* =7 random diagonal
+* =8 random symmetric
+* =9 band symmetric, w/ eigenvalues
+*
+ IF( MTYPES.GT.MAXTYP )
+ $ GO TO 110
+*
+ ITYPE = KTYPE( JTYPE )
+ IMODE = KMODE( JTYPE )
+*
+* Compute norm
+*
+ GO TO ( 40, 50, 60 )KMAGN( JTYPE )
+*
+ 40 CONTINUE
+ ANORM = ONE
+ GO TO 70
+*
+ 50 CONTINUE
+ ANORM = ( RTOVFL*ULP )*ANINV
+ GO TO 70
+*
+ 60 CONTINUE
+ ANORM = RTUNFL*N*ULPINV
+ GO TO 70
+*
+ 70 CONTINUE
+*
+ CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
+ IINFO = 0
+ COND = ULPINV
+*
+* Special Matrices -- Identity & Jordan block
+*
+* Zero
+*
+ IF( ITYPE.EQ.1 ) THEN
+ IINFO = 0
+*
+ ELSE IF( ITYPE.EQ.2 ) THEN
+*
+* Identity
+*
+ DO 80 JCOL = 1, N
+ A( JCOL, JCOL ) = ANORM
+ 80 CONTINUE
+*
+ ELSE IF( ITYPE.EQ.4 ) THEN
+*
+* Diagonal Matrix, [Eigen]values Specified
+*
+ CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+ ELSE IF( ITYPE.EQ.5 ) THEN
+*
+* Symmetric, eigenvalues specified
+*
+ CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+ ELSE IF( ITYPE.EQ.7 ) THEN
+*
+* Diagonal, random eigenvalues
+*
+ IDUMMA( 1 ) = 1
+ CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.8 ) THEN
+*
+* Symmetric, random eigenvalues
+*
+ IDUMMA( 1 ) = 1
+ CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.9 ) THEN
+*
+* Symmetric banded, eigenvalues specified
+*
+ IHBW = INT( ( N-1 )*DLARND( 1, ISEED3 ) )
+ CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, IHBW, IHBW, 'Z', U, LDU, WORK( N+1 ),
+ $ IINFO )
+*
+* Store as dense matrix for most routines.
+*
+ CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
+ DO 100 IDIAG = -IHBW, IHBW
+ IROW = IHBW - IDIAG + 1
+ J1 = MAX( 1, IDIAG+1 )
+ J2 = MIN( N, N+IDIAG )
+ DO 90 J = J1, J2
+ I = J - IDIAG
+ A( I, J ) = U( IROW, J )
+ 90 CONTINUE
+ 100 CONTINUE
+ ELSE
+ IINFO = 1
+ END IF
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ RETURN
+ END IF
+*
+ 110 CONTINUE
+*
+ ABSTOL = UNFL + UNFL
+ IF( N.LE.1 ) THEN
+ IL = 1
+ IU = N
+ ELSE
+ IL = 1 + INT( ( N-1 )*DLARND( 1, ISEED2 ) )
+ IU = 1 + INT( ( N-1 )*DLARND( 1, ISEED2 ) )
+ IF( IL.GT.IU ) THEN
+ ITEMP = IL
+ IL = IU
+ IU = ITEMP
+ END IF
+ END IF
+*
+* 3) If matrix is tridiagonal, call DSTEV and DSTEVX.
+*
+ IF( JTYPE.LE.7 ) THEN
+ NTEST = 1
+ DO 120 I = 1, N
+ D1( I ) = DBLE( A( I, I ) )
+ 120 CONTINUE
+ DO 130 I = 1, N - 1
+ D2( I ) = DBLE( A( I+1, I ) )
+ 130 CONTINUE
+ SRNAMT = 'DSTEV'
+ CALL DSTEV( 'V', N, D1, D2, Z, LDU, WORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEV(V)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 1 ) = ULPINV
+ RESULT( 2 ) = ULPINV
+ RESULT( 3 ) = ULPINV
+ GO TO 180
+ END IF
+ END IF
+*
+* Do tests 1 and 2.
+*
+ DO 140 I = 1, N
+ D3( I ) = DBLE( A( I, I ) )
+ 140 CONTINUE
+ DO 150 I = 1, N - 1
+ D4( I ) = DBLE( A( I+1, I ) )
+ 150 CONTINUE
+ CALL DSTT21( N, 0, D3, D4, D1, D2, Z, LDU, WORK,
+ $ RESULT( 1 ) )
+*
+ NTEST = 3
+ DO 160 I = 1, N - 1
+ D4( I ) = DBLE( A( I+1, I ) )
+ 160 CONTINUE
+ SRNAMT = 'DSTEV'
+ CALL DSTEV( 'N', N, D3, D4, Z, LDU, WORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEV(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 3 ) = ULPINV
+ GO TO 180
+ END IF
+ END IF
+*
+* Do test 3.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 170 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 170 CONTINUE
+ RESULT( 3 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 180 CONTINUE
+*
+ NTEST = 4
+ DO 190 I = 1, N
+ EVEIGS( I ) = D3( I )
+ D1( I ) = DBLE( A( I, I ) )
+ 190 CONTINUE
+ DO 200 I = 1, N - 1
+ D2( I ) = DBLE( A( I+1, I ) )
+ 200 CONTINUE
+ SRNAMT = 'DSTEVX'
+ CALL DSTEVX( 'V', 'A', N, D1, D2, VL, VU, IL, IU, ABSTOL,
+ $ M, WA1, Z, LDU, WORK, IWORK, IWORK( 5*N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEVX(V,A)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 4 ) = ULPINV
+ RESULT( 5 ) = ULPINV
+ RESULT( 6 ) = ULPINV
+ GO TO 250
+ END IF
+ END IF
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+*
+* Do tests 4 and 5.
+*
+ DO 210 I = 1, N
+ D3( I ) = DBLE( A( I, I ) )
+ 210 CONTINUE
+ DO 220 I = 1, N - 1
+ D4( I ) = DBLE( A( I+1, I ) )
+ 220 CONTINUE
+ CALL DSTT21( N, 0, D3, D4, WA1, D2, Z, LDU, WORK,
+ $ RESULT( 4 ) )
+*
+ NTEST = 6
+ DO 230 I = 1, N - 1
+ D4( I ) = DBLE( A( I+1, I ) )
+ 230 CONTINUE
+ SRNAMT = 'DSTEVX'
+ CALL DSTEVX( 'N', 'A', N, D3, D4, VL, VU, IL, IU, ABSTOL,
+ $ M2, WA2, Z, LDU, WORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEVX(N,A)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 6 ) = ULPINV
+ GO TO 250
+ END IF
+ END IF
+*
+* Do test 6.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 240 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA2( J ) ),
+ $ ABS( EVEIGS( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA2( J )-EVEIGS( J ) ) )
+ 240 CONTINUE
+ RESULT( 6 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 250 CONTINUE
+*
+ NTEST = 7
+ DO 260 I = 1, N
+ D1( I ) = DBLE( A( I, I ) )
+ 260 CONTINUE
+ DO 270 I = 1, N - 1
+ D2( I ) = DBLE( A( I+1, I ) )
+ 270 CONTINUE
+ SRNAMT = 'DSTEVR'
+ CALL DSTEVR( 'V', 'A', N, D1, D2, VL, VU, IL, IU, ABSTOL,
+ $ M, WA1, Z, LDU, IWORK, WORK, LWORK,
+ $ IWORK(2*N+1), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEVR(V,A)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 7 ) = ULPINV
+ RESULT( 8 ) = ULPINV
+ GO TO 320
+ END IF
+ END IF
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+*
+* Do tests 7 and 8.
+*
+ DO 280 I = 1, N
+ D3( I ) = DBLE( A( I, I ) )
+ 280 CONTINUE
+ DO 290 I = 1, N - 1
+ D4( I ) = DBLE( A( I+1, I ) )
+ 290 CONTINUE
+ CALL DSTT21( N, 0, D3, D4, WA1, D2, Z, LDU, WORK,
+ $ RESULT( 7 ) )
+*
+ NTEST = 9
+ DO 300 I = 1, N - 1
+ D4( I ) = DBLE( A( I+1, I ) )
+ 300 CONTINUE
+ SRNAMT = 'DSTEVR'
+ CALL DSTEVR( 'N', 'A', N, D3, D4, VL, VU, IL, IU, ABSTOL,
+ $ M2, WA2, Z, LDU, IWORK, WORK, LWORK,
+ $ IWORK(2*N+1), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEVR(N,A)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 9 ) = ULPINV
+ GO TO 320
+ END IF
+ END IF
+*
+* Do test 9.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 310 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA2( J ) ),
+ $ ABS( EVEIGS( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA2( J )-EVEIGS( J ) ) )
+ 310 CONTINUE
+ RESULT( 9 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 320 CONTINUE
+*
+*
+ NTEST = 10
+ DO 330 I = 1, N
+ D1( I ) = DBLE( A( I, I ) )
+ 330 CONTINUE
+ DO 340 I = 1, N - 1
+ D2( I ) = DBLE( A( I+1, I ) )
+ 340 CONTINUE
+ SRNAMT = 'DSTEVX'
+ CALL DSTEVX( 'V', 'I', N, D1, D2, VL, VU, IL, IU, ABSTOL,
+ $ M2, WA2, Z, LDU, WORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEVX(V,I)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 10 ) = ULPINV
+ RESULT( 11 ) = ULPINV
+ RESULT( 12 ) = ULPINV
+ GO TO 380
+ END IF
+ END IF
+*
+* Do tests 10 and 11.
+*
+ DO 350 I = 1, N
+ D3( I ) = DBLE( A( I, I ) )
+ 350 CONTINUE
+ DO 360 I = 1, N - 1
+ D4( I ) = DBLE( A( I+1, I ) )
+ 360 CONTINUE
+ CALL DSTT22( N, M2, 0, D3, D4, WA2, D2, Z, LDU, WORK,
+ $ MAX( 1, M2 ), RESULT( 10 ) )
+*
+*
+ NTEST = 12
+ DO 370 I = 1, N - 1
+ D4( I ) = DBLE( A( I+1, I ) )
+ 370 CONTINUE
+ SRNAMT = 'DSTEVX'
+ CALL DSTEVX( 'N', 'I', N, D3, D4, VL, VU, IL, IU, ABSTOL,
+ $ M3, WA3, Z, LDU, WORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEVX(N,I)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 12 ) = ULPINV
+ GO TO 380
+ END IF
+ END IF
+*
+* Do test 12.
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ RESULT( 12 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, ULP*TEMP3 )
+*
+ 380 CONTINUE
+*
+ NTEST = 12
+ IF( N.GT.0 ) THEN
+ IF( IL.NE.1 ) THEN
+ VL = WA1( IL ) - MAX( HALF*
+ $ ( WA1( IL )-WA1( IL-1 ) ), TEN*ULP*TEMP3,
+ $ TEN*RTUNFL )
+ ELSE
+ VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = WA1( IU ) + MAX( HALF*
+ $ ( WA1( IU+1 )-WA1( IU ) ), TEN*ULP*TEMP3,
+ $ TEN*RTUNFL )
+ ELSE
+ VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ ELSE
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ DO 390 I = 1, N
+ D1( I ) = DBLE( A( I, I ) )
+ 390 CONTINUE
+ DO 400 I = 1, N - 1
+ D2( I ) = DBLE( A( I+1, I ) )
+ 400 CONTINUE
+ SRNAMT = 'DSTEVX'
+ CALL DSTEVX( 'V', 'V', N, D1, D2, VL, VU, IL, IU, ABSTOL,
+ $ M2, WA2, Z, LDU, WORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEVX(V,V)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 13 ) = ULPINV
+ RESULT( 14 ) = ULPINV
+ RESULT( 15 ) = ULPINV
+ GO TO 440
+ END IF
+ END IF
+*
+ IF( M2.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( 13 ) = ULPINV
+ RESULT( 14 ) = ULPINV
+ RESULT( 15 ) = ULPINV
+ GO TO 440
+ END IF
+*
+* Do tests 13 and 14.
+*
+ DO 410 I = 1, N
+ D3( I ) = DBLE( A( I, I ) )
+ 410 CONTINUE
+ DO 420 I = 1, N - 1
+ D4( I ) = DBLE( A( I+1, I ) )
+ 420 CONTINUE
+ CALL DSTT22( N, M2, 0, D3, D4, WA2, D2, Z, LDU, WORK,
+ $ MAX( 1, M2 ), RESULT( 13 ) )
+*
+ NTEST = 15
+ DO 430 I = 1, N - 1
+ D4( I ) = DBLE( A( I+1, I ) )
+ 430 CONTINUE
+ SRNAMT = 'DSTEVX'
+ CALL DSTEVX( 'N', 'V', N, D3, D4, VL, VU, IL, IU, ABSTOL,
+ $ M3, WA3, Z, LDU, WORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEVX(N,V)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 15 ) = ULPINV
+ GO TO 440
+ END IF
+ END IF
+*
+* Do test 15.
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ RESULT( 15 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP )
+*
+ 440 CONTINUE
+*
+ NTEST = 16
+ DO 450 I = 1, N
+ D1( I ) = DBLE( A( I, I ) )
+ 450 CONTINUE
+ DO 460 I = 1, N - 1
+ D2( I ) = DBLE( A( I+1, I ) )
+ 460 CONTINUE
+ SRNAMT = 'DSTEVD'
+ CALL DSTEVD( 'V', N, D1, D2, Z, LDU, WORK, LWEDC, IWORK,
+ $ LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEVD(V)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 16 ) = ULPINV
+ RESULT( 17 ) = ULPINV
+ RESULT( 18 ) = ULPINV
+ GO TO 510
+ END IF
+ END IF
+*
+* Do tests 16 and 17.
+*
+ DO 470 I = 1, N
+ D3( I ) = DBLE( A( I, I ) )
+ 470 CONTINUE
+ DO 480 I = 1, N - 1
+ D4( I ) = DBLE( A( I+1, I ) )
+ 480 CONTINUE
+ CALL DSTT21( N, 0, D3, D4, D1, D2, Z, LDU, WORK,
+ $ RESULT( 16 ) )
+*
+ NTEST = 18
+ DO 490 I = 1, N - 1
+ D4( I ) = DBLE( A( I+1, I ) )
+ 490 CONTINUE
+ SRNAMT = 'DSTEVD'
+ CALL DSTEVD( 'N', N, D3, D4, Z, LDU, WORK, LWEDC, IWORK,
+ $ LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEVD(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 18 ) = ULPINV
+ GO TO 510
+ END IF
+ END IF
+*
+* Do test 18.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 500 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( EVEIGS( J ) ),
+ $ ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( EVEIGS( J )-D3( J ) ) )
+ 500 CONTINUE
+ RESULT( 18 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 510 CONTINUE
+*
+ NTEST = 19
+ DO 520 I = 1, N
+ D1( I ) = DBLE( A( I, I ) )
+ 520 CONTINUE
+ DO 530 I = 1, N - 1
+ D2( I ) = DBLE( A( I+1, I ) )
+ 530 CONTINUE
+ SRNAMT = 'DSTEVR'
+ CALL DSTEVR( 'V', 'I', N, D1, D2, VL, VU, IL, IU, ABSTOL,
+ $ M2, WA2, Z, LDU, IWORK, WORK, LWORK,
+ $ IWORK(2*N+1), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEVR(V,I)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 19 ) = ULPINV
+ RESULT( 20 ) = ULPINV
+ RESULT( 21 ) = ULPINV
+ GO TO 570
+ END IF
+ END IF
+*
+* DO tests 19 and 20.
+*
+ DO 540 I = 1, N
+ D3( I ) = DBLE( A( I, I ) )
+ 540 CONTINUE
+ DO 550 I = 1, N - 1
+ D4( I ) = DBLE( A( I+1, I ) )
+ 550 CONTINUE
+ CALL DSTT22( N, M2, 0, D3, D4, WA2, D2, Z, LDU, WORK,
+ $ MAX( 1, M2 ), RESULT( 19 ) )
+*
+*
+ NTEST = 21
+ DO 560 I = 1, N - 1
+ D4( I ) = DBLE( A( I+1, I ) )
+ 560 CONTINUE
+ SRNAMT = 'DSTEVR'
+ CALL DSTEVR( 'N', 'I', N, D3, D4, VL, VU, IL, IU, ABSTOL,
+ $ M3, WA3, Z, LDU, IWORK, WORK, LWORK,
+ $ IWORK(2*N+1), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEVR(N,I)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 21 ) = ULPINV
+ GO TO 570
+ END IF
+ END IF
+*
+* Do test 21.
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ RESULT( 21 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, ULP*TEMP3 )
+*
+ 570 CONTINUE
+*
+ NTEST = 21
+ IF( N.GT.0 ) THEN
+ IF( IL.NE.1 ) THEN
+ VL = WA1( IL ) - MAX( HALF*
+ $ ( WA1( IL )-WA1( IL-1 ) ), TEN*ULP*TEMP3,
+ $ TEN*RTUNFL )
+ ELSE
+ VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = WA1( IU ) + MAX( HALF*
+ $ ( WA1( IU+1 )-WA1( IU ) ), TEN*ULP*TEMP3,
+ $ TEN*RTUNFL )
+ ELSE
+ VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ ELSE
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ DO 580 I = 1, N
+ D1( I ) = DBLE( A( I, I ) )
+ 580 CONTINUE
+ DO 590 I = 1, N - 1
+ D2( I ) = DBLE( A( I+1, I ) )
+ 590 CONTINUE
+ SRNAMT = 'DSTEVR'
+ CALL DSTEVR( 'V', 'V', N, D1, D2, VL, VU, IL, IU, ABSTOL,
+ $ M2, WA2, Z, LDU, IWORK, WORK, LWORK,
+ $ IWORK(2*N+1), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEVR(V,V)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 22 ) = ULPINV
+ RESULT( 23 ) = ULPINV
+ RESULT( 24 ) = ULPINV
+ GO TO 630
+ END IF
+ END IF
+*
+ IF( M2.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( 22 ) = ULPINV
+ RESULT( 23 ) = ULPINV
+ RESULT( 24 ) = ULPINV
+ GO TO 630
+ END IF
+*
+* Do tests 22 and 23.
+*
+ DO 600 I = 1, N
+ D3( I ) = DBLE( A( I, I ) )
+ 600 CONTINUE
+ DO 610 I = 1, N - 1
+ D4( I ) = DBLE( A( I+1, I ) )
+ 610 CONTINUE
+ CALL DSTT22( N, M2, 0, D3, D4, WA2, D2, Z, LDU, WORK,
+ $ MAX( 1, M2 ), RESULT( 22 ) )
+*
+ NTEST = 24
+ DO 620 I = 1, N - 1
+ D4( I ) = DBLE( A( I+1, I ) )
+ 620 CONTINUE
+ SRNAMT = 'DSTEVR'
+ CALL DSTEVR( 'N', 'V', N, D3, D4, VL, VU, IL, IU, ABSTOL,
+ $ M3, WA3, Z, LDU, IWORK, WORK, LWORK,
+ $ IWORK(2*N+1), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEVR(N,V)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 24 ) = ULPINV
+ GO TO 630
+ END IF
+ END IF
+*
+* Do test 24.
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ RESULT( 24 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP )
+*
+ 630 CONTINUE
+*
+*
+*
+ ELSE
+*
+ DO 640 I = 1, 24
+ RESULT( I ) = ZERO
+ 640 CONTINUE
+ NTEST = 24
+ END IF
+*
+* Perform remaining tests storing upper or lower triangular
+* part of matrix.
+*
+ DO 1720 IUPLO = 0, 1
+ IF( IUPLO.EQ.0 ) THEN
+ UPLO = 'L'
+ ELSE
+ UPLO = 'U'
+ END IF
+*
+* 4) Call DSYEV and DSYEVX.
+*
+ CALL DLACPY( ' ', N, N, A, LDA, V, LDU )
+*
+ NTEST = NTEST + 1
+ SRNAMT = 'DSYEV'
+ CALL DSYEV( 'V', UPLO, N, A, LDU, D1, WORK, LWORK,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSYEV(V,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 660
+ END IF
+ END IF
+*
+* Do tests 25 and 26 (or +54)
+*
+ CALL DSYT21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ NTEST = NTEST + 2
+ SRNAMT = 'DSYEV_2STAGE'
+ CALL DSYEV_2STAGE( 'N', UPLO, N, A, LDU, D3, WORK, LWORK,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'DSYEV_2STAGE(N,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 660
+ END IF
+ END IF
+*
+* Do test 27 (or +54)
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 650 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 650 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 660 CONTINUE
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ NTEST = NTEST + 1
+*
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
+ IF( IL.NE.1 ) THEN
+ VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ ELSE IF( N.GT.0 ) THEN
+ VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ ELSE IF( N.GT.0 ) THEN
+ VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ ELSE
+ TEMP3 = ZERO
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ SRNAMT = 'DSYEVX'
+ CALL DSYEVX( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M, WA1, Z, LDU, WORK, LWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSYEVX(V,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 680
+ END IF
+ END IF
+*
+* Do tests 28 and 29 (or +54)
+*
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL DSYT21( 1, UPLO, N, 0, A, LDU, D1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ SRNAMT = 'DSYEVX_2STAGE'
+ CALL DSYEVX_2STAGE( 'N', 'A', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
+ $ LWORK, IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'DSYEVX_2STAGE(N,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 680
+ END IF
+ END IF
+*
+* Do test 30 (or +54)
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 670 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
+ 670 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 680 CONTINUE
+*
+ NTEST = NTEST + 1
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+ SRNAMT = 'DSYEVX'
+ CALL DSYEVX( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSYEVX(V,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 690
+ END IF
+ END IF
+*
+* Do tests 31 and 32 (or +54)
+*
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL DSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+ SRNAMT = 'DSYEVX_2STAGE'
+ CALL DSYEVX_2STAGE( 'N', 'I', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M3, WA3, Z, LDU, WORK,
+ $ LWORK, IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'DSYEVX_2STAGE(N,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 690
+ END IF
+ END IF
+*
+* Do test 33 (or +54)
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, ULP*TEMP3 )
+ 690 CONTINUE
+*
+ NTEST = NTEST + 1
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+ SRNAMT = 'DSYEVX'
+ CALL DSYEVX( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSYEVX(V,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 700
+ END IF
+ END IF
+*
+* Do tests 34 and 35 (or +54)
+*
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL DSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+ SRNAMT = 'DSYEVX_2STAGE'
+ CALL DSYEVX_2STAGE( 'N', 'V', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M3, WA3, Z, LDU, WORK,
+ $ LWORK, IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'DSYEVX_2STAGE(N,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 700
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( NTEST ) = ULPINV
+ GO TO 700
+ END IF
+*
+* Do test 36 (or +54)
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 700 CONTINUE
+*
+* 5) Call DSPEV and DSPEVX.
+*
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+* Load array WORK with the upper or lower triangular
+* part of the matrix in packed form.
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 720 J = 1, N
+ DO 710 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 710 CONTINUE
+ 720 CONTINUE
+ ELSE
+ INDX = 1
+ DO 740 J = 1, N
+ DO 730 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 730 CONTINUE
+ 740 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ SRNAMT = 'DSPEV'
+ CALL DSPEV( 'V', UPLO, N, WORK, D1, Z, LDU, V, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSPEV(V,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 800
+ END IF
+ END IF
+*
+* Do tests 37 and 38 (or +54)
+*
+ CALL DSYT21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 760 J = 1, N
+ DO 750 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 750 CONTINUE
+ 760 CONTINUE
+ ELSE
+ INDX = 1
+ DO 780 J = 1, N
+ DO 770 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 770 CONTINUE
+ 780 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 2
+ SRNAMT = 'DSPEV'
+ CALL DSPEV( 'N', UPLO, N, WORK, D3, Z, LDU, V, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSPEV(N,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 800
+ END IF
+ END IF
+*
+* Do test 39 (or +54)
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 790 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 790 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Load array WORK with the upper or lower triangular part
+* of the matrix in packed form.
+*
+ 800 CONTINUE
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 820 J = 1, N
+ DO 810 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 810 CONTINUE
+ 820 CONTINUE
+ ELSE
+ INDX = 1
+ DO 840 J = 1, N
+ DO 830 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 830 CONTINUE
+ 840 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+*
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
+ IF( IL.NE.1 ) THEN
+ VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ ELSE IF( N.GT.0 ) THEN
+ VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ ELSE IF( N.GT.0 ) THEN
+ VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ ELSE
+ TEMP3 = ZERO
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ SRNAMT = 'DSPEVX'
+ CALL DSPEVX( 'V', 'A', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M, WA1, Z, LDU, V, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSPEVX(V,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 900
+ END IF
+ END IF
+*
+* Do tests 40 and 41 (or +54)
+*
+ CALL DSYT21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 860 J = 1, N
+ DO 850 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 850 CONTINUE
+ 860 CONTINUE
+ ELSE
+ INDX = 1
+ DO 880 J = 1, N
+ DO 870 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 870 CONTINUE
+ 880 CONTINUE
+ END IF
+*
+ SRNAMT = 'DSPEVX'
+ CALL DSPEVX( 'N', 'A', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, V, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSPEVX(N,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 900
+ END IF
+ END IF
+*
+* Do test 42 (or +54)
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 890 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
+ 890 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 900 CONTINUE
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 920 J = 1, N
+ DO 910 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 910 CONTINUE
+ 920 CONTINUE
+ ELSE
+ INDX = 1
+ DO 940 J = 1, N
+ DO 930 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 930 CONTINUE
+ 940 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+*
+ SRNAMT = 'DSPEVX'
+ CALL DSPEVX( 'V', 'I', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, V, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSPEVX(V,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 990
+ END IF
+ END IF
+*
+* Do tests 43 and 44 (or +54)
+*
+ CALL DSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 960 J = 1, N
+ DO 950 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 950 CONTINUE
+ 960 CONTINUE
+ ELSE
+ INDX = 1
+ DO 980 J = 1, N
+ DO 970 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 970 CONTINUE
+ 980 CONTINUE
+ END IF
+*
+ SRNAMT = 'DSPEVX'
+ CALL DSPEVX( 'N', 'I', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M3, WA3, Z, LDU, V, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSPEVX(N,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 990
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( NTEST ) = ULPINV
+ GO TO 990
+ END IF
+*
+* Do test 45 (or +54)
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 990 CONTINUE
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 1010 J = 1, N
+ DO 1000 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1000 CONTINUE
+ 1010 CONTINUE
+ ELSE
+ INDX = 1
+ DO 1030 J = 1, N
+ DO 1020 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1020 CONTINUE
+ 1030 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+*
+ SRNAMT = 'DSPEVX'
+ CALL DSPEVX( 'V', 'V', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, V, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSPEVX(V,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1080
+ END IF
+ END IF
+*
+* Do tests 46 and 47 (or +54)
+*
+ CALL DSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 1050 J = 1, N
+ DO 1040 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1040 CONTINUE
+ 1050 CONTINUE
+ ELSE
+ INDX = 1
+ DO 1070 J = 1, N
+ DO 1060 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1060 CONTINUE
+ 1070 CONTINUE
+ END IF
+*
+ SRNAMT = 'DSPEVX'
+ CALL DSPEVX( 'N', 'V', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M3, WA3, Z, LDU, V, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSPEVX(N,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1080
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( NTEST ) = ULPINV
+ GO TO 1080
+ END IF
+*
+* Do test 48 (or +54)
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 1080 CONTINUE
+*
+* 6) Call DSBEV and DSBEVX.
+*
+ IF( JTYPE.LE.7 ) THEN
+ KD = 1
+ ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
+ KD = MAX( N-1, 0 )
+ ELSE
+ KD = IHBW
+ END IF
+*
+* Load array V with the upper or lower triangular part
+* of the matrix in band form.
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1100 J = 1, N
+ DO 1090 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1090 CONTINUE
+ 1100 CONTINUE
+ ELSE
+ DO 1120 J = 1, N
+ DO 1110 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1110 CONTINUE
+ 1120 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ SRNAMT = 'DSBEV'
+ CALL DSBEV( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSBEV(V,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1180
+ END IF
+ END IF
+*
+* Do tests 49 and 50 (or ... )
+*
+ CALL DSYT21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1140 J = 1, N
+ DO 1130 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1130 CONTINUE
+ 1140 CONTINUE
+ ELSE
+ DO 1160 J = 1, N
+ DO 1150 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1150 CONTINUE
+ 1160 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 2
+ SRNAMT = 'DSBEV_2STAGE'
+ CALL DSBEV_2STAGE( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU,
+ $ WORK, LWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'DSBEV_2STAGE(N,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1180
+ END IF
+ END IF
+*
+* Do test 51 (or +54)
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 1170 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 1170 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Load array V with the upper or lower triangular part
+* of the matrix in band form.
+*
+ 1180 CONTINUE
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1200 J = 1, N
+ DO 1190 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1190 CONTINUE
+ 1200 CONTINUE
+ ELSE
+ DO 1220 J = 1, N
+ DO 1210 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1210 CONTINUE
+ 1220 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ SRNAMT = 'DSBEVX'
+ CALL DSBEVX( 'V', 'A', UPLO, N, KD, V, LDU, U, LDU, VL,
+ $ VU, IL, IU, ABSTOL, M, WA2, Z, LDU, WORK,
+ $ IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSBEVX(V,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1280
+ END IF
+ END IF
+*
+* Do tests 52 and 53 (or +54)
+*
+ CALL DSYT21( 1, UPLO, N, 0, A, LDU, WA2, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1240 J = 1, N
+ DO 1230 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1230 CONTINUE
+ 1240 CONTINUE
+ ELSE
+ DO 1260 J = 1, N
+ DO 1250 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1250 CONTINUE
+ 1260 CONTINUE
+ END IF
+*
+ SRNAMT = 'DSBEVX_2STAGE'
+ CALL DSBEVX_2STAGE( 'N', 'A', UPLO, N, KD, V, LDU,
+ $ U, LDU, VL, VU, IL, IU, ABSTOL, M3, WA3,
+ $ Z, LDU, WORK, LWORK, IWORK, IWORK( 5*N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'DSBEVX_2STAGE(N,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1280
+ END IF
+ END IF
+*
+* Do test 54 (or +54)
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 1270 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA2( J ) ), ABS( WA3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA2( J )-WA3( J ) ) )
+ 1270 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 1280 CONTINUE
+ NTEST = NTEST + 1
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1300 J = 1, N
+ DO 1290 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1290 CONTINUE
+ 1300 CONTINUE
+ ELSE
+ DO 1320 J = 1, N
+ DO 1310 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1310 CONTINUE
+ 1320 CONTINUE
+ END IF
+*
+ SRNAMT = 'DSBEVX'
+ CALL DSBEVX( 'V', 'I', UPLO, N, KD, V, LDU, U, LDU, VL,
+ $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
+ $ IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSBEVX(V,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1370
+ END IF
+ END IF
+*
+* Do tests 55 and 56 (or +54)
+*
+ CALL DSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1340 J = 1, N
+ DO 1330 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1330 CONTINUE
+ 1340 CONTINUE
+ ELSE
+ DO 1360 J = 1, N
+ DO 1350 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1350 CONTINUE
+ 1360 CONTINUE
+ END IF
+*
+ SRNAMT = 'DSBEVX_2STAGE'
+ CALL DSBEVX_2STAGE( 'N', 'I', UPLO, N, KD, V, LDU,
+ $ U, LDU, VL, VU, IL, IU, ABSTOL, M3, WA3,
+ $ Z, LDU, WORK, LWORK, IWORK, IWORK( 5*N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'DSBEVX_2STAGE(N,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1370
+ END IF
+ END IF
+*
+* Do test 57 (or +54)
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 1370 CONTINUE
+ NTEST = NTEST + 1
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1390 J = 1, N
+ DO 1380 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1380 CONTINUE
+ 1390 CONTINUE
+ ELSE
+ DO 1410 J = 1, N
+ DO 1400 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1400 CONTINUE
+ 1410 CONTINUE
+ END IF
+*
+ SRNAMT = 'DSBEVX'
+ CALL DSBEVX( 'V', 'V', UPLO, N, KD, V, LDU, U, LDU, VL,
+ $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
+ $ IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSBEVX(V,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1460
+ END IF
+ END IF
+*
+* Do tests 58 and 59 (or +54)
+*
+ CALL DSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1430 J = 1, N
+ DO 1420 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1420 CONTINUE
+ 1430 CONTINUE
+ ELSE
+ DO 1450 J = 1, N
+ DO 1440 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1440 CONTINUE
+ 1450 CONTINUE
+ END IF
+*
+ SRNAMT = 'DSBEVX_2STAGE'
+ CALL DSBEVX_2STAGE( 'N', 'V', UPLO, N, KD, V, LDU,
+ $ U, LDU, VL, VU, IL, IU, ABSTOL, M3, WA3,
+ $ Z, LDU, WORK, LWORK, IWORK, IWORK( 5*N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'DSBEVX_2STAGE(N,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1460
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( NTEST ) = ULPINV
+ GO TO 1460
+ END IF
+*
+* Do test 60 (or +54)
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 1460 CONTINUE
+*
+* 7) Call DSYEVD
+*
+ CALL DLACPY( ' ', N, N, A, LDA, V, LDU )
+*
+ NTEST = NTEST + 1
+ SRNAMT = 'DSYEVD'
+ CALL DSYEVD( 'V', UPLO, N, A, LDU, D1, WORK, LWEDC,
+ $ IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSYEVD(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1480
+ END IF
+ END IF
+*
+* Do tests 61 and 62 (or +54)
+*
+ CALL DSYT21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ NTEST = NTEST + 2
+ SRNAMT = 'DSYEVD_2STAGE'
+ CALL DSYEVD_2STAGE( 'N', UPLO, N, A, LDU, D3, WORK,
+ $ LWORK, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'DSYEVD_2STAGE(N,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1480
+ END IF
+ END IF
+*
+* Do test 63 (or +54)
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 1470 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 1470 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 1480 CONTINUE
+*
+* 8) Call DSPEVD.
+*
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+* Load array WORK with the upper or lower triangular
+* part of the matrix in packed form.
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 1500 J = 1, N
+ DO 1490 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1490 CONTINUE
+ 1500 CONTINUE
+ ELSE
+ INDX = 1
+ DO 1520 J = 1, N
+ DO 1510 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1510 CONTINUE
+ 1520 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ SRNAMT = 'DSPEVD'
+ CALL DSPEVD( 'V', UPLO, N, WORK, D1, Z, LDU,
+ $ WORK( INDX ), LWEDC-INDX+1, IWORK, LIWEDC,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSPEVD(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1580
+ END IF
+ END IF
+*
+* Do tests 64 and 65 (or +54)
+*
+ CALL DSYT21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 1540 J = 1, N
+ DO 1530 I = 1, J
+*
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1530 CONTINUE
+ 1540 CONTINUE
+ ELSE
+ INDX = 1
+ DO 1560 J = 1, N
+ DO 1550 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1550 CONTINUE
+ 1560 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 2
+ SRNAMT = 'DSPEVD'
+ CALL DSPEVD( 'N', UPLO, N, WORK, D3, Z, LDU,
+ $ WORK( INDX ), LWEDC-INDX+1, IWORK, LIWEDC,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSPEVD(N,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1580
+ END IF
+ END IF
+*
+* Do test 66 (or +54)
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 1570 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 1570 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+ 1580 CONTINUE
+*
+* 9) Call DSBEVD.
+*
+ IF( JTYPE.LE.7 ) THEN
+ KD = 1
+ ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
+ KD = MAX( N-1, 0 )
+ ELSE
+ KD = IHBW
+ END IF
+*
+* Load array V with the upper or lower triangular part
+* of the matrix in band form.
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1600 J = 1, N
+ DO 1590 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1590 CONTINUE
+ 1600 CONTINUE
+ ELSE
+ DO 1620 J = 1, N
+ DO 1610 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1610 CONTINUE
+ 1620 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ SRNAMT = 'DSBEVD'
+ CALL DSBEVD( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
+ $ LWEDC, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSBEVD(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1680
+ END IF
+ END IF
+*
+* Do tests 67 and 68 (or +54)
+*
+ CALL DSYT21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1640 J = 1, N
+ DO 1630 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1630 CONTINUE
+ 1640 CONTINUE
+ ELSE
+ DO 1660 J = 1, N
+ DO 1650 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1650 CONTINUE
+ 1660 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 2
+ SRNAMT = 'DSBEVD_2STAGE'
+ CALL DSBEVD_2STAGE( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU,
+ $ WORK, LWORK, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'DSBEVD_2STAGE(N,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1680
+ END IF
+ END IF
+*
+* Do test 69 (or +54)
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 1670 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 1670 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 1680 CONTINUE
+*
+*
+ CALL DLACPY( ' ', N, N, A, LDA, V, LDU )
+ NTEST = NTEST + 1
+ SRNAMT = 'DSYEVR'
+ CALL DSYEVR( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M, WA1, Z, LDU, IWORK, WORK, LWORK,
+ $ IWORK(2*N+1), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSYEVR(V,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1700
+ END IF
+ END IF
+*
+* Do tests 70 and 71 (or ... )
+*
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL DSYT21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ SRNAMT = 'DSYEVR_2STAGE'
+ CALL DSYEVR_2STAGE( 'N', 'A', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M2, WA2, Z, LDU, IWORK,
+ $ WORK, LWORK, IWORK(2*N+1), LIWORK-2*N,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'DSYEVR_2STAGE(N,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1700
+ END IF
+ END IF
+*
+* Do test 72 (or ... )
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 1690 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
+ 1690 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 1700 CONTINUE
+*
+ NTEST = NTEST + 1
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+ SRNAMT = 'DSYEVR'
+ CALL DSYEVR( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
+ $ IWORK(2*N+1), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSYEVR(V,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1710
+ END IF
+ END IF
+*
+* Do tests 73 and 74 (or +54)
+*
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL DSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+ SRNAMT = 'DSYEVR_2STAGE'
+ CALL DSYEVR_2STAGE( 'N', 'I', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M3, WA3, Z, LDU, IWORK,
+ $ WORK, LWORK, IWORK(2*N+1), LIWORK-2*N,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'DSYEVR_2STAGE(N,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1710
+ END IF
+ END IF
+*
+* Do test 75 (or +54)
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, ULP*TEMP3 )
+ 1710 CONTINUE
+*
+ NTEST = NTEST + 1
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+ SRNAMT = 'DSYEVR'
+ CALL DSYEVR( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
+ $ IWORK(2*N+1), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSYEVR(V,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 700
+ END IF
+ END IF
+*
+* Do tests 76 and 77 (or +54)
+*
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL DSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+ SRNAMT = 'DSYEVR_2STAGE'
+ CALL DSYEVR_2STAGE( 'N', 'V', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M3, WA3, Z, LDU, IWORK,
+ $ WORK, LWORK, IWORK(2*N+1), LIWORK-2*N,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'DSYEVR_2STAGE(N,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 700
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( NTEST ) = ULPINV
+ GO TO 700
+ END IF
+*
+* Do test 78 (or +54)
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ CALL DLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ 1720 CONTINUE
+*
+* End of Loop -- Check for RESULT(j) > THRESH
+*
+ NTESTT = NTESTT + NTEST
+*
+ CALL DLAFTS( 'DST', N, N, JTYPE, NTEST, RESULT, IOLDSD,
+ $ THRESH, NOUNIT, NERRS )
+*
+ 1730 CONTINUE
+ 1740 CONTINUE
+*
+* Summary
+*
+ CALL ALASVM( 'DST', NOUNIT, NERRS, NTESTT, 0 )
+*
+ 9999 FORMAT( ' DDRVST2STG: ', A, ' returned INFO=', I6, '.', / 9X,
+ $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
+*
+ RETURN
+*
+* End of DDRVST2STG
+*
+ END
diff --git a/TESTING/EIG/derrst.f b/TESTING/EIG/derrst.f
index dfb3452e..9f149fe0 100644
--- a/TESTING/EIG/derrst.f
+++ b/TESTING/EIG/derrst.f
@@ -25,6 +25,10 @@
*> DOPGTR, DOPMTR, DSTEQR, SSTERF, SSTEBZ, SSTEIN, DPTEQR, DSBTRD,
*> DSYEV, SSYEVX, SSYEVD, DSBEV, SSBEVX, SSBEVD,
*> DSPEV, SSPEVX, SSPEVD, DSTEV, SSTEVX, SSTEVD, and SSTEDC.
+*> DSYEVD_2STAGE, DSYEVR_2STAGE, DSYEVX_2STAGE,
+*> DSYEV_2STAGE, DSBEV_2STAGE, DSBEVD_2STAGE,
+*> DSBEVX_2STAGE, DSYTRD_2STAGE, DSYTRD_SY2SB,
+*> DSYTRD_SB2ST
*> \endverbatim
*
* Arguments:
@@ -94,7 +98,11 @@
$ DSBEV, DSBEVD, DSBEVX, DSBTRD, DSPEV, DSPEVD,
$ DSPEVX, DSPTRD, DSTEBZ, DSTEDC, DSTEIN, DSTEQR,
$ DSTERF, DSTEV, DSTEVD, DSTEVR, DSTEVX, DSYEV,
- $ DSYEVD, DSYEVR, DSYEVX, DSYTRD
+ $ DSYEVD, DSYEVR, DSYEVX, DSYTRD,
+ $ DSYEVD_2STAGE, DSYEVR_2STAGE, DSYEVX_2STAGE,
+ $ DSYEV_2STAGE, DSBEV_2STAGE, DSBEVD_2STAGE,
+ $ DSBEVX_2STAGE, DSYTRD_2STAGE, DSYTRD_SY2SB,
+ $ DSYTRD_SB2ST
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@@ -152,6 +160,103 @@
CALL CHKXER( 'DSYTRD', INFOT, NOUT, LERR, OK )
NT = NT + 4
*
+* DSYTRD_2STAGE
+*
+ SRNAMT = 'DSYTRD_2STAGE'
+ INFOT = 1
+ CALL DSYTRD_2STAGE( '/', 'U', 0, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL DSYTRD_2STAGE( 'H', 'U', 0, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL DSYTRD_2STAGE( 'N', '/', 0, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL DSYTRD_2STAGE( 'N', 'U', -1, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL DSYTRD_2STAGE( 'N', 'U', 2, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL DSYTRD_2STAGE( 'N', 'U', 0, A, 1, D, E, TAU,
+ $ C, 0, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 12
+ CALL DSYTRD_2STAGE( 'N', 'U', 0, A, 1, D, E, TAU,
+ $ C, 1, W, 0, INFO )
+ CALL CHKXER( 'DSYTRD_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 7
+*
+* DSYTRD_SY2SB
+*
+ SRNAMT = 'DSYTRD_SY2SB'
+ INFOT = 1
+ CALL DSYTRD_SY2SB( '/', 0, 0, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SY2SB', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL DSYTRD_SY2SB( 'U', -1, 0, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SY2SB', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL DSYTRD_SY2SB( 'U', 0, -1, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SY2SB', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL DSYTRD_SY2SB( 'U', 2, 0, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SY2SB', INFOT, NOUT, LERR, OK )
+ INFOT = 7
+ CALL DSYTRD_SY2SB( 'U', 0, 2, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SY2SB', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL DSYTRD_SY2SB( 'U', 0, 0, A, 1, C, 1, TAU, W, 0, INFO )
+ CALL CHKXER( 'DSYTRD_SY2SB', INFOT, NOUT, LERR, OK )
+ NT = NT + 6
+*
+* DSYTRD_SB2ST
+*
+ SRNAMT = 'DSYTRD_SB2ST'
+ INFOT = 1
+ CALL DSYTRD_SB2ST( '/', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL DSYTRD_SB2ST( 'Y', '/', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL DSYTRD_SB2ST( 'Y', 'H', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL DSYTRD_SB2ST( 'Y', 'N', '/', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL DSYTRD_SB2ST( 'Y', 'N', 'U', -1, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL DSYTRD_SB2ST( 'Y', 'N', 'U', 0, -1, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 7
+ CALL DSYTRD_SB2ST( 'Y', 'N', 'U', 0, 1, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL DSYTRD_SB2ST( 'Y', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 0, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL DSYTRD_SB2ST( 'Y', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 0, INFO )
+ CALL CHKXER( 'DSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ NT = NT + 9
+*
* DORGTR
*
SRNAMT = 'DORGTR'
@@ -536,6 +641,44 @@
CALL CHKXER( 'DSYEVD', INFOT, NOUT, LERR, OK )
NT = NT + 10
*
+* DSYEVD_2STAGE
+*
+ SRNAMT = 'DSYEVD_2STAGE'
+ INFOT = 1
+ CALL DSYEVD_2STAGE( '/', 'U', 0, A, 1, X, W, 1, IW, 1, INFO )
+ CALL CHKXER( 'DSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL DSYEVD_2STAGE( 'V', 'U', 0, A, 1, X, W, 1, IW, 1, INFO )
+ CALL CHKXER( 'DSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL DSYEVD_2STAGE( 'N', '/', 0, A, 1, X, W, 1, IW, 1, INFO )
+ CALL CHKXER( 'DSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL DSYEVD_2STAGE( 'N', 'U', -1, A, 1, X, W, 1, IW, 1, INFO )
+ CALL CHKXER( 'DSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL DSYEVD_2STAGE( 'N', 'U', 2, A, 1, X, W, 3, IW, 1, INFO )
+ CALL CHKXER( 'DSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL DSYEVD_2STAGE( 'N', 'U', 1, A, 1, X, W, 0, IW, 1, INFO )
+ CALL CHKXER( 'DSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL DSYEVD_2STAGE( 'N', 'U', 2, A, 2, X, W, 4, IW, 1, INFO )
+ CALL CHKXER( 'DSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 8
+* CALL DSYEVD_2STAGE( 'V', 'U', 2, A, 2, X, W, 20, IW, 12, INFO )
+* CALL CHKXER( 'DSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL DSYEVD_2STAGE( 'N', 'U', 1, A, 1, X, W, 1, IW, 0, INFO )
+ CALL CHKXER( 'DSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL DSYEVD_2STAGE( 'N', 'U', 2, A, 2, X, W, 25, IW, 0, INFO )
+ CALL CHKXER( 'DSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 10
+* CALL DSYEVD_2STAGE( 'V', 'U', 2, A, 2, X, W, 27, IW, 11, INFO )
+* CALL CHKXER( 'DSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 9
+*
* DSYEVR
*
SRNAMT = 'DSYEVR'
@@ -591,6 +734,74 @@
CALL CHKXER( 'DSYEVR', INFOT, NOUT, LERR, OK )
NT = NT + 11
*
+* DSYEVR_2STAGE
+*
+ SRNAMT = 'DSYEVR_2STAGE'
+ N = 1
+ INFOT = 1
+ CALL DSYEVR_2STAGE( '/', 'A', 'U', 0, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'DSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL DSYEVR_2STAGE( 'V', 'A', 'U', 0, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'DSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL DSYEVR_2STAGE( 'N', '/', 'U', 0, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'DSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL DSYEVR_2STAGE( 'N', 'A', '/', -1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'DSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL DSYEVR_2STAGE( 'N', 'A', 'U', -1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'DSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL DSYEVR_2STAGE( 'N', 'A', 'U', 2, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'DSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL DSYEVR_2STAGE( 'N', 'V', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'DSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 9
+ CALL DSYEVR_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 0, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'DSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL DSYEVR_2STAGE( 'N', 'I', 'U', 2, A, 2,
+ $ 0.0D0, 0.0D0, 2, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'DSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 15
+ CALL DSYEVR_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 0, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'DSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 18
+ CALL DSYEVR_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 0, IW( 2*N+1 ), 10*N,
+ $ INFO )
+ CALL CHKXER( 'DSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 20
+ CALL DSYEVR_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 0,
+ $ INFO )
+ CALL CHKXER( 'DSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 12
+*
* DSYEV
*
SRNAMT = 'DSYEV '
@@ -611,6 +822,29 @@
CALL CHKXER( 'DSYEV ', INFOT, NOUT, LERR, OK )
NT = NT + 5
*
+* DSYEV_2STAGE
+*
+ SRNAMT = 'DSYEV_2STAGE '
+ INFOT = 1
+ CALL DSYEV_2STAGE( '/', 'U', 0, A, 1, X, W, 1, INFO )
+ CALL CHKXER( 'DSYEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL DSYEV_2STAGE( 'V', 'U', 0, A, 1, X, W, 1, INFO )
+ CALL CHKXER( 'DSYEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL DSYEV_2STAGE( 'N', '/', 0, A, 1, X, W, 1, INFO )
+ CALL CHKXER( 'DSYEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL DSYEV_2STAGE( 'N', 'U', -1, A, 1, X, W, 1, INFO )
+ CALL CHKXER( 'DSYEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL DSYEV_2STAGE( 'N', 'U', 2, A, 1, X, W, 3, INFO )
+ CALL CHKXER( 'DSYEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL DSYEV_2STAGE( 'N', 'U', 1, A, 1, X, W, 1, INFO )
+ CALL CHKXER( 'DSYEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ NT = NT + 6
+*
* DSYEVX
*
SRNAMT = 'DSYEVX'
@@ -663,6 +897,75 @@
CALL CHKXER( 'DSYEVX', INFOT, NOUT, LERR, OK )
NT = NT + 12
*
+* DSYEVX_2STAGE
+*
+ SRNAMT = 'DSYEVX_2STAGE'
+ INFOT = 1
+ CALL DSYEVX_2STAGE( '/', 'A', 'U', 0, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, IW, I3, INFO )
+ CALL CHKXER( 'DSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL DSYEVX_2STAGE( 'V', 'A', 'U', 0, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, IW, I3, INFO )
+ CALL CHKXER( 'DSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL DSYEVX_2STAGE( 'N', '/', 'U', 0, A, 1,
+ $ 0.0D0, 1.0D0, 1, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, IW, I3, INFO )
+ CALL CHKXER( 'DSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL DSYEVX_2STAGE( 'N', 'A', '/', 0, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, IW, I3, INFO )
+ INFOT = 4
+ CALL DSYEVX_2STAGE( 'N', 'A', 'U', -1, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, IW, I3, INFO )
+ CALL CHKXER( 'DSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL DSYEVX_2STAGE( 'N', 'A', 'U', 2, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 16, IW, I3, INFO )
+ CALL CHKXER( 'DSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL DSYEVX_2STAGE( 'N', 'V', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 8, IW, I3, INFO )
+ CALL CHKXER( 'DSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 9
+ CALL DSYEVX_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 8, IW, I3, INFO )
+ CALL CHKXER( 'DSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 9
+ CALL DSYEVX_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 2, 1, 0.0D0,
+ $ M, X, Z, 1, W, 8, IW, I3, INFO )
+ CALL CHKXER( 'DSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL DSYEVX_2STAGE( 'N', 'I', 'U', 2, A, 2,
+ $ 0.0D0, 0.0D0, 2, 1, 0.0D0,
+ $ M, X, Z, 1, W, 16, IW, I3, INFO )
+ CALL CHKXER( 'DSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL DSYEVX_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 2, 0.0D0,
+ $ M, X, Z, 1, W, 8, IW, I3, INFO )
+ CALL CHKXER( 'DSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 15
+ CALL DSYEVX_2STAGE( 'N', 'A', 'U', 2, A, 2,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 0, W, 16, IW, I3, INFO )
+ CALL CHKXER( 'DSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 17
+ CALL DSYEVX_2STAGE( 'N', 'A', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'DSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 13
+*
* DSPEVD
*
SRNAMT = 'DSPEVD'
@@ -786,6 +1089,47 @@
CALL CHKXER( 'DSBTRD', INFOT, NOUT, LERR, OK )
NT = NT + 6
*
+* DSYTRD_SB2ST
+*
+ SRNAMT = 'DSYTRD_SB2ST'
+ INFOT = 1
+ CALL DSYTRD_SB2ST( '/', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL DSYTRD_SB2ST( 'N', '/', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL DSYTRD_SB2ST( 'N', 'H', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL DSYTRD_SB2ST( 'N', 'N', '/', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL DSYTRD_SB2ST( 'N', 'N', 'U', -1, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL DSYTRD_SB2ST( 'N', 'N', 'U', 0, -1, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 7
+ CALL DSYTRD_SB2ST( 'N', 'N', 'U', 0, 1, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL DSYTRD_SB2ST( 'N', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 0, W, 1, INFO )
+ CALL CHKXER( 'DSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL DSYTRD_SB2ST( 'N', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 0, INFO )
+ CALL CHKXER( 'DSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ NT = NT + 9
+*
* DSBEVD
*
SRNAMT = 'DSBEVD'
@@ -829,6 +1173,60 @@
CALL CHKXER( 'DSBEVD', INFOT, NOUT, LERR, OK )
NT = NT + 11
*
+* DSBEVD_2STAGE
+*
+ SRNAMT = 'DSBEVD_2STAGE'
+ INFOT = 1
+ CALL DSBEVD_2STAGE( '/', 'U', 0, 0, A, 1, X, Z, 1, W,
+ $ 1, IW, 1, INFO )
+ CALL CHKXER( 'DSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL DSBEVD_2STAGE( 'V', 'U', 0, 0, A, 1, X, Z, 1, W,
+ $ 1, IW, 1, INFO )
+ CALL CHKXER( 'DSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL DSBEVD_2STAGE( 'N', '/', 0, 0, A, 1, X, Z, 1, W,
+ $ 1, IW, 1, INFO )
+ CALL CHKXER( 'DSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL DSBEVD_2STAGE( 'N', 'U', -1, 0, A, 1, X, Z, 1, W,
+ $ 1, IW, 1, INFO )
+ CALL CHKXER( 'DSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL DSBEVD_2STAGE( 'N', 'U', 0, -1, A, 1, X, Z, 1, W,
+ $ 1, IW, 1, INFO )
+ CALL CHKXER( 'DSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL DSBEVD_2STAGE( 'N', 'U', 2, 1, A, 1, X, Z, 1, W,
+ $ 4, IW, 1, INFO )
+ CALL CHKXER( 'DSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 9
+* CALL DSBEVD_2STAGE( 'V', 'U', 2, 1, A, 2, X, Z, 1, W,
+* $ 25, IW, 12, INFO )
+* CALL CHKXER( 'DSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL DSBEVD_2STAGE( 'N', 'U', 1, 0, A, 1, X, Z, 1, W,
+ $ 0, IW, 1, INFO )
+ CALL CHKXER( 'DSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL DSBEVD_2STAGE( 'N', 'U', 2, 0, A, 1, X, Z, 1, W,
+ $ 3, IW, 1, INFO )
+ CALL CHKXER( 'DSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 11
+* CALL DSBEVD_2STAGE( 'V', 'U', 2, 0, A, 1, X, Z, 2, W,
+* $ 18, IW, 12, INFO )
+* CALL CHKXER( 'DSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL DSBEVD_2STAGE( 'N', 'U', 1, 0, A, 1, X, Z, 1, W,
+ $ 1, IW, 0, INFO )
+ CALL CHKXER( 'DSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 13
+* CALL DSBEVD_2STAGE( 'V', 'U', 2, 0, A, 1, X, Z, 2, W,
+* $ 25, IW, 11, INFO )
+* CALL CHKXER( 'DSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* NT = NT + 12
+ NT = NT + 9
+*
* DSBEV
*
SRNAMT = 'DSBEV '
@@ -852,6 +1250,35 @@
CALL CHKXER( 'DSBEV ', INFOT, NOUT, LERR, OK )
NT = NT + 6
*
+* DSBEV_2STAGE
+*
+ SRNAMT = 'DSBEV_2STAGE '
+ INFOT = 1
+ CALL DSBEV_2STAGE( '/', 'U', 0, 0, A, 1, X, Z, 1, W, 0, INFO )
+ CALL CHKXER( 'DSBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL DSBEV_2STAGE( 'V', 'U', 0, 0, A, 1, X, Z, 1, W, 0, INFO )
+ CALL CHKXER( 'DSBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL DSBEV_2STAGE( 'N', '/', 0, 0, A, 1, X, Z, 1, W, 0, INFO )
+ CALL CHKXER( 'DSBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL DSBEV_2STAGE( 'N', 'U', -1, 0, A, 1, X, Z, 1, W, 0, INFO )
+ CALL CHKXER( 'DSBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL DSBEV_2STAGE( 'N', 'U', 0, -1, A, 1, X, Z, 1, W, 0, INFO )
+ CALL CHKXER( 'DSBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL DSBEV_2STAGE( 'N', 'U', 2, 1, A, 1, X, Z, 1, W, 0, INFO )
+ CALL CHKXER( 'DSBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 9
+ CALL DSBEV_2STAGE( 'N', 'U', 2, 0, A, 1, X, Z, 0, W, 0, INFO )
+ CALL CHKXER( 'DSBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL DSBEV_2STAGE( 'N', 'U', 0, 0, A, 1, X, Z, 1, W, 0, INFO )
+ CALL CHKXER( 'DSBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ NT = NT + 8
+*
* DSBEVX
*
SRNAMT = 'DSBEVX'
@@ -866,6 +1293,7 @@
INFOT = 3
CALL DSBEVX( 'N', 'A', '/', 0, 0, A, 1, Q, 1, 0.0D0, 0.0D0, 0,
$ 0, 0.0D0, M, X, Z, 1, W, IW, I3, INFO )
+ CALL CHKXER( 'DSBEVX', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DSBEVX( 'N', 'A', 'U', -1, 0, A, 1, Q, 1, 0.0D0, 0.0D0, 0,
$ 0, 0.0D0, M, X, Z, 1, W, IW, I3, INFO )
@@ -907,6 +1335,72 @@
$ 0, 0.0D0, M, X, Z, 1, W, IW, I3, INFO )
CALL CHKXER( 'DSBEVX', INFOT, NOUT, LERR, OK )
NT = NT + 13
+*
+* DSBEVX_2STAGE
+*
+ SRNAMT = 'DSBEVX_2STAGE'
+ INFOT = 1
+ CALL DSBEVX_2STAGE( '/', 'A', 'U', 0, 0, A, 1, Q, 1, 0.0D0,
+ $ 0.0D0, 0, 0, 0.0D0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'DSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL DSBEVX_2STAGE( 'V', 'A', 'U', 0, 0, A, 1, Q, 1, 0.0D0,
+ $ 0.0D0, 0, 0, 0.0D0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'DSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL DSBEVX_2STAGE( 'N', '/', 'U', 0, 0, A, 1, Q, 1, 0.0D0,
+ $ 0.0D0, 0, 0, 0.0D0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'DSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL DSBEVX_2STAGE( 'N', 'A', '/', 0, 0, A, 1, Q, 1, 0.0D0,
+ $ 0.0D0, 0, 0, 0.0D0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'DSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL DSBEVX_2STAGE( 'N', 'A', 'U', -1, 0, A, 1, Q, 1, 0.0D0,
+ $ 0.0D0, 0, 0, 0.0D0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'DSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL DSBEVX_2STAGE( 'N', 'A', 'U', 0, -1, A, 1, Q, 1, 0.0D0,
+ $ 0.0D0, 0, 0, 0.0D0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'DSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 7
+ CALL DSBEVX_2STAGE( 'N', 'A', 'U', 2, 1, A, 1, Q, 1, 0.0D0,
+ $ 0.0D0, 0, 0, 0.0D0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'DSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 9
+* CALL DSBEVX_2STAGE( 'V', 'A', 'U', 2, 0, A, 1, Q, 1, 0.0D0,
+* $ 0.0D0, 0, 0, 0.0D0, M, X, Z, 2, W, 0, IW, I3, INFO )
+* CALL CHKXER( 'DSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL DSBEVX_2STAGE( 'N', 'V', 'U', 1, 0, A, 1, Q, 1, 0.0D0,
+ $ 0.0D0, 0, 0, 0.0D0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'DSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 12
+ CALL DSBEVX_2STAGE( 'N', 'I', 'U', 1, 0, A, 1, Q, 1, 0.0D0,
+ $ 0.0D0, 0, 0, 0.0D0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'DSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 12
+ CALL DSBEVX_2STAGE( 'N', 'I', 'U', 1, 0, A, 1, Q, 1, 0.0D0,
+ $ 0.0D0, 2, 1, 0.0D0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'DSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL DSBEVX_2STAGE( 'N', 'I', 'U', 2, 0, A, 1, Q, 1, 0.0D0,
+ $ 0.0D0, 2, 1, 0.0D0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'DSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL DSBEVX_2STAGE( 'N', 'I', 'U', 1, 0, A, 1, Q, 1, 0.0D0,
+ $ 0.0D0, 1, 2, 0.0D0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'DSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 18
+* CALL DSBEVX_2STAGE( 'V', 'A', 'U', 2, 0, A, 1, Q, 2, 0.0D0,
+* $ 0.0D0, 0, 0, 0.0D0, M, X, Z, 1, W, 0, IW, I3, INFO )
+* CALL CHKXER( 'DSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 20
+ CALL DSBEVX_2STAGE( 'N', 'A', 'U', 0, 0, A, 1, Q, 1, 0.0D0,
+ $ 0.0D0, 0, 0, 0.0D0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'DSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+* NT = NT + 15
+ NT = NT + 13
END IF
*
* Print a summary line.
diff --git a/TESTING/EIG/ilaenv.f b/TESTING/EIG/ilaenv.f
index 90f80077..6fca6fcb 100644
--- a/TESTING/EIG/ilaenv.f
+++ b/TESTING/EIG/ilaenv.f
@@ -229,6 +229,16 @@ C ILAENV = 0
* WRITE(*,*) 'ISPEC = ',ISPEC,' ILAENV =',ILAENV
* ILAENV = IPARMQ( ISPEC, NAME, OPTS, N1, N2, N3, N4 )
*
+ ELSE IF(( ISPEC.GE.17 ) .AND. (ISPEC.LE.21)) THEN
+*
+* 17 <= ISPEC <= 21: 2stage eigenvalues SVD routines.
+*
+ IF( ISPEC.EQ.17 ) THEN
+ ILAENV = IPARMS( 1 )
+ ELSE
+ ILAENV = IPARAM2STAGE( ISPEC, NAME, OPTS, N1, N2, N3, N4 )
+ ENDIF
+*
ELSE
*
* Invalid value for ISPEC
diff --git a/TESTING/EIG/schkee.f b/TESTING/EIG/schkee.f
index 99d717e0..7651c0a3 100644
--- a/TESTING/EIG/schkee.f
+++ b/TESTING/EIG/schkee.f
@@ -1106,7 +1106,8 @@
$ SDRGEV, SDRGSX, SDRGVX, SDRVBD, SDRVES, SDRVEV,
$ SDRVSG, SDRVST, SDRVSX, SDRVVX, SERRBD,
$ SERRED, SERRGG, SERRHS, SERRST, ILAVER, XLAENV,
- $ SDRGES3, SDRGEV3
+ $ SDRGES3, SDRGEV3,
+ $ SCHKST2STG, SDRVST2STG, SCHKSB2STG, SDRVSG2STG
* ..
* .. Intrinsic Functions ..
INTRINSIC LEN, MIN
@@ -1153,7 +1154,8 @@
PATH = LINE( 1: 3 )
NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'SHS' )
SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'SST' ) .OR.
- $ LSAMEN( 3, PATH, 'SSG' )
+ $ LSAMEN( 3, PATH, 'SSG' ) .OR. LSAMEN( 3, PATH, 'SE2' )
+ SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'DBD' )
SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'SBD' )
SEV = LSAMEN( 3, PATH, 'SEV' )
SES = LSAMEN( 3, PATH, 'SES' )
@@ -1839,7 +1841,8 @@
$ WRITE( NOUT, FMT = 9980 )'SCHKHS', INFO
270 CONTINUE
*
- ELSE IF( LSAMEN( 3, C3, 'SST' ) .OR. LSAMEN( 3, C3, 'SEP' ) ) THEN
+ ELSE IF( LSAMEN( 3, C3, 'SST' ) .OR. LSAMEN( 3, C3, 'SEP' )
+ $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN
*
* ----------------------------------
* SEP: Symmetric Eigenvalue Problem
@@ -1869,6 +1872,15 @@
WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
$ NXVAL( I )
IF( TSTCHK ) THEN
+ IF( LSAMEN( 3, C3, 'SE2' ) ) THEN
+ CALL SCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+ $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
+ $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ),
+ $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ),
+ $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX,
+ $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ),
+ $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO )
+ ELSE
CALL SCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
$ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
$ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ),
@@ -1876,16 +1888,26 @@
$ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX,
$ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ),
$ WORK, LWORK, IWORK, LIWORK, RESULT, INFO )
+ ENDIF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'SCHKST', INFO
END IF
IF( TSTDRV ) THEN
+ IF( LSAMEN( 3, C3, 'SE2' ) ) THEN
+ CALL SDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH,
+ $ NOUT, A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ),
+ $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ),
+ $ D( 1, 10 ), D( 1, 11), A( 1, 2 ), NMAX,
+ $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK,
+ $ LWORK, IWORK, LIWORK, RESULT, INFO )
+ ELSE
CALL SDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH,
$ NOUT, A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ),
$ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ),
$ D( 1, 10 ), D( 1, 11), A( 1, 2 ), NMAX,
$ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK,
$ LWORK, IWORK, LIWORK, RESULT, INFO )
+ ENDIF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'SDRVST', INFO
END IF
@@ -1918,11 +1940,17 @@
WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
$ NXVAL( I )
IF( TSTCHK ) THEN
- CALL SDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
- $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
- $ D( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ),
- $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK,
- $ LWORK, IWORK, LIWORK, RESULT, INFO )
+* CALL SDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+* $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
+* $ D( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ),
+* $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK,
+* $ LWORK, IWORK, LIWORK, RESULT, INFO )
+ CALL SDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+ $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
+ $ D( 1, 3 ), D( 1, 3 ), A( 1, 3 ), NMAX,
+ $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ),
+ $ A( 1, 7 ), WORK, LWORK, IWORK, LIWORK,
+ $ RESULT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'SDRVSG', INFO
END IF
@@ -2284,9 +2312,13 @@
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
IF( TSTERR )
$ CALL SERRST( 'SSB', NOUT )
- CALL SCHKSB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH,
- $ NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), D( 1, 2 ),
- $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO )
+* CALL SCHKSB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+* $ NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), D( 1, 2 ),
+* $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO )
+ CALL SCHKSB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED,
+ $ THRESH, NOUT, A( 1, 1 ), NMAX, D( 1, 1 ),
+ $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ),
+ $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'SCHKSB', INFO
*
diff --git a/TESTING/EIG/schksb2stg.f b/TESTING/EIG/schksb2stg.f
new file mode 100644
index 00000000..02163695
--- /dev/null
+++ b/TESTING/EIG/schksb2stg.f
@@ -0,0 +1,870 @@
+*> \brief \b SCHKSBSTG
+*
+* @generated from dchksb2stg.f, fortran d -> s, Sun Nov 6 00:12:41 2016
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE SCHKSB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
+* ISEED, THRESH, NOUNIT, A, LDA, SD, SE, D1,
+* D2, D3, U, LDU, WORK, LWORK, RESULT, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
+* $ NWDTHS
+* REAL THRESH
+* ..
+* .. Array Arguments ..
+* LOGICAL DOTYPE( * )
+* INTEGER ISEED( 4 ), KK( * ), NN( * )
+* REAL A( LDA, * ), RESULT( * ), SD( * ), SE( * ),
+* $ U( LDU, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> SCHKSBSTG tests the reduction of a symmetric band matrix to tridiagonal
+*> form, used with the symmetric eigenvalue problem.
+*>
+*> SSBTRD factors a symmetric band matrix A as U S U' , where ' means
+*> transpose, S is symmetric tridiagonal, and U is orthogonal.
+*> SSBTRD can use either just the lower or just the upper triangle
+*> of A; SCHKSBSTG checks both cases.
+*>
+*> SSYTRD_SB2ST factors a symmetric band matrix A as U S U' ,
+*> where ' means transpose, S is symmetric tridiagonal, and U is
+*> orthogonal. SSYTRD_SB2ST can use either just the lower or just
+*> the upper triangle of A; SCHKSBSTG checks both cases.
+*>
+*> SSTEQR factors S as Z D1 Z'.
+*> D1 is the matrix of eigenvalues computed when Z is not computed
+*> and from the S resulting of SSBTRD "U" (used as reference for SSYTRD_SB2ST)
+*> D2 is the matrix of eigenvalues computed when Z is not computed
+*> and from the S resulting of SSYTRD_SB2ST "U".
+*> D3 is the matrix of eigenvalues computed when Z is not computed
+*> and from the S resulting of SSYTRD_SB2ST "L".
+*>
+*> When SCHKSBSTG is called, a number of matrix "sizes" ("n's"), a number
+*> of bandwidths ("k's"), and a number of matrix "types" are
+*> specified. For each size ("n"), each bandwidth ("k") less than or
+*> equal to "n", and each type of matrix, one matrix will be generated
+*> and used to test the symmetric banded reduction routine. For each
+*> matrix, a number of tests will be performed:
+*>
+*> (1) | A - V S V' | / ( |A| n ulp ) computed by SSBTRD with
+*> UPLO='U'
+*>
+*> (2) | I - UU' | / ( n ulp )
+*>
+*> (3) | A - V S V' | / ( |A| n ulp ) computed by SSBTRD with
+*> UPLO='L'
+*>
+*> (4) | I - UU' | / ( n ulp )
+*>
+*> (5) | D1 - D2 | / ( |D1| ulp ) where D1 is computed by
+*> SSBTRD with UPLO='U' and
+*> D2 is computed by
+*> SSYTRD_SB2ST with UPLO='U'
+*>
+*> (6) | D1 - D3 | / ( |D1| ulp ) where D1 is computed by
+*> SSBTRD with UPLO='U' and
+*> D3 is computed by
+*> SSYTRD_SB2ST with UPLO='L'
+*>
+*> The "sizes" are specified by an array NN(1:NSIZES); the value of
+*> each element NN(j) specifies one size.
+*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
+*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
+*> Currently, the list of possible types is:
+*>
+*> (1) The zero matrix.
+*> (2) The identity matrix.
+*>
+*> (3) A diagonal matrix with evenly spaced entries
+*> 1, ..., ULP and random signs.
+*> (ULP = (first number larger than 1) - 1 )
+*> (4) A diagonal matrix with geometrically spaced entries
+*> 1, ..., ULP and random signs.
+*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
+*> and random signs.
+*>
+*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
+*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
+*>
+*> (8) A matrix of the form U' D U, where U is orthogonal and
+*> D has evenly spaced entries 1, ..., ULP with random signs
+*> on the diagonal.
+*>
+*> (9) A matrix of the form U' D U, where U is orthogonal and
+*> D has geometrically spaced entries 1, ..., ULP with random
+*> signs on the diagonal.
+*>
+*> (10) A matrix of the form U' D U, where U is orthogonal and
+*> D has "clustered" entries 1, ULP,..., ULP with random
+*> signs on the diagonal.
+*>
+*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
+*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
+*>
+*> (13) Symmetric matrix with random entries chosen from (-1,1).
+*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
+*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] NSIZES
+*> \verbatim
+*> NSIZES is INTEGER
+*> The number of sizes of matrices to use. If it is zero,
+*> SCHKSBSTG does nothing. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NN
+*> \verbatim
+*> NN is INTEGER array, dimension (NSIZES)
+*> An array containing the sizes to be used for the matrices.
+*> Zero values will be skipped. The values must be at least
+*> zero.
+*> \endverbatim
+*>
+*> \param[in] NWDTHS
+*> \verbatim
+*> NWDTHS is INTEGER
+*> The number of bandwidths to use. If it is zero,
+*> SCHKSBSTG does nothing. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] KK
+*> \verbatim
+*> KK is INTEGER array, dimension (NWDTHS)
+*> An array containing the bandwidths to be used for the band
+*> matrices. The values must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NTYPES
+*> \verbatim
+*> NTYPES is INTEGER
+*> The number of elements in DOTYPE. If it is zero, SCHKSBSTG
+*> does nothing. It must be at least zero. If it is MAXTYP+1
+*> and NSIZES is 1, then an additional type, MAXTYP+1 is
+*> defined, which is to use whatever matrix is in A. This
+*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
+*> DOTYPE(MAXTYP+1) is .TRUE. .
+*> \endverbatim
+*>
+*> \param[in] DOTYPE
+*> \verbatim
+*> DOTYPE is LOGICAL array, dimension (NTYPES)
+*> If DOTYPE(j) is .TRUE., then for each size in NN a
+*> matrix of that size and of type j will be generated.
+*> If NTYPES is smaller than the maximum number of types
+*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
+*> MAXTYP will not be generated. If NTYPES is larger
+*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
+*> will be ignored.
+*> \endverbatim
+*>
+*> \param[in,out] ISEED
+*> \verbatim
+*> ISEED is INTEGER array, dimension (4)
+*> On entry ISEED specifies the seed of the random number
+*> generator. The array elements should be between 0 and 4095;
+*> if not they will be reduced mod 4096. Also, ISEED(4) must
+*> be odd. The random number generator uses a linear
+*> congruential sequence limited to small integers, and so
+*> should produce machine independent random numbers. The
+*> values of ISEED are changed on exit, and can be used in the
+*> next call to SCHKSBSTG to continue the same random number
+*> sequence.
+*> \endverbatim
+*>
+*> \param[in] THRESH
+*> \verbatim
+*> THRESH is REAL
+*> A test will count as "failed" if the "error", computed as
+*> described above, exceeds THRESH. Note that the error
+*> is scaled to be O(1), so THRESH should be a reasonably
+*> small multiple of 1, e.g., 10 or 100. In particular,
+*> it should not depend on the precision (single vs. double)
+*> or the size of the matrix. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NOUNIT
+*> \verbatim
+*> NOUNIT is INTEGER
+*> The FORTRAN unit number for printing out error messages
+*> (e.g., if a routine returns IINFO not equal to 0.)
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is REAL array, dimension
+*> (LDA, max(NN))
+*> Used to hold the matrix whose eigenvalues are to be
+*> computed.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of A. It must be at least 2 (not 1!)
+*> and at least max( KK )+1.
+*> \endverbatim
+*>
+*> \param[out] SD
+*> \verbatim
+*> SD is REAL array, dimension (max(NN))
+*> Used to hold the diagonal of the tridiagonal matrix computed
+*> by SSBTRD.
+*> \endverbatim
+*>
+*> \param[out] SE
+*> \verbatim
+*> SE is REAL array, dimension (max(NN))
+*> Used to hold the off-diagonal of the tridiagonal matrix
+*> computed by SSBTRD.
+*> \endverbatim
+*>
+*> \param[out] U
+*> \verbatim
+*> U is REAL array, dimension (LDU, max(NN))
+*> Used to hold the orthogonal matrix computed by SSBTRD.
+*> \endverbatim
+*>
+*> \param[in] LDU
+*> \verbatim
+*> LDU is INTEGER
+*> The leading dimension of U. It must be at least 1
+*> and at least max( NN ).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is REAL array, dimension (LWORK)
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The number of entries in WORK. This must be at least
+*> max( LDA+1, max(NN)+1 )*max(NN).
+*> \endverbatim
+*>
+*> \param[out] RESULT
+*> \verbatim
+*> RESULT is REAL array, dimension (4)
+*> The values computed by the tests described above.
+*> The values are currently limited to 1/ulp, to avoid
+*> overflow.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> If 0, then everything ran OK.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> Some Local Variables and Parameters:
+*> ---- ----- --------- --- ----------
+*> ZERO, ONE Real 0 and 1.
+*> MAXTYP The number of types defined.
+*> NTEST The number of tests performed, or which can
+*> be performed so far, for the current matrix.
+*> NTESTT The total number of tests performed so far.
+*> NMAX Largest value in NN.
+*> NMATS The number of matrices generated so far.
+*> NERRS The number of tests which have exceeded THRESH
+*> so far.
+*> COND, IMODE Values to be passed to the matrix generators.
+*> ANORM Norm of A; passed to matrix generators.
+*>
+*> OVFL, UNFL Overflow and underflow thresholds.
+*> ULP, ULPINV Finest relative precision and its inverse.
+*> RTOVFL, RTUNFL Square roots of the previous 2 values.
+*> The following four arrays decode JTYPE:
+*> KTYPE(j) The general type (1-10) for type "j".
+*> KMODE(j) The MODE value to be passed to the matrix
+*> generator for type "j".
+*> KMAGN(j) The order of magnitude ( O(1),
+*> O(overflow^(1/2) ), O(underflow^(1/2) )
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup single_eig
+*
+* =====================================================================
+ SUBROUTINE SCHKSB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
+ $ ISEED, THRESH, NOUNIT, A, LDA, SD, SE, D1,
+ $ D2, D3, U, LDU, WORK, LWORK, RESULT, INFO )
+*
+* -- LAPACK test routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
+ $ NWDTHS
+ REAL THRESH
+* ..
+* .. Array Arguments ..
+ LOGICAL DOTYPE( * )
+ INTEGER ISEED( 4 ), KK( * ), NN( * )
+ REAL A( LDA, * ), RESULT( * ), SD( * ), SE( * ),
+ $ D1( * ), D2( * ), D3( * ),
+ $ U( LDU, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE, TWO, TEN
+ PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
+ $ TEN = 10.0E0 )
+ REAL HALF
+ PARAMETER ( HALF = ONE / TWO )
+ INTEGER MAXTYP
+ PARAMETER ( MAXTYP = 15 )
+* ..
+* .. Local Scalars ..
+ LOGICAL BADNN, BADNNB
+ INTEGER I, IINFO, IMODE, ITYPE, J, JC, JCOL, JR, JSIZE,
+ $ JTYPE, JWIDTH, K, KMAX, MTYPES, N, NERRS,
+ $ NMATS, NMAX, NTEST, NTESTT
+ REAL ANINV, ANORM, COND, OVFL, RTOVFL, RTUNFL,
+ $ TEMP1, TEMP2, TEMP3, TEMP4, ULP, ULPINV, UNFL
+* ..
+* .. Local Arrays ..
+ INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
+ $ KMODE( MAXTYP ), KTYPE( MAXTYP )
+* ..
+* .. External Functions ..
+ REAL SLAMCH
+ EXTERNAL SLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL SLACPY, SLASET, SLASUM, SLATMR, SLATMS, SSBT21,
+ $ SSBTRD, XERBLA, SSBTRD_SB2ST, SSTEQR
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, REAL, MAX, MIN, SQRT
+* ..
+* .. Data statements ..
+ DATA KTYPE / 1, 2, 5*4, 5*5, 3*8 /
+ DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
+ $ 2, 3 /
+ DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
+ $ 0, 0 /
+* ..
+* .. Executable Statements ..
+*
+* Check for errors
+*
+ NTESTT = 0
+ INFO = 0
+*
+* Important constants
+*
+ BADNN = .FALSE.
+ NMAX = 1
+ DO 10 J = 1, NSIZES
+ NMAX = MAX( NMAX, NN( J ) )
+ IF( NN( J ).LT.0 )
+ $ BADNN = .TRUE.
+ 10 CONTINUE
+*
+ BADNNB = .FALSE.
+ KMAX = 0
+ DO 20 J = 1, NSIZES
+ KMAX = MAX( KMAX, KK( J ) )
+ IF( KK( J ).LT.0 )
+ $ BADNNB = .TRUE.
+ 20 CONTINUE
+ KMAX = MIN( NMAX-1, KMAX )
+*
+* Check for errors
+*
+ IF( NSIZES.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( BADNN ) THEN
+ INFO = -2
+ ELSE IF( NWDTHS.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( BADNNB ) THEN
+ INFO = -4
+ ELSE IF( NTYPES.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.KMAX+1 ) THEN
+ INFO = -11
+ ELSE IF( LDU.LT.NMAX ) THEN
+ INFO = -15
+ ELSE IF( ( MAX( LDA, NMAX )+1 )*NMAX.GT.LWORK ) THEN
+ INFO = -17
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SCHKSBSTG', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 .OR. NWDTHS.EQ.0 )
+ $ RETURN
+*
+* More Important constants
+*
+ UNFL = SLAMCH( 'Safe minimum' )
+ OVFL = ONE / UNFL
+ ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
+ ULPINV = ONE / ULP
+ RTUNFL = SQRT( UNFL )
+ RTOVFL = SQRT( OVFL )
+*
+* Loop over sizes, types
+*
+ NERRS = 0
+ NMATS = 0
+*
+ DO 190 JSIZE = 1, NSIZES
+ N = NN( JSIZE )
+ ANINV = ONE / REAL( MAX( 1, N ) )
+*
+ DO 180 JWIDTH = 1, NWDTHS
+ K = KK( JWIDTH )
+ IF( K.GT.N )
+ $ GO TO 180
+ K = MAX( 0, MIN( N-1, K ) )
+*
+ IF( NSIZES.NE.1 ) THEN
+ MTYPES = MIN( MAXTYP, NTYPES )
+ ELSE
+ MTYPES = MIN( MAXTYP+1, NTYPES )
+ END IF
+*
+ DO 170 JTYPE = 1, MTYPES
+ IF( .NOT.DOTYPE( JTYPE ) )
+ $ GO TO 170
+ NMATS = NMATS + 1
+ NTEST = 0
+*
+ DO 30 J = 1, 4
+ IOLDSD( J ) = ISEED( J )
+ 30 CONTINUE
+*
+* Compute "A".
+* Store as "Upper"; later, we will copy to other format.
+*
+* Control parameters:
+*
+* KMAGN KMODE KTYPE
+* =1 O(1) clustered 1 zero
+* =2 large clustered 2 identity
+* =3 small exponential (none)
+* =4 arithmetic diagonal, (w/ eigenvalues)
+* =5 random log symmetric, w/ eigenvalues
+* =6 random (none)
+* =7 random diagonal
+* =8 random symmetric
+* =9 positive definite
+* =10 diagonally dominant tridiagonal
+*
+ IF( MTYPES.GT.MAXTYP )
+ $ GO TO 100
+*
+ ITYPE = KTYPE( JTYPE )
+ IMODE = KMODE( JTYPE )
+*
+* Compute norm
+*
+ GO TO ( 40, 50, 60 )KMAGN( JTYPE )
+*
+ 40 CONTINUE
+ ANORM = ONE
+ GO TO 70
+*
+ 50 CONTINUE
+ ANORM = ( RTOVFL*ULP )*ANINV
+ GO TO 70
+*
+ 60 CONTINUE
+ ANORM = RTUNFL*N*ULPINV
+ GO TO 70
+*
+ 70 CONTINUE
+*
+ CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
+ IINFO = 0
+ IF( JTYPE.LE.15 ) THEN
+ COND = ULPINV
+ ELSE
+ COND = ULPINV*ANINV / TEN
+ END IF
+*
+* Special Matrices -- Identity & Jordan block
+*
+* Zero
+*
+ IF( ITYPE.EQ.1 ) THEN
+ IINFO = 0
+*
+ ELSE IF( ITYPE.EQ.2 ) THEN
+*
+* Identity
+*
+ DO 80 JCOL = 1, N
+ A( K+1, JCOL ) = ANORM
+ 80 CONTINUE
+*
+ ELSE IF( ITYPE.EQ.4 ) THEN
+*
+* Diagonal Matrix, [Eigen]values Specified
+*
+ CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, 0, 0, 'Q', A( K+1, 1 ), LDA,
+ $ WORK( N+1 ), IINFO )
+*
+ ELSE IF( ITYPE.EQ.5 ) THEN
+*
+* Symmetric, eigenvalues specified
+*
+ CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, K, K, 'Q', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+ ELSE IF( ITYPE.EQ.7 ) THEN
+*
+* Diagonal, random eigenvalues
+*
+ CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
+ $ ZERO, ANORM, 'Q', A( K+1, 1 ), LDA,
+ $ IDUMMA, IINFO )
+*
+ ELSE IF( ITYPE.EQ.8 ) THEN
+*
+* Symmetric, random eigenvalues
+*
+ CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, K, K,
+ $ ZERO, ANORM, 'Q', A, LDA, IDUMMA, IINFO )
+*
+ ELSE IF( ITYPE.EQ.9 ) THEN
+*
+* Positive definite, eigenvalues specified.
+*
+ CALL SLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
+ $ ANORM, K, K, 'Q', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+ ELSE IF( ITYPE.EQ.10 ) THEN
+*
+* Positive definite tridiagonal, eigenvalues specified.
+*
+ IF( N.GT.1 )
+ $ K = MAX( 1, K )
+ CALL SLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
+ $ ANORM, 1, 1, 'Q', A( K, 1 ), LDA,
+ $ WORK( N+1 ), IINFO )
+ DO 90 I = 2, N
+ TEMP1 = ABS( A( K, I ) ) /
+ $ SQRT( ABS( A( K+1, I-1 )*A( K+1, I ) ) )
+ IF( TEMP1.GT.HALF ) THEN
+ A( K, I ) = HALF*SQRT( ABS( A( K+1,
+ $ I-1 )*A( K+1, I ) ) )
+ END IF
+ 90 CONTINUE
+*
+ ELSE
+*
+ IINFO = 1
+ END IF
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ RETURN
+ END IF
+*
+ 100 CONTINUE
+*
+* Call SSBTRD to compute S and U from upper triangle.
+*
+ CALL SLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
+*
+ NTEST = 1
+ CALL SSBTRD( 'V', 'U', N, K, WORK, LDA, SD, SE, U, LDU,
+ $ WORK( LDA*N+1 ), IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSBTRD(U)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 1 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+* Do tests 1 and 2
+*
+ CALL SSBT21( 'Upper', N, K, 1, A, LDA, SD, SE, U, LDU,
+ $ WORK, RESULT( 1 ) )
+*
+* Before converting A into lower for SSBTRD, run SSYTRD_SB2ST
+* otherwise matrix A will be converted to lower and then need
+* to be converted back to upper in order to run the upper case
+* ofSSYTRD_SB2ST
+*
+* Compute D1 the eigenvalues resulting from the tridiagonal
+* form using the SSBTRD and used as reference to compare
+* with the SSYTRD_SB2ST routine
+*
+* Compute D1 from the SSBTRD and used as reference for the
+* SSYTRD_SB2ST
+*
+ CALL SCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+*
+ CALL SSTEQR( 'N', N, D1, WORK, WORK( N+1 ), LDU,
+ $ WORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEQR(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 5 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+* SSYTRD_SB2ST Upper case is used to compute D2.
+* Note to set SD and SE to zero to be sure not reusing
+* the one from above. Compare it with D1 computed
+* using the SSBTRD.
+*
+ CALL SLASET( 'Full', N, 1, ZERO, ZERO, SD, 1 )
+ CALL SLASET( 'Full', N, 1, ZERO, ZERO, SE, 1 )
+ CALL SLACPY( ' ', K+1, N, A, LDA, U, LDU )
+ LH = MAX(1, 4*N)
+ LW = LWORK - LH
+ CALL SSYTRD_SB2ST( 'N', 'N', "U", N, K, U, LDU, SD, SE,
+ $ WORK, LH, WORK( LH+1 ), LW, IINFO )
+*
+* Compute D2 from the SSYTRD_SB2ST Upper case
+*
+ CALL SCOPY( N, SD, 1, D2, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+*
+ CALL SSTEQR( 'N', N, D2, WORK, WORK( N+1 ), LDU,
+ $ WORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEQR(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 5 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+* Convert A from Upper-Triangle-Only storage to
+* Lower-Triangle-Only storage.
+*
+ DO 120 JC = 1, N
+ DO 110 JR = 0, MIN( K, N-JC )
+ A( JR+1, JC ) = A( K+1-JR, JC+JR )
+ 110 CONTINUE
+ 120 CONTINUE
+ DO 140 JC = N + 1 - K, N
+ DO 130 JR = MIN( K, N-JC ) + 1, K
+ A( JR+1, JC ) = ZERO
+ 130 CONTINUE
+ 140 CONTINUE
+*
+* Call SSBTRD to compute S and U from lower triangle
+*
+ CALL SLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
+*
+ NTEST = 3
+ CALL SSBTRD( 'V', 'L', N, K, WORK, LDA, SD, SE, U, LDU,
+ $ WORK( LDA*N+1 ), IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSBTRD(L)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 3 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+ NTEST = 4
+*
+* Do tests 3 and 4
+*
+ CALL SSBT21( 'Lower', N, K, 1, A, LDA, SD, SE, U, LDU,
+ $ WORK, RESULT( 3 ) )
+*
+* SSYTRD_SB2ST Lower case is used to compute D3.
+* Note to set SD and SE to zero to be sure not reusing
+* the one from above. Compare it with D1 computed
+* using the SSBTRD.
+*
+ CALL SLASET( 'Full', N, 1, ZERO, ZERO, SD, 1 )
+ CALL SLASET( 'Full', N, 1, ZERO, ZERO, SE, 1 )
+ CALL SLACPY( ' ', K+1, N, A, LDA, U, LDU )
+ LH = MAX(1, 4*N)
+ LW = LWORK - LH
+ CALL SSYTRD_SB2ST( 'N', 'N', "L", N, K, U, LDU, SD, SE,
+ $ WORK, LH, WORK( LH+1 ), LW, IINFO )
+*
+* Compute D3 from the 2-stage Upper case
+*
+ CALL SCOPY( N, SD, 1, D3, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+*
+ CALL SSTEQR( 'N', N, D3, WORK, WORK( N+1 ), LDU,
+ $ WORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEQR(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 6 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+*
+* Do Tests 3 and 4 which are similar to 11 and 12 but with the
+* D1 computed using the standard 1-stage reduction as reference
+*
+ NTEST = 6
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ TEMP3 = ZERO
+ TEMP4 = ZERO
+*
+ DO 151 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
+ 151 CONTINUE
+*
+ RESULT(5) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+ RESULT(6) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
+*
+* End of Loop -- Check for RESULT(j) > THRESH
+*
+ 150 CONTINUE
+ NTESTT = NTESTT + NTEST
+*
+* Print out tests which fail.
+*
+ DO 160 JR = 1, NTEST
+ IF( RESULT( JR ).GE.THRESH ) THEN
+*
+* If this is the first test to fail,
+* print a header to the data file.
+*
+ IF( NERRS.EQ.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'SSB'
+ WRITE( NOUNIT, FMT = 9997 )
+ WRITE( NOUNIT, FMT = 9996 )
+ WRITE( NOUNIT, FMT = 9995 )'Symmetric'
+ WRITE( NOUNIT, FMT = 9994 )'orthogonal', '''',
+ $ 'transpose', ( '''', J = 1, 6 )
+ END IF
+ NERRS = NERRS + 1
+ WRITE( NOUNIT, FMT = 9993 )N, K, IOLDSD, JTYPE,
+ $ JR, RESULT( JR )
+ END IF
+ 160 CONTINUE
+*
+ 170 CONTINUE
+ 180 CONTINUE
+ 190 CONTINUE
+*
+* Summary
+*
+ CALL SLASUM( 'SSB', NOUNIT, NERRS, NTESTT )
+ RETURN
+*
+ 9999 FORMAT( ' SCHKSBSTG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
+ $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
+*
+ 9998 FORMAT( / 1X, A3,
+ $ ' -- Real Symmetric Banded Tridiagonal Reduction Routines' )
+ 9997 FORMAT( ' Matrix types (see SCHKSBSTG for details): ' )
+*
+ 9996 FORMAT( / ' Special Matrices:',
+ $ / ' 1=Zero matrix. ',
+ $ ' 5=Diagonal: clustered entries.',
+ $ / ' 2=Identity matrix. ',
+ $ ' 6=Diagonal: large, evenly spaced.',
+ $ / ' 3=Diagonal: evenly spaced entries. ',
+ $ ' 7=Diagonal: small, evenly spaced.',
+ $ / ' 4=Diagonal: geometr. spaced entries.' )
+ 9995 FORMAT( ' Dense ', A, ' Banded Matrices:',
+ $ / ' 8=Evenly spaced eigenvals. ',
+ $ ' 12=Small, evenly spaced eigenvals.',
+ $ / ' 9=Geometrically spaced eigenvals. ',
+ $ ' 13=Matrix with random O(1) entries.',
+ $ / ' 10=Clustered eigenvalues. ',
+ $ ' 14=Matrix with large random entries.',
+ $ / ' 11=Large, evenly spaced eigenvals. ',
+ $ ' 15=Matrix with small random entries.' )
+*
+ 9994 FORMAT( / ' Tests performed: (S is Tridiag, U is ', A, ',',
+ $ / 20X, A, ' means ', A, '.', / ' UPLO=''U'':',
+ $ / ' 1= | A - U S U', A1, ' | / ( |A| n ulp ) ',
+ $ ' 2= | I - U U', A1, ' | / ( n ulp )', / ' UPLO=''L'':',
+ $ / ' 3= | A - U S U', A1, ' | / ( |A| n ulp ) ',
+ $ ' 4= | I - U U', A1, ' | / ( n ulp )' / ' Eig check:',
+ $ /' 5= | D1 - D2', '', ' | / ( |D1| ulp ) ',
+ $ ' 6= | D1 - D3', '', ' | / ( |D1| ulp ) ' )
+ 9993 FORMAT( ' N=', I5, ', K=', I4, ', seed=', 4( I4, ',' ), ' type ',
+ $ I2, ', test(', I2, ')=', G10.3 )
+*
+* End of SCHKSBSTG
+*
+ END
diff --git a/TESTING/EIG/schkst2stg.f b/TESTING/EIG/schkst2stg.f
new file mode 100644
index 00000000..8db1cf73
--- /dev/null
+++ b/TESTING/EIG/schkst2stg.f
@@ -0,0 +1,2120 @@
+*> \brief \b SCHKST2STG
+*
+* @generated from dchkst2stg.f, fortran d -> s, Sat Nov 5 22:51:30 2016
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE SCHKST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+* NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
+* WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
+* LWORK, IWORK, LIWORK, RESULT, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDU, LIWORK, LWORK, NOUNIT, NSIZES,
+* $ NTYPES
+* REAL THRESH
+* ..
+* .. Array Arguments ..
+* LOGICAL DOTYPE( * )
+* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+* REAL A( LDA, * ), AP( * ), D1( * ), D2( * ),
+* $ D3( * ), D4( * ), D5( * ), RESULT( * ),
+* $ SD( * ), SE( * ), TAU( * ), U( LDU, * ),
+* $ V( LDU, * ), VP( * ), WA1( * ), WA2( * ),
+* $ WA3( * ), WORK( * ), WR( * ), Z( LDU, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> SCHKST2STG checks the symmetric eigenvalue problem routines
+*> using the 2-stage reduction techniques. Since the generation
+*> of Q or the vectors is not available in this release, we only
+*> compare the eigenvalue resulting when using the 2-stage to the
+*> one considered as reference using the standard 1-stage reduction
+*> SSYTRD. For that, we call the standard SSYTRD and compute D1 using
+*> SSTEQR, then we call the 2-stage SSYTRD_2STAGE with Upper and Lower
+*> and we compute D2 and D3 using SSTEQR and then we replaced tests
+*> 3 and 4 by tests 11 and 12. test 1 and 2 remain to verify that
+*> the 1-stage results are OK and can be trusted.
+*> This testing routine will converge to the SCHKST in the next
+*> release when vectors and generation of Q will be implemented.
+*>
+*> SSYTRD factors A as U S U' , where ' means transpose,
+*> S is symmetric tridiagonal, and U is orthogonal.
+*> SSYTRD can use either just the lower or just the upper triangle
+*> of A; SCHKST2STG checks both cases.
+*> U is represented as a product of Householder
+*> transformations, whose vectors are stored in the first
+*> n-1 columns of V, and whose scale factors are in TAU.
+*>
+*> SSPTRD does the same as SSYTRD, except that A and V are stored
+*> in "packed" format.
+*>
+*> SORGTR constructs the matrix U from the contents of V and TAU.
+*>
+*> SOPGTR constructs the matrix U from the contents of VP and TAU.
+*>
+*> SSTEQR factors S as Z D1 Z' , where Z is the orthogonal
+*> matrix of eigenvectors and D1 is a diagonal matrix with
+*> the eigenvalues on the diagonal. D2 is the matrix of
+*> eigenvalues computed when Z is not computed.
+*>
+*> SSTERF computes D3, the matrix of eigenvalues, by the
+*> PWK method, which does not yield eigenvectors.
+*>
+*> SPTEQR factors S as Z4 D4 Z4' , for a
+*> symmetric positive definite tridiagonal matrix.
+*> D5 is the matrix of eigenvalues computed when Z is not
+*> computed.
+*>
+*> SSTEBZ computes selected eigenvalues. WA1, WA2, and
+*> WA3 will denote eigenvalues computed to high
+*> absolute accuracy, with different range options.
+*> WR will denote eigenvalues computed to high relative
+*> accuracy.
+*>
+*> SSTEIN computes Y, the eigenvectors of S, given the
+*> eigenvalues.
+*>
+*> SSTEDC factors S as Z D1 Z' , where Z is the orthogonal
+*> matrix of eigenvectors and D1 is a diagonal matrix with
+*> the eigenvalues on the diagonal ('I' option). It may also
+*> update an input orthogonal matrix, usually the output
+*> from SSYTRD/SORGTR or SSPTRD/SOPGTR ('V' option). It may
+*> also just compute eigenvalues ('N' option).
+*>
+*> SSTEMR factors S as Z D1 Z' , where Z is the orthogonal
+*> matrix of eigenvectors and D1 is a diagonal matrix with
+*> the eigenvalues on the diagonal ('I' option). SSTEMR
+*> uses the Relatively Robust Representation whenever possible.
+*>
+*> When SCHKST2STG is called, a number of matrix "sizes" ("n's") and a
+*> number of matrix "types" are specified. For each size ("n")
+*> and each type of matrix, one matrix will be generated and used
+*> to test the symmetric eigenroutines. For each matrix, a number
+*> of tests will be performed:
+*>
+*> (1) | A - V S V' | / ( |A| n ulp ) SSYTRD( UPLO='U', ... )
+*>
+*> (2) | I - UV' | / ( n ulp ) SORGTR( UPLO='U', ... )
+*>
+*> (3) | A - V S V' | / ( |A| n ulp ) SSYTRD( UPLO='L', ... )
+*> replaced by | D1 - D2 | / ( |D1| ulp ) where D1 is the
+*> eigenvalue matrix computed using S and D2 is the
+*> eigenvalue matrix computed using S_2stage the output of
+*> SSYTRD_2STAGE("N", "U",....). D1 and D2 are computed
+*> via SSTEQR('N',...)
+*>
+*> (4) | I - UV' | / ( n ulp ) SORGTR( UPLO='L', ... )
+*> replaced by | D1 - D3 | / ( |D1| ulp ) where D1 is the
+*> eigenvalue matrix computed using S and D3 is the
+*> eigenvalue matrix computed using S_2stage the output of
+*> SSYTRD_2STAGE("N", "L",....). D1 and D3 are computed
+*> via SSTEQR('N',...)
+*>
+*> (5-8) Same as 1-4, but for SSPTRD and SOPGTR.
+*>
+*> (9) | S - Z D Z' | / ( |S| n ulp ) SSTEQR('V',...)
+*>
+*> (10) | I - ZZ' | / ( n ulp ) SSTEQR('V',...)
+*>
+*> (11) | D1 - D2 | / ( |D1| ulp ) SSTEQR('N',...)
+*>
+*> (12) | D1 - D3 | / ( |D1| ulp ) SSTERF
+*>
+*> (13) 0 if the true eigenvalues (computed by sturm count)
+*> of S are within THRESH of
+*> those in D1. 2*THRESH if they are not. (Tested using
+*> SSTECH)
+*>
+*> For S positive definite,
+*>
+*> (14) | S - Z4 D4 Z4' | / ( |S| n ulp ) SPTEQR('V',...)
+*>
+*> (15) | I - Z4 Z4' | / ( n ulp ) SPTEQR('V',...)
+*>
+*> (16) | D4 - D5 | / ( 100 |D4| ulp ) SPTEQR('N',...)
+*>
+*> When S is also diagonally dominant by the factor gamma < 1,
+*>
+*> (17) max | D4(i) - WR(i) | / ( |D4(i)| omega ) ,
+*> i
+*> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
+*> SSTEBZ( 'A', 'E', ...)
+*>
+*> (18) | WA1 - D3 | / ( |D3| ulp ) SSTEBZ( 'A', 'E', ...)
+*>
+*> (19) ( max { min | WA2(i)-WA3(j) | } +
+*> i j
+*> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
+*> i j
+*> SSTEBZ( 'I', 'E', ...)
+*>
+*> (20) | S - Y WA1 Y' | / ( |S| n ulp ) SSTEBZ, SSTEIN
+*>
+*> (21) | I - Y Y' | / ( n ulp ) SSTEBZ, SSTEIN
+*>
+*> (22) | S - Z D Z' | / ( |S| n ulp ) SSTEDC('I')
+*>
+*> (23) | I - ZZ' | / ( n ulp ) SSTEDC('I')
+*>
+*> (24) | S - Z D Z' | / ( |S| n ulp ) SSTEDC('V')
+*>
+*> (25) | I - ZZ' | / ( n ulp ) SSTEDC('V')
+*>
+*> (26) | D1 - D2 | / ( |D1| ulp ) SSTEDC('V') and
+*> SSTEDC('N')
+*>
+*> Test 27 is disabled at the moment because SSTEMR does not
+*> guarantee high relatvie accuracy.
+*>
+*> (27) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
+*> i
+*> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
+*> SSTEMR('V', 'A')
+*>
+*> (28) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
+*> i
+*> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
+*> SSTEMR('V', 'I')
+*>
+*> Tests 29 through 34 are disable at present because SSTEMR
+*> does not handle partial specturm requests.
+*>
+*> (29) | S - Z D Z' | / ( |S| n ulp ) SSTEMR('V', 'I')
+*>
+*> (30) | I - ZZ' | / ( n ulp ) SSTEMR('V', 'I')
+*>
+*> (31) ( max { min | WA2(i)-WA3(j) | } +
+*> i j
+*> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
+*> i j
+*> SSTEMR('N', 'I') vs. SSTEMR('V', 'I')
+*>
+*> (32) | S - Z D Z' | / ( |S| n ulp ) SSTEMR('V', 'V')
+*>
+*> (33) | I - ZZ' | / ( n ulp ) SSTEMR('V', 'V')
+*>
+*> (34) ( max { min | WA2(i)-WA3(j) | } +
+*> i j
+*> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
+*> i j
+*> SSTEMR('N', 'V') vs. SSTEMR('V', 'V')
+*>
+*> (35) | S - Z D Z' | / ( |S| n ulp ) SSTEMR('V', 'A')
+*>
+*> (36) | I - ZZ' | / ( n ulp ) SSTEMR('V', 'A')
+*>
+*> (37) ( max { min | WA2(i)-WA3(j) | } +
+*> i j
+*> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
+*> i j
+*> SSTEMR('N', 'A') vs. SSTEMR('V', 'A')
+*>
+*> The "sizes" are specified by an array NN(1:NSIZES); the value of
+*> each element NN(j) specifies one size.
+*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
+*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
+*> Currently, the list of possible types is:
+*>
+*> (1) The zero matrix.
+*> (2) The identity matrix.
+*>
+*> (3) A diagonal matrix with evenly spaced entries
+*> 1, ..., ULP and random signs.
+*> (ULP = (first number larger than 1) - 1 )
+*> (4) A diagonal matrix with geometrically spaced entries
+*> 1, ..., ULP and random signs.
+*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
+*> and random signs.
+*>
+*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
+*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
+*>
+*> (8) A matrix of the form U' D U, where U is orthogonal and
+*> D has evenly spaced entries 1, ..., ULP with random signs
+*> on the diagonal.
+*>
+*> (9) A matrix of the form U' D U, where U is orthogonal and
+*> D has geometrically spaced entries 1, ..., ULP with random
+*> signs on the diagonal.
+*>
+*> (10) A matrix of the form U' D U, where U is orthogonal and
+*> D has "clustered" entries 1, ULP,..., ULP with random
+*> signs on the diagonal.
+*>
+*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
+*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
+*>
+*> (13) Symmetric matrix with random entries chosen from (-1,1).
+*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
+*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
+*> (16) Same as (8), but diagonal elements are all positive.
+*> (17) Same as (9), but diagonal elements are all positive.
+*> (18) Same as (10), but diagonal elements are all positive.
+*> (19) Same as (16), but multiplied by SQRT( overflow threshold )
+*> (20) Same as (16), but multiplied by SQRT( underflow threshold )
+*> (21) A diagonally dominant tridiagonal matrix with geometrically
+*> spaced diagonal entries 1, ..., ULP.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] NSIZES
+*> \verbatim
+*> NSIZES is INTEGER
+*> The number of sizes of matrices to use. If it is zero,
+*> SCHKST2STG does nothing. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NN
+*> \verbatim
+*> NN is INTEGER array, dimension (NSIZES)
+*> An array containing the sizes to be used for the matrices.
+*> Zero values will be skipped. The values must be at least
+*> zero.
+*> \endverbatim
+*>
+*> \param[in] NTYPES
+*> \verbatim
+*> NTYPES is INTEGER
+*> The number of elements in DOTYPE. If it is zero, SCHKST2STG
+*> does nothing. It must be at least zero. If it is MAXTYP+1
+*> and NSIZES is 1, then an additional type, MAXTYP+1 is
+*> defined, which is to use whatever matrix is in A. This
+*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
+*> DOTYPE(MAXTYP+1) is .TRUE. .
+*> \endverbatim
+*>
+*> \param[in] DOTYPE
+*> \verbatim
+*> DOTYPE is LOGICAL array, dimension (NTYPES)
+*> If DOTYPE(j) is .TRUE., then for each size in NN a
+*> matrix of that size and of type j will be generated.
+*> If NTYPES is smaller than the maximum number of types
+*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
+*> MAXTYP will not be generated. If NTYPES is larger
+*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
+*> will be ignored.
+*> \endverbatim
+*>
+*> \param[in,out] ISEED
+*> \verbatim
+*> ISEED is INTEGER array, dimension (4)
+*> On entry ISEED specifies the seed of the random number
+*> generator. The array elements should be between 0 and 4095;
+*> if not they will be reduced mod 4096. Also, ISEED(4) must
+*> be odd. The random number generator uses a linear
+*> congruential sequence limited to small integers, and so
+*> should produce machine independent random numbers. The
+*> values of ISEED are changed on exit, and can be used in the
+*> next call to SCHKST2STG to continue the same random number
+*> sequence.
+*> \endverbatim
+*>
+*> \param[in] THRESH
+*> \verbatim
+*> THRESH is REAL
+*> A test will count as "failed" if the "error", computed as
+*> described above, exceeds THRESH. Note that the error
+*> is scaled to be O(1), so THRESH should be a reasonably
+*> small multiple of 1, e.g., 10 or 100. In particular,
+*> it should not depend on the precision (single vs. double)
+*> or the size of the matrix. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NOUNIT
+*> \verbatim
+*> NOUNIT is INTEGER
+*> The FORTRAN unit number for printing out error messages
+*> (e.g., if a routine returns IINFO not equal to 0.)
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is REAL array of
+*> dimension ( LDA , max(NN) )
+*> Used to hold the matrix whose eigenvalues are to be
+*> computed. On exit, A contains the last matrix actually
+*> used.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of A. It must be at
+*> least 1 and at least max( NN ).
+*> \endverbatim
+*>
+*> \param[out] AP
+*> \verbatim
+*> AP is REAL array of
+*> dimension( max(NN)*max(NN+1)/2 )
+*> The matrix A stored in packed format.
+*> \endverbatim
+*>
+*> \param[out] SD
+*> \verbatim
+*> SD is REAL array of
+*> dimension( max(NN) )
+*> The diagonal of the tridiagonal matrix computed by SSYTRD.
+*> On exit, SD and SE contain the tridiagonal form of the
+*> matrix in A.
+*> \endverbatim
+*>
+*> \param[out] SE
+*> \verbatim
+*> SE is REAL array of
+*> dimension( max(NN) )
+*> The off-diagonal of the tridiagonal matrix computed by
+*> SSYTRD. On exit, SD and SE contain the tridiagonal form of
+*> the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D1
+*> \verbatim
+*> D1 is REAL array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by SSTEQR simlutaneously
+*> with Z. On exit, the eigenvalues in D1 correspond with the
+*> matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D2
+*> \verbatim
+*> D2 is REAL array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by SSTEQR if Z is not
+*> computed. On exit, the eigenvalues in D2 correspond with
+*> the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D3
+*> \verbatim
+*> D3 is REAL array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by SSTERF. On exit, the
+*> eigenvalues in D3 correspond with the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D4
+*> \verbatim
+*> D4 is REAL array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by SPTEQR(V).
+*> SPTEQR factors S as Z4 D4 Z4*
+*> On exit, the eigenvalues in D4 correspond with the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D5
+*> \verbatim
+*> D5 is REAL array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by SPTEQR(N)
+*> when Z is not computed. On exit, the
+*> eigenvalues in D4 correspond with the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] WA1
+*> \verbatim
+*> WA1 is REAL array of
+*> dimension( max(NN) )
+*> All eigenvalues of A, computed to high
+*> absolute accuracy, with different range options.
+*> as computed by SSTEBZ.
+*> \endverbatim
+*>
+*> \param[out] WA2
+*> \verbatim
+*> WA2 is REAL array of
+*> dimension( max(NN) )
+*> Selected eigenvalues of A, computed to high
+*> absolute accuracy, with different range options.
+*> as computed by SSTEBZ.
+*> Choose random values for IL and IU, and ask for the
+*> IL-th through IU-th eigenvalues.
+*> \endverbatim
+*>
+*> \param[out] WA3
+*> \verbatim
+*> WA3 is REAL array of
+*> dimension( max(NN) )
+*> Selected eigenvalues of A, computed to high
+*> absolute accuracy, with different range options.
+*> as computed by SSTEBZ.
+*> Determine the values VL and VU of the IL-th and IU-th
+*> eigenvalues and ask for all eigenvalues in this range.
+*> \endverbatim
+*>
+*> \param[out] WR
+*> \verbatim
+*> WR is REAL array of
+*> dimension( max(NN) )
+*> All eigenvalues of A, computed to high
+*> absolute accuracy, with different options.
+*> as computed by SSTEBZ.
+*> \endverbatim
+*>
+*> \param[out] U
+*> \verbatim
+*> U is REAL array of
+*> dimension( LDU, max(NN) ).
+*> The orthogonal matrix computed by SSYTRD + SORGTR.
+*> \endverbatim
+*>
+*> \param[in] LDU
+*> \verbatim
+*> LDU is INTEGER
+*> The leading dimension of U, Z, and V. It must be at least 1
+*> and at least max( NN ).
+*> \endverbatim
+*>
+*> \param[out] V
+*> \verbatim
+*> V is REAL array of
+*> dimension( LDU, max(NN) ).
+*> The Housholder vectors computed by SSYTRD in reducing A to
+*> tridiagonal form. The vectors computed with UPLO='U' are
+*> in the upper triangle, and the vectors computed with UPLO='L'
+*> are in the lower triangle. (As described in SSYTRD, the
+*> sub- and superdiagonal are not set to 1, although the
+*> true Householder vector has a 1 in that position. The
+*> routines that use V, such as SORGTR, set those entries to
+*> 1 before using them, and then restore them later.)
+*> \endverbatim
+*>
+*> \param[out] VP
+*> \verbatim
+*> VP is REAL array of
+*> dimension( max(NN)*max(NN+1)/2 )
+*> The matrix V stored in packed format.
+*> \endverbatim
+*>
+*> \param[out] TAU
+*> \verbatim
+*> TAU is REAL array of
+*> dimension( max(NN) )
+*> The Householder factors computed by SSYTRD in reducing A
+*> to tridiagonal form.
+*> \endverbatim
+*>
+*> \param[out] Z
+*> \verbatim
+*> Z is REAL array of
+*> dimension( LDU, max(NN) ).
+*> The orthogonal matrix of eigenvectors computed by SSTEQR,
+*> SPTEQR, and SSTEIN.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is REAL array of
+*> dimension( LWORK )
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The number of entries in WORK. This must be at least
+*> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 3 * Nmax**2
+*> where Nmax = max( NN(j), 2 ) and lg = log base 2.
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array,
+*> Workspace.
+*> \endverbatim
+*>
+*> \param[out] LIWORK
+*> \verbatim
+*> LIWORK is INTEGER
+*> The number of entries in IWORK. This must be at least
+*> 6 + 6*Nmax + 5 * Nmax * lg Nmax
+*> where Nmax = max( NN(j), 2 ) and lg = log base 2.
+*> \endverbatim
+*>
+*> \param[out] RESULT
+*> \verbatim
+*> RESULT is REAL array, dimension (26)
+*> The values computed by the tests described above.
+*> The values are currently limited to 1/ulp, to avoid
+*> overflow.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> If 0, then everything ran OK.
+*> -1: NSIZES < 0
+*> -2: Some NN(j) < 0
+*> -3: NTYPES < 0
+*> -5: THRESH < 0
+*> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
+*> -23: LDU < 1 or LDU < NMAX.
+*> -29: LWORK too small.
+*> If SLATMR, SLATMS, SSYTRD, SORGTR, SSTEQR, SSTERF,
+*> or SORMC2 returns an error code, the
+*> absolute value of it is returned.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> Some Local Variables and Parameters:
+*> ---- ----- --------- --- ----------
+*> ZERO, ONE Real 0 and 1.
+*> MAXTYP The number of types defined.
+*> NTEST The number of tests performed, or which can
+*> be performed so far, for the current matrix.
+*> NTESTT The total number of tests performed so far.
+*> NBLOCK Blocksize as returned by ENVIR.
+*> NMAX Largest value in NN.
+*> NMATS The number of matrices generated so far.
+*> NERRS The number of tests which have exceeded THRESH
+*> so far.
+*> COND, IMODE Values to be passed to the matrix generators.
+*> ANORM Norm of A; passed to matrix generators.
+*>
+*> OVFL, UNFL Overflow and underflow thresholds.
+*> ULP, ULPINV Finest relative precision and its inverse.
+*> RTOVFL, RTUNFL Square roots of the previous 2 values.
+*> The following four arrays decode JTYPE:
+*> KTYPE(j) The general type (1-10) for type "j".
+*> KMODE(j) The MODE value to be passed to the matrix
+*> generator for type "j".
+*> KMAGN(j) The order of magnitude ( O(1),
+*> O(overflow^(1/2) ), O(underflow^(1/2) )
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup single_eig
+*
+* =====================================================================
+ SUBROUTINE SCHKST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+ $ NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
+ $ WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
+ $ LWORK, IWORK, LIWORK, RESULT, INFO )
+*
+* -- LAPACK test routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDU, LIWORK, LWORK, NOUNIT, NSIZES,
+ $ NTYPES
+ REAL THRESH
+* ..
+* .. Array Arguments ..
+ LOGICAL DOTYPE( * )
+ INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+ REAL A( LDA, * ), AP( * ), D1( * ), D2( * ),
+ $ D3( * ), D4( * ), D5( * ), RESULT( * ),
+ $ SD( * ), SE( * ), TAU( * ), U( LDU, * ),
+ $ V( LDU, * ), VP( * ), WA1( * ), WA2( * ),
+ $ WA3( * ), WORK( * ), WR( * ), Z( LDU, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE, TWO, EIGHT, TEN, HUN
+ PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
+ $ EIGHT = 8.0E0, TEN = 10.0E0, HUN = 100.0E0 )
+ REAL HALF
+ PARAMETER ( HALF = ONE / TWO )
+ INTEGER MAXTYP
+ PARAMETER ( MAXTYP = 21 )
+ LOGICAL SRANGE
+ PARAMETER ( SRANGE = .FALSE. )
+ LOGICAL SREL
+ PARAMETER ( SREL = .FALSE. )
+* ..
+* .. Local Scalars ..
+ LOGICAL BADNN, TRYRAC
+ INTEGER I, IINFO, IL, IMODE, ITEMP, ITYPE, IU, J, JC,
+ $ JR, JSIZE, JTYPE, LGN, LIWEDC, LOG2UI, LWEDC,
+ $ M, M2, M3, MTYPES, N, NAP, NBLOCK, NERRS,
+ $ NMATS, NMAX, NSPLIT, NTEST, NTESTT, LH, LW
+ REAL ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
+ $ RTUNFL, TEMP1, TEMP2, TEMP3, TEMP4, ULP,
+ $ ULPINV, UNFL, VL, VU
+* ..
+* .. Local Arrays ..
+ INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
+ $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
+ $ KTYPE( MAXTYP )
+ REAL DUMMA( 1 )
+* ..
+* .. External Functions ..
+ INTEGER ILAENV
+ REAL SLAMCH, SLARND, SSXT1
+ EXTERNAL ILAENV, SLAMCH, SLARND, SSXT1
+* ..
+* .. External Subroutines ..
+ EXTERNAL SCOPY, SLABAD, SLACPY, SLASET, SLASUM, SLATMR,
+ $ SLATMS, SOPGTR, SORGTR, SPTEQR, SSPT21, SSPTRD,
+ $ SSTEBZ, SSTECH, SSTEDC, SSTEMR, SSTEIN, SSTEQR,
+ $ SSTERF, SSTT21, SSTT22, SSYT21, SSYTRD, XERBLA,
+ $ SSYTRD_2STAGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, REAL, INT, LOG, MAX, MIN, SQRT
+* ..
+* .. Data statements ..
+ DATA KTYPE / 1, 2, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 8,
+ $ 8, 8, 9, 9, 9, 9, 9, 10 /
+ DATA KMAGN / 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
+ $ 2, 3, 1, 1, 1, 2, 3, 1 /
+ DATA KMODE / 0, 0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
+ $ 0, 0, 4, 3, 1, 4, 4, 3 /
+* ..
+* .. Executable Statements ..
+*
+* Keep ftnchek happy
+ IDUMMA( 1 ) = 1
+*
+* Check for errors
+*
+ NTESTT = 0
+ INFO = 0
+*
+* Important constants
+*
+ BADNN = .FALSE.
+ TRYRAC = .TRUE.
+ NMAX = 1
+ DO 10 J = 1, NSIZES
+ NMAX = MAX( NMAX, NN( J ) )
+ IF( NN( J ).LT.0 )
+ $ BADNN = .TRUE.
+ 10 CONTINUE
+*
+ NBLOCK = ILAENV( 1, 'SSYTRD', 'L', NMAX, -1, -1, -1 )
+ NBLOCK = MIN( NMAX, MAX( 1, NBLOCK ) )
+*
+* Check for errors
+*
+ IF( NSIZES.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( BADNN ) THEN
+ INFO = -2
+ ELSE IF( NTYPES.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.NMAX ) THEN
+ INFO = -9
+ ELSE IF( LDU.LT.NMAX ) THEN
+ INFO = -23
+ ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
+ INFO = -29
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SCHKST2STG', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
+ $ RETURN
+*
+* More Important constants
+*
+ UNFL = SLAMCH( 'Safe minimum' )
+ OVFL = ONE / UNFL
+ CALL SLABAD( UNFL, OVFL )
+ ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
+ ULPINV = ONE / ULP
+ LOG2UI = INT( LOG( ULPINV ) / LOG( TWO ) )
+ RTUNFL = SQRT( UNFL )
+ RTOVFL = SQRT( OVFL )
+*
+* Loop over sizes, types
+*
+ DO 20 I = 1, 4
+ ISEED2( I ) = ISEED( I )
+ 20 CONTINUE
+ NERRS = 0
+ NMATS = 0
+*
+ DO 310 JSIZE = 1, NSIZES
+ N = NN( JSIZE )
+ IF( N.GT.0 ) THEN
+ LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
+ IF( 2**LGN.LT.N )
+ $ LGN = LGN + 1
+ IF( 2**LGN.LT.N )
+ $ LGN = LGN + 1
+ LWEDC = 1 + 4*N + 2*N*LGN + 4*N**2
+ LIWEDC = 6 + 6*N + 5*N*LGN
+ ELSE
+ LWEDC = 8
+ LIWEDC = 12
+ END IF
+ NAP = ( N*( N+1 ) ) / 2
+ ANINV = ONE / REAL( MAX( 1, N ) )
+*
+ IF( NSIZES.NE.1 ) THEN
+ MTYPES = MIN( MAXTYP, NTYPES )
+ ELSE
+ MTYPES = MIN( MAXTYP+1, NTYPES )
+ END IF
+*
+ DO 300 JTYPE = 1, MTYPES
+ IF( .NOT.DOTYPE( JTYPE ) )
+ $ GO TO 300
+ NMATS = NMATS + 1
+ NTEST = 0
+*
+ DO 30 J = 1, 4
+ IOLDSD( J ) = ISEED( J )
+ 30 CONTINUE
+*
+* Compute "A"
+*
+* Control parameters:
+*
+* KMAGN KMODE KTYPE
+* =1 O(1) clustered 1 zero
+* =2 large clustered 2 identity
+* =3 small exponential (none)
+* =4 arithmetic diagonal, (w/ eigenvalues)
+* =5 random log symmetric, w/ eigenvalues
+* =6 random (none)
+* =7 random diagonal
+* =8 random symmetric
+* =9 positive definite
+* =10 diagonally dominant tridiagonal
+*
+ IF( MTYPES.GT.MAXTYP )
+ $ GO TO 100
+*
+ ITYPE = KTYPE( JTYPE )
+ IMODE = KMODE( JTYPE )
+*
+* Compute norm
+*
+ GO TO ( 40, 50, 60 )KMAGN( JTYPE )
+*
+ 40 CONTINUE
+ ANORM = ONE
+ GO TO 70
+*
+ 50 CONTINUE
+ ANORM = ( RTOVFL*ULP )*ANINV
+ GO TO 70
+*
+ 60 CONTINUE
+ ANORM = RTUNFL*N*ULPINV
+ GO TO 70
+*
+ 70 CONTINUE
+*
+ CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
+ IINFO = 0
+ IF( JTYPE.LE.15 ) THEN
+ COND = ULPINV
+ ELSE
+ COND = ULPINV*ANINV / TEN
+ END IF
+*
+* Special Matrices -- Identity & Jordan block
+*
+* Zero
+*
+ IF( ITYPE.EQ.1 ) THEN
+ IINFO = 0
+*
+ ELSE IF( ITYPE.EQ.2 ) THEN
+*
+* Identity
+*
+ DO 80 JC = 1, N
+ A( JC, JC ) = ANORM
+ 80 CONTINUE
+*
+ ELSE IF( ITYPE.EQ.4 ) THEN
+*
+* Diagonal Matrix, [Eigen]values Specified
+*
+ CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+*
+ ELSE IF( ITYPE.EQ.5 ) THEN
+*
+* Symmetric, eigenvalues specified
+*
+ CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+ ELSE IF( ITYPE.EQ.7 ) THEN
+*
+* Diagonal, random eigenvalues
+*
+ CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.8 ) THEN
+*
+* Symmetric, random eigenvalues
+*
+ CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.9 ) THEN
+*
+* Positive definite, eigenvalues specified.
+*
+ CALL SLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
+ $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+ ELSE IF( ITYPE.EQ.10 ) THEN
+*
+* Positive definite tridiagonal, eigenvalues specified.
+*
+ CALL SLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
+ $ ANORM, 1, 1, 'N', A, LDA, WORK( N+1 ),
+ $ IINFO )
+ DO 90 I = 2, N
+ TEMP1 = ABS( A( I-1, I ) ) /
+ $ SQRT( ABS( A( I-1, I-1 )*A( I, I ) ) )
+ IF( TEMP1.GT.HALF ) THEN
+ A( I-1, I ) = HALF*SQRT( ABS( A( I-1, I-1 )*A( I,
+ $ I ) ) )
+ A( I, I-1 ) = A( I-1, I )
+ END IF
+ 90 CONTINUE
+*
+ ELSE
+*
+ IINFO = 1
+ END IF
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ RETURN
+ END IF
+*
+ 100 CONTINUE
+*
+* Call SSYTRD and SORGTR to compute S and U from
+* upper triangle.
+*
+ CALL SLACPY( 'U', N, N, A, LDA, V, LDU )
+*
+ NTEST = 1
+ CALL SSYTRD( 'U', N, V, LDU, SD, SE, TAU, WORK, LWORK,
+ $ IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSYTRD(U)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 1 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL SLACPY( 'U', N, N, V, LDU, U, LDU )
+*
+ NTEST = 2
+ CALL SORGTR( 'U', N, U, LDU, TAU, WORK, LWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SORGTR(U)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 2 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do tests 1 and 2
+*
+ CALL SSYT21( 2, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
+ $ LDU, TAU, WORK, RESULT( 1 ) )
+ CALL SSYT21( 3, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
+ $ LDU, TAU, WORK, RESULT( 2 ) )
+*
+* Compute D1 the eigenvalues resulting from the tridiagonal
+* form using the standard 1-stage algorithm and use it as a
+* reference to compare with the 2-stage technique
+*
+* Compute D1 from the 1-stage and used as reference for the
+* 2-stage
+*
+ CALL SCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+*
+ CALL SSTEQR( 'N', N, D1, WORK, WORK( N+1 ), LDU,
+ $ WORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEQR(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 3 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* 2-STAGE TRD Upper case is used to compute D2.
+* Note to set SD and SE to zero to be sure not reusing
+* the one from above. Compare it with D1 computed
+* using the 1-stage.
+*
+ CALL SLASET( 'Full', N, 1, ZERO, ZERO, SD, 1 )
+ CALL SLASET( 'Full', N, 1, ZERO, ZERO, SE, 1 )
+ CALL SLACPY( "U", N, N, A, LDA, V, LDU )
+ LH = MAX(1, 4*N)
+ LW = LWORK - LH
+ CALL SSYTRD_2STAGE( 'N', "U", N, V, LDU, SD, SE, TAU,
+ $ WORK, LH, WORK( LH+1 ), LW, IINFO )
+*
+* Compute D2 from the 2-stage Upper case
+*
+ CALL SCOPY( N, SD, 1, D2, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+*
+ CALL SSTEQR( 'N', N, D2, WORK, WORK( N+1 ), LDU,
+ $ WORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEQR(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 3 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* 2-STAGE TRD Lower case is used to compute D3.
+* Note to set SD and SE to zero to be sure not reusing
+* the one from above. Compare it with D1 computed
+* using the 1-stage.
+*
+ CALL SLASET( 'Full', N, 1, ZERO, ZERO, SD, 1 )
+ CALL SLASET( 'Full', N, 1, ZERO, ZERO, SE, 1 )
+ CALL SLACPY( "L", N, N, A, LDA, V, LDU )
+ CALL SSYTRD_2STAGE( 'N', "L", N, V, LDU, SD, SE, TAU,
+ $ WORK, LH, WORK( LH+1 ), LW, IINFO )
+*
+* Compute D3 from the 2-stage Upper case
+*
+ CALL SCOPY( N, SD, 1, D3, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+*
+ CALL SSTEQR( 'N', N, D3, WORK, WORK( N+1 ), LDU,
+ $ WORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEQR(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 4 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+*
+* Do Tests 3 and 4 which are similar to 11 and 12 but with the
+* D1 computed using the standard 1-stage reduction as reference
+*
+ NTEST = 4
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ TEMP3 = ZERO
+ TEMP4 = ZERO
+*
+ DO 151 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
+ 151 CONTINUE
+*
+ RESULT( 3 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+ RESULT( 4 ) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
+*
+* Skip the SSYTRD for lower that since we replaced its testing
+* 3 and 4 by the 2-stage one.
+ GOTO 101
+*
+* Call SSYTRD and SORGTR to compute S and U from
+* lower triangle, do tests.
+*
+ CALL SLACPY( 'L', N, N, A, LDA, V, LDU )
+*
+ NTEST = 3
+ CALL SSYTRD( 'L', N, V, LDU, SD, SE, TAU, WORK, LWORK,
+ $ IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSYTRD(L)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 3 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL SLACPY( 'L', N, N, V, LDU, U, LDU )
+*
+ NTEST = 4
+ CALL SORGTR( 'L', N, U, LDU, TAU, WORK, LWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SORGTR(L)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 4 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL SSYT21( 2, 'Lower', N, 1, A, LDA, SD, SE, U, LDU, V,
+ $ LDU, TAU, WORK, RESULT( 3 ) )
+ CALL SSYT21( 3, 'Lower', N, 1, A, LDA, SD, SE, U, LDU, V,
+ $ LDU, TAU, WORK, RESULT( 4 ) )
+*
+*after skipping old tests 3 4 back to the normal
+*
+ 101 CONTINUE
+*
+* Store the upper triangle of A in AP
+*
+ I = 0
+ DO 120 JC = 1, N
+ DO 110 JR = 1, JC
+ I = I + 1
+ AP( I ) = A( JR, JC )
+ 110 CONTINUE
+ 120 CONTINUE
+*
+* Call SSPTRD and SOPGTR to compute S and U from AP
+*
+ CALL SCOPY( NAP, AP, 1, VP, 1 )
+*
+ NTEST = 5
+ CALL SSPTRD( 'U', N, VP, SD, SE, TAU, IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSPTRD(U)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 5 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ NTEST = 6
+ CALL SOPGTR( 'U', N, VP, TAU, U, LDU, WORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SOPGTR(U)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 6 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do tests 5 and 6
+*
+ CALL SSPT21( 2, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
+ $ WORK, RESULT( 5 ) )
+ CALL SSPT21( 3, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
+ $ WORK, RESULT( 6 ) )
+*
+* Store the lower triangle of A in AP
+*
+ I = 0
+ DO 140 JC = 1, N
+ DO 130 JR = JC, N
+ I = I + 1
+ AP( I ) = A( JR, JC )
+ 130 CONTINUE
+ 140 CONTINUE
+*
+* Call SSPTRD and SOPGTR to compute S and U from AP
+*
+ CALL SCOPY( NAP, AP, 1, VP, 1 )
+*
+ NTEST = 7
+ CALL SSPTRD( 'L', N, VP, SD, SE, TAU, IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSPTRD(L)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 7 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ NTEST = 8
+ CALL SOPGTR( 'L', N, VP, TAU, U, LDU, WORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SOPGTR(L)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 8 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL SSPT21( 2, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
+ $ WORK, RESULT( 7 ) )
+ CALL SSPT21( 3, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
+ $ WORK, RESULT( 8 ) )
+*
+* Call SSTEQR to compute D1, D2, and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL SCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+ CALL SLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
+*
+ NTEST = 9
+ CALL SSTEQR( 'V', N, D1, WORK, Z, LDU, WORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEQR(V)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 9 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Compute D2
+*
+ CALL SCOPY( N, SD, 1, D2, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+*
+ NTEST = 11
+ CALL SSTEQR( 'N', N, D2, WORK, WORK( N+1 ), LDU,
+ $ WORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEQR(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 11 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Compute D3 (using PWK method)
+*
+ CALL SCOPY( N, SD, 1, D3, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+*
+ NTEST = 12
+ CALL SSTERF( N, D3, WORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTERF', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 12 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 9 and 10
+*
+ CALL SSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
+ $ RESULT( 9 ) )
+*
+* Do Tests 11 and 12
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ TEMP3 = ZERO
+ TEMP4 = ZERO
+*
+ DO 150 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
+ 150 CONTINUE
+*
+ RESULT( 11 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+ RESULT( 12 ) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
+*
+* Do Test 13 -- Sturm Sequence Test of Eigenvalues
+* Go up by factors of two until it succeeds
+*
+ NTEST = 13
+ TEMP1 = THRESH*( HALF-ULP )
+*
+ DO 160 J = 0, LOG2UI
+ CALL SSTECH( N, SD, SE, D1, TEMP1, WORK, IINFO )
+ IF( IINFO.EQ.0 )
+ $ GO TO 170
+ TEMP1 = TEMP1*TWO
+ 160 CONTINUE
+*
+ 170 CONTINUE
+ RESULT( 13 ) = TEMP1
+*
+* For positive definite matrices ( JTYPE.GT.15 ) call SPTEQR
+* and do tests 14, 15, and 16 .
+*
+ IF( JTYPE.GT.15 ) THEN
+*
+* Compute D4 and Z4
+*
+ CALL SCOPY( N, SD, 1, D4, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+ CALL SLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
+*
+ NTEST = 14
+ CALL SPTEQR( 'V', N, D4, WORK, Z, LDU, WORK( N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SPTEQR(V)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 14 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 14 and 15
+*
+ CALL SSTT21( N, 0, SD, SE, D4, DUMMA, Z, LDU, WORK,
+ $ RESULT( 14 ) )
+*
+* Compute D5
+*
+ CALL SCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+*
+ NTEST = 16
+ CALL SPTEQR( 'N', N, D5, WORK, Z, LDU, WORK( N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SPTEQR(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 16 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 16
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 180 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D4( J ) ), ABS( D5( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D4( J )-D5( J ) ) )
+ 180 CONTINUE
+*
+ RESULT( 16 ) = TEMP2 / MAX( UNFL,
+ $ HUN*ULP*MAX( TEMP1, TEMP2 ) )
+ ELSE
+ RESULT( 14 ) = ZERO
+ RESULT( 15 ) = ZERO
+ RESULT( 16 ) = ZERO
+ END IF
+*
+* Call SSTEBZ with different options and do tests 17-18.
+*
+* If S is positive definite and diagonally dominant,
+* ask for all eigenvalues with high relative accuracy.
+*
+ VL = ZERO
+ VU = ZERO
+ IL = 0
+ IU = 0
+ IF( JTYPE.EQ.21 ) THEN
+ NTEST = 17
+ ABSTOL = UNFL + UNFL
+ CALL SSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
+ $ M, NSPLIT, WR, IWORK( 1 ), IWORK( N+1 ),
+ $ WORK, IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(A,rel)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 17 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do test 17
+*
+ TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
+ $ ( ONE-HALF )**4
+*
+ TEMP1 = ZERO
+ DO 190 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
+ $ ( ABSTOL+ABS( D4( J ) ) ) )
+ 190 CONTINUE
+*
+ RESULT( 17 ) = TEMP1 / TEMP2
+ ELSE
+ RESULT( 17 ) = ZERO
+ END IF
+*
+* Now ask for all eigenvalues with high absolute accuracy.
+*
+ NTEST = 18
+ ABSTOL = UNFL + UNFL
+ CALL SSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
+ $ NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), WORK,
+ $ IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(A)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 18 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do test 18
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 200 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D3( J ) ), ABS( WA1( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D3( J )-WA1( J ) ) )
+ 200 CONTINUE
+*
+ RESULT( 18 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Choose random values for IL and IU, and ask for the
+* IL-th through IU-th eigenvalues.
+*
+ NTEST = 19
+ IF( N.LE.1 ) THEN
+ IL = 1
+ IU = N
+ ELSE
+ IL = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
+ IU = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
+ IF( IU.LT.IL ) THEN
+ ITEMP = IU
+ IU = IL
+ IL = ITEMP
+ END IF
+ END IF
+*
+ CALL SSTEBZ( 'I', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
+ $ M2, NSPLIT, WA2, IWORK( 1 ), IWORK( N+1 ),
+ $ WORK, IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(I)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 19 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Determine the values VL and VU of the IL-th and IU-th
+* eigenvalues and ask for all eigenvalues in this range.
+*
+ IF( N.GT.0 ) THEN
+ IF( IL.NE.1 ) THEN
+ VL = WA1( IL ) - MAX( HALF*( WA1( IL )-WA1( IL-1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ ELSE
+ VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = WA1( IU ) + MAX( HALF*( WA1( IU+1 )-WA1( IU ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ ELSE
+ VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ END IF
+ ELSE
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ CALL SSTEBZ( 'V', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
+ $ M3, NSPLIT, WA3, IWORK( 1 ), IWORK( N+1 ),
+ $ WORK, IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(V)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 19 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.NE.0 ) THEN
+ RESULT( 19 ) = ULPINV
+ GO TO 280
+ END IF
+*
+* Do test 19
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( N ) ), ABS( WA1( 1 ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+*
+ RESULT( 19 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP )
+*
+* Call SSTEIN to compute eigenvectors corresponding to
+* eigenvalues in WA1. (First call SSTEBZ again, to make sure
+* it returns these eigenvalues in the correct order.)
+*
+ NTEST = 21
+ CALL SSTEBZ( 'A', 'B', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
+ $ NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), WORK,
+ $ IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(A,B)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 20 ) = ULPINV
+ RESULT( 21 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL SSTEIN( N, SD, SE, M, WA1, IWORK( 1 ), IWORK( N+1 ), Z,
+ $ LDU, WORK, IWORK( 2*N+1 ), IWORK( 3*N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEIN', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 20 ) = ULPINV
+ RESULT( 21 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do tests 20 and 21
+*
+ CALL SSTT21( N, 0, SD, SE, WA1, DUMMA, Z, LDU, WORK,
+ $ RESULT( 20 ) )
+*
+* Call SSTEDC(I) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL SCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+ CALL SLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
+*
+ NTEST = 22
+ CALL SSTEDC( 'I', N, D1, WORK, Z, LDU, WORK( N+1 ), LWEDC-N,
+ $ IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEDC(I)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 22 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 22 and 23
+*
+ CALL SSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
+ $ RESULT( 22 ) )
+*
+* Call SSTEDC(V) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL SCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+ CALL SLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
+*
+ NTEST = 24
+ CALL SSTEDC( 'V', N, D1, WORK, Z, LDU, WORK( N+1 ), LWEDC-N,
+ $ IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEDC(V)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 24 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 24 and 25
+*
+ CALL SSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
+ $ RESULT( 24 ) )
+*
+* Call SSTEDC(N) to compute D2, do tests.
+*
+* Compute D2
+*
+ CALL SCOPY( N, SD, 1, D2, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+ CALL SLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
+*
+ NTEST = 26
+ CALL SSTEDC( 'N', N, D2, WORK, Z, LDU, WORK( N+1 ), LWEDC-N,
+ $ IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEDC(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 26 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 26
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+*
+ DO 210 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ 210 CONTINUE
+*
+ RESULT( 26 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Only test SSTEMR if IEEE compliant
+*
+ IF( ILAENV( 10, 'SSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 .AND.
+ $ ILAENV( 11, 'SSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 ) THEN
+*
+* Call SSTEMR, do test 27 (relative eigenvalue accuracy)
+*
+* If S is positive definite and diagonally dominant,
+* ask for all eigenvalues with high relative accuracy.
+*
+ VL = ZERO
+ VU = ZERO
+ IL = 0
+ IU = 0
+ IF( JTYPE.EQ.21 .AND. SREL ) THEN
+ NTEST = 27
+ ABSTOL = UNFL + UNFL
+ CALL SSTEMR( 'V', 'A', N, SD, SE, VL, VU, IL, IU,
+ $ M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ WORK, LWORK, IWORK( 2*N+1 ), LWORK-2*N,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEMR(V,A,rel)',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 27 ) = ULPINV
+ GO TO 270
+ END IF
+ END IF
+*
+* Do test 27
+*
+ TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
+ $ ( ONE-HALF )**4
+*
+ TEMP1 = ZERO
+ DO 220 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
+ $ ( ABSTOL+ABS( D4( J ) ) ) )
+ 220 CONTINUE
+*
+ RESULT( 27 ) = TEMP1 / TEMP2
+*
+ IL = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
+ IU = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
+ IF( IU.LT.IL ) THEN
+ ITEMP = IU
+ IU = IL
+ IL = ITEMP
+ END IF
+*
+ IF( SRANGE ) THEN
+ NTEST = 28
+ ABSTOL = UNFL + UNFL
+ CALL SSTEMR( 'V', 'I', N, SD, SE, VL, VU, IL, IU,
+ $ M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ WORK, LWORK, IWORK( 2*N+1 ),
+ $ LWORK-2*N, IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEMR(V,I,rel)',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 28 ) = ULPINV
+ GO TO 270
+ END IF
+ END IF
+*
+*
+* Do test 28
+*
+ TEMP2 = TWO*( TWO*N-ONE )*ULP*
+ $ ( ONE+EIGHT*HALF**2 ) / ( ONE-HALF )**4
+*
+ TEMP1 = ZERO
+ DO 230 J = IL, IU
+ TEMP1 = MAX( TEMP1, ABS( WR( J-IL+1 )-D4( N-J+
+ $ 1 ) ) / ( ABSTOL+ABS( WR( J-IL+1 ) ) ) )
+ 230 CONTINUE
+*
+ RESULT( 28 ) = TEMP1 / TEMP2
+ ELSE
+ RESULT( 28 ) = ZERO
+ END IF
+ ELSE
+ RESULT( 27 ) = ZERO
+ RESULT( 28 ) = ZERO
+ END IF
+*
+* Call SSTEMR(V,I) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL SCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+ CALL SLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
+*
+ IF( SRANGE ) THEN
+ NTEST = 29
+ IL = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
+ IU = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
+ IF( IU.LT.IL ) THEN
+ ITEMP = IU
+ IU = IL
+ IL = ITEMP
+ END IF
+ CALL SSTEMR( 'V', 'I', N, D5, WORK, VL, VU, IL, IU,
+ $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEMR(V,I)', IINFO,
+ $ N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 29 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 29 and 30
+*
+ CALL SSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
+ $ M, RESULT( 29 ) )
+*
+* Call SSTEMR to compute D2, do tests.
+*
+* Compute D2
+*
+ CALL SCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+*
+ NTEST = 31
+ CALL SSTEMR( 'N', 'I', N, D5, WORK, VL, VU, IL, IU,
+ $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEMR(N,I)', IINFO,
+ $ N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 31 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 31
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+*
+ DO 240 J = 1, IU - IL + 1
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
+ $ ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ 240 CONTINUE
+*
+ RESULT( 31 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+*
+* Call SSTEMR(V,V) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL SCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+ CALL SLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
+*
+ NTEST = 32
+*
+ IF( N.GT.0 ) THEN
+ IF( IL.NE.1 ) THEN
+ VL = D2( IL ) - MAX( HALF*
+ $ ( D2( IL )-D2( IL-1 ) ), ULP*ANORM,
+ $ TWO*RTUNFL )
+ ELSE
+ VL = D2( 1 ) - MAX( HALF*( D2( N )-D2( 1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = D2( IU ) + MAX( HALF*
+ $ ( D2( IU+1 )-D2( IU ) ), ULP*ANORM,
+ $ TWO*RTUNFL )
+ ELSE
+ VU = D2( N ) + MAX( HALF*( D2( N )-D2( 1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ END IF
+ ELSE
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ CALL SSTEMR( 'V', 'V', N, D5, WORK, VL, VU, IL, IU,
+ $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEMR(V,V)', IINFO,
+ $ N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 32 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 32 and 33
+*
+ CALL SSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
+ $ M, RESULT( 32 ) )
+*
+* Call SSTEMR to compute D2, do tests.
+*
+* Compute D2
+*
+ CALL SCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+*
+ NTEST = 34
+ CALL SSTEMR( 'N', 'V', N, D5, WORK, VL, VU, IL, IU,
+ $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEMR(N,V)', IINFO,
+ $ N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 34 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 34
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+*
+ DO 250 J = 1, IU - IL + 1
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
+ $ ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ 250 CONTINUE
+*
+ RESULT( 34 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+ ELSE
+ RESULT( 29 ) = ZERO
+ RESULT( 30 ) = ZERO
+ RESULT( 31 ) = ZERO
+ RESULT( 32 ) = ZERO
+ RESULT( 33 ) = ZERO
+ RESULT( 34 ) = ZERO
+ END IF
+*
+*
+* Call SSTEMR(V,A) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL SCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+*
+ NTEST = 35
+*
+ CALL SSTEMR( 'V', 'A', N, D5, WORK, VL, VU, IL, IU,
+ $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEMR(V,A)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 35 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 35 and 36
+*
+ CALL SSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, M,
+ $ RESULT( 35 ) )
+*
+* Call SSTEMR to compute D2, do tests.
+*
+* Compute D2
+*
+ CALL SCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL SCOPY( N-1, SE, 1, WORK, 1 )
+*
+ NTEST = 37
+ CALL SSTEMR( 'N', 'A', N, D5, WORK, VL, VU, IL, IU,
+ $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEMR(N,A)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 37 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 34
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+*
+ DO 260 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ 260 CONTINUE
+*
+ RESULT( 37 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+ END IF
+ 270 CONTINUE
+ 280 CONTINUE
+ NTESTT = NTESTT + NTEST
+*
+* End of Loop -- Check for RESULT(j) > THRESH
+*
+*
+* Print out tests which fail.
+*
+ DO 290 JR = 1, NTEST
+ IF( RESULT( JR ).GE.THRESH ) THEN
+*
+* If this is the first test to fail,
+* print a header to the data file.
+*
+ IF( NERRS.EQ.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'SST'
+ WRITE( NOUNIT, FMT = 9997 )
+ WRITE( NOUNIT, FMT = 9996 )
+ WRITE( NOUNIT, FMT = 9995 )'Symmetric'
+ WRITE( NOUNIT, FMT = 9994 )
+*
+* Tests performed
+*
+ WRITE( NOUNIT, FMT = 9988 )
+ END IF
+ NERRS = NERRS + 1
+ WRITE( NOUNIT, FMT = 9990 )N, IOLDSD, JTYPE, JR,
+ $ RESULT( JR )
+ END IF
+ 290 CONTINUE
+ 300 CONTINUE
+ 310 CONTINUE
+*
+* Summary
+*
+ CALL SLASUM( 'SST', NOUNIT, NERRS, NTESTT )
+ RETURN
+*
+ 9999 FORMAT( ' SCHKST2STG: ', A, ' returned INFO=', I6, '.', / 9X,
+ $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
+*
+ 9998 FORMAT( / 1X, A3, ' -- Real Symmetric eigenvalue problem' )
+ 9997 FORMAT( ' Matrix types (see SCHKST2STG for details): ' )
+*
+ 9996 FORMAT( / ' Special Matrices:',
+ $ / ' 1=Zero matrix. ',
+ $ ' 5=Diagonal: clustered entries.',
+ $ / ' 2=Identity matrix. ',
+ $ ' 6=Diagonal: large, evenly spaced.',
+ $ / ' 3=Diagonal: evenly spaced entries. ',
+ $ ' 7=Diagonal: small, evenly spaced.',
+ $ / ' 4=Diagonal: geometr. spaced entries.' )
+ 9995 FORMAT( ' Dense ', A, ' Matrices:',
+ $ / ' 8=Evenly spaced eigenvals. ',
+ $ ' 12=Small, evenly spaced eigenvals.',
+ $ / ' 9=Geometrically spaced eigenvals. ',
+ $ ' 13=Matrix with random O(1) entries.',
+ $ / ' 10=Clustered eigenvalues. ',
+ $ ' 14=Matrix with large random entries.',
+ $ / ' 11=Large, evenly spaced eigenvals. ',
+ $ ' 15=Matrix with small random entries.' )
+ 9994 FORMAT( ' 16=Positive definite, evenly spaced eigenvalues',
+ $ / ' 17=Positive definite, geometrically spaced eigenvlaues',
+ $ / ' 18=Positive definite, clustered eigenvalues',
+ $ / ' 19=Positive definite, small evenly spaced eigenvalues',
+ $ / ' 20=Positive definite, large evenly spaced eigenvalues',
+ $ / ' 21=Diagonally dominant tridiagonal, geometrically',
+ $ ' spaced eigenvalues' )
+*
+ 9990 FORMAT( ' N=', I5, ', seed=', 4( I4, ',' ), ' type ', I2,
+ $ ', test(', I2, ')=', G10.3 )
+*
+ 9988 FORMAT( / 'Test performed: see SCHKST2STG for details.', / )
+* End of SCHKST2STG
+*
+ END
diff --git a/TESTING/EIG/sdrvsg2stg.f b/TESTING/EIG/sdrvsg2stg.f
new file mode 100644
index 00000000..c39af7fd
--- /dev/null
+++ b/TESTING/EIG/sdrvsg2stg.f
@@ -0,0 +1,1365 @@
+*> \brief \b SDRVSG2STG
+*
+* @generated from ddrvsg2stg.f, fortran d -> s, Sun Nov 6 13:47:49 2016
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE SDRVSG2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+* NOUNIT, A, LDA, B, LDB, D, D2, Z, LDZ, AB,
+* BB, AP, BP, WORK, NWORK, IWORK, LIWORK,
+* RESULT, INFO )
+*
+* IMPLICIT NONE
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDB, LDZ, LIWORK, NOUNIT, NSIZES,
+* $ NTYPES, NWORK
+* REAL THRESH
+* ..
+* .. Array Arguments ..
+* LOGICAL DOTYPE( * )
+* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+* REAL A( LDA, * ), AB( LDA, * ), AP( * ),
+* $ B( LDB, * ), BB( LDB, * ), BP( * ), D( * ),
+* $ RESULT( * ), WORK( * ), Z( LDZ, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> SDRVSG2STG checks the real symmetric generalized eigenproblem
+*> drivers.
+*>
+*> SSYGV computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric-definite generalized
+*> eigenproblem.
+*>
+*> SSYGVD computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric-definite generalized
+*> eigenproblem using a divide and conquer algorithm.
+*>
+*> SSYGVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a real symmetric-definite generalized
+*> eigenproblem.
+*>
+*> SSPGV computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric-definite generalized
+*> eigenproblem in packed storage.
+*>
+*> SSPGVD computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric-definite generalized
+*> eigenproblem in packed storage using a divide and
+*> conquer algorithm.
+*>
+*> SSPGVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a real symmetric-definite generalized
+*> eigenproblem in packed storage.
+*>
+*> SSBGV computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric-definite banded
+*> generalized eigenproblem.
+*>
+*> SSBGVD computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric-definite banded
+*> generalized eigenproblem using a divide and conquer
+*> algorithm.
+*>
+*> SSBGVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a real symmetric-definite banded
+*> generalized eigenproblem.
+*>
+*> When SDRVSG2STG is called, a number of matrix "sizes" ("n's") and a
+*> number of matrix "types" are specified. For each size ("n")
+*> and each type of matrix, one matrix A of the given type will be
+*> generated; a random well-conditioned matrix B is also generated
+*> and the pair (A,B) is used to test the drivers.
+*>
+*> For each pair (A,B), the following tests are performed:
+*>
+*> (1) SSYGV with ITYPE = 1 and UPLO ='U':
+*>
+*> | A Z - B Z D | / ( |A| |Z| n ulp )
+*> | D - D2 | / ( |D| ulp ) where D is computed by
+*> SSYGV and D2 is computed by
+*> SSYGV_2STAGE. This test is
+*> only performed for SSYGV
+*>
+*> (2) as (1) but calling SSPGV
+*> (3) as (1) but calling SSBGV
+*> (4) as (1) but with UPLO = 'L'
+*> (5) as (4) but calling SSPGV
+*> (6) as (4) but calling SSBGV
+*>
+*> (7) SSYGV with ITYPE = 2 and UPLO ='U':
+*>
+*> | A B Z - Z D | / ( |A| |Z| n ulp )
+*>
+*> (8) as (7) but calling SSPGV
+*> (9) as (7) but with UPLO = 'L'
+*> (10) as (9) but calling SSPGV
+*>
+*> (11) SSYGV with ITYPE = 3 and UPLO ='U':
+*>
+*> | B A Z - Z D | / ( |A| |Z| n ulp )
+*>
+*> (12) as (11) but calling SSPGV
+*> (13) as (11) but with UPLO = 'L'
+*> (14) as (13) but calling SSPGV
+*>
+*> SSYGVD, SSPGVD and SSBGVD performed the same 14 tests.
+*>
+*> SSYGVX, SSPGVX and SSBGVX performed the above 14 tests with
+*> the parameter RANGE = 'A', 'N' and 'I', respectively.
+*>
+*> The "sizes" are specified by an array NN(1:NSIZES); the value
+*> of each element NN(j) specifies one size.
+*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
+*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
+*> This type is used for the matrix A which has half-bandwidth KA.
+*> B is generated as a well-conditioned positive definite matrix
+*> with half-bandwidth KB (<= KA).
+*> Currently, the list of possible types for A is:
+*>
+*> (1) The zero matrix.
+*> (2) The identity matrix.
+*>
+*> (3) A diagonal matrix with evenly spaced entries
+*> 1, ..., ULP and random signs.
+*> (ULP = (first number larger than 1) - 1 )
+*> (4) A diagonal matrix with geometrically spaced entries
+*> 1, ..., ULP and random signs.
+*> (5) A diagonal matrix with "clustered" entries
+*> 1, ULP, ..., ULP and random signs.
+*>
+*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
+*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
+*>
+*> (8) A matrix of the form U* D U, where U is orthogonal and
+*> D has evenly spaced entries 1, ..., ULP with random signs
+*> on the diagonal.
+*>
+*> (9) A matrix of the form U* D U, where U is orthogonal and
+*> D has geometrically spaced entries 1, ..., ULP with random
+*> signs on the diagonal.
+*>
+*> (10) A matrix of the form U* D U, where U is orthogonal and
+*> D has "clustered" entries 1, ULP,..., ULP with random
+*> signs on the diagonal.
+*>
+*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
+*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
+*>
+*> (13) symmetric matrix with random entries chosen from (-1,1).
+*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
+*> (15) Same as (13), but multiplied by SQRT( underflow threshold)
+*>
+*> (16) Same as (8), but with KA = 1 and KB = 1
+*> (17) Same as (8), but with KA = 2 and KB = 1
+*> (18) Same as (8), but with KA = 2 and KB = 2
+*> (19) Same as (8), but with KA = 3 and KB = 1
+*> (20) Same as (8), but with KA = 3 and KB = 2
+*> (21) Same as (8), but with KA = 3 and KB = 3
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \verbatim
+*> NSIZES INTEGER
+*> The number of sizes of matrices to use. If it is zero,
+*> SDRVSG2STG does nothing. It must be at least zero.
+*> Not modified.
+*>
+*> NN INTEGER array, dimension (NSIZES)
+*> An array containing the sizes to be used for the matrices.
+*> Zero values will be skipped. The values must be at least
+*> zero.
+*> Not modified.
+*>
+*> NTYPES INTEGER
+*> The number of elements in DOTYPE. If it is zero, SDRVSG2STG
+*> does nothing. It must be at least zero. If it is MAXTYP+1
+*> and NSIZES is 1, then an additional type, MAXTYP+1 is
+*> defined, which is to use whatever matrix is in A. This
+*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
+*> DOTYPE(MAXTYP+1) is .TRUE. .
+*> Not modified.
+*>
+*> DOTYPE LOGICAL array, dimension (NTYPES)
+*> If DOTYPE(j) is .TRUE., then for each size in NN a
+*> matrix of that size and of type j will be generated.
+*> If NTYPES is smaller than the maximum number of types
+*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
+*> MAXTYP will not be generated. If NTYPES is larger
+*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
+*> will be ignored.
+*> Not modified.
+*>
+*> ISEED INTEGER array, dimension (4)
+*> On entry ISEED specifies the seed of the random number
+*> generator. The array elements should be between 0 and 4095;
+*> if not they will be reduced mod 4096. Also, ISEED(4) must
+*> be odd. The random number generator uses a linear
+*> congruential sequence limited to small integers, and so
+*> should produce machine independent random numbers. The
+*> values of ISEED are changed on exit, and can be used in the
+*> next call to SDRVSG2STG to continue the same random number
+*> sequence.
+*> Modified.
+*>
+*> THRESH REAL
+*> A test will count as "failed" if the "error", computed as
+*> described above, exceeds THRESH. Note that the error
+*> is scaled to be O(1), so THRESH should be a reasonably
+*> small multiple of 1, e.g., 10 or 100. In particular,
+*> it should not depend on the precision (single vs. real)
+*> or the size of the matrix. It must be at least zero.
+*> Not modified.
+*>
+*> NOUNIT INTEGER
+*> The FORTRAN unit number for printing out error messages
+*> (e.g., if a routine returns IINFO not equal to 0.)
+*> Not modified.
+*>
+*> A REAL array, dimension (LDA , max(NN))
+*> Used to hold the matrix whose eigenvalues are to be
+*> computed. On exit, A contains the last matrix actually
+*> used.
+*> Modified.
+*>
+*> LDA INTEGER
+*> The leading dimension of A and AB. It must be at
+*> least 1 and at least max( NN ).
+*> Not modified.
+*>
+*> B REAL array, dimension (LDB , max(NN))
+*> Used to hold the symmetric positive definite matrix for
+*> the generailzed problem.
+*> On exit, B contains the last matrix actually
+*> used.
+*> Modified.
+*>
+*> LDB INTEGER
+*> The leading dimension of B and BB. It must be at
+*> least 1 and at least max( NN ).
+*> Not modified.
+*>
+*> D REAL array, dimension (max(NN))
+*> The eigenvalues of A. On exit, the eigenvalues in D
+*> correspond with the matrix in A.
+*> Modified.
+*>
+*> Z REAL array, dimension (LDZ, max(NN))
+*> The matrix of eigenvectors.
+*> Modified.
+*>
+*> LDZ INTEGER
+*> The leading dimension of Z. It must be at least 1 and
+*> at least max( NN ).
+*> Not modified.
+*>
+*> AB REAL array, dimension (LDA, max(NN))
+*> Workspace.
+*> Modified.
+*>
+*> BB REAL array, dimension (LDB, max(NN))
+*> Workspace.
+*> Modified.
+*>
+*> AP REAL array, dimension (max(NN)**2)
+*> Workspace.
+*> Modified.
+*>
+*> BP REAL array, dimension (max(NN)**2)
+*> Workspace.
+*> Modified.
+*>
+*> WORK REAL array, dimension (NWORK)
+*> Workspace.
+*> Modified.
+*>
+*> NWORK INTEGER
+*> The number of entries in WORK. This must be at least
+*> 1+5*N+2*N*lg(N)+3*N**2 where N = max( NN(j) ) and
+*> lg( N ) = smallest integer k such that 2**k >= N.
+*> Not modified.
+*>
+*> IWORK INTEGER array, dimension (LIWORK)
+*> Workspace.
+*> Modified.
+*>
+*> LIWORK INTEGER
+*> The number of entries in WORK. This must be at least 6*N.
+*> Not modified.
+*>
+*> RESULT REAL array, dimension (70)
+*> The values computed by the 70 tests described above.
+*> Modified.
+*>
+*> INFO INTEGER
+*> If 0, then everything ran OK.
+*> -1: NSIZES < 0
+*> -2: Some NN(j) < 0
+*> -3: NTYPES < 0
+*> -5: THRESH < 0
+*> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
+*> -16: LDZ < 1 or LDZ < NMAX.
+*> -21: NWORK too small.
+*> -23: LIWORK too small.
+*> If SLATMR, SLATMS, SSYGV, SSPGV, SSBGV, SSYGVD, SSPGVD,
+*> SSBGVD, SSYGVX, SSPGVX or SSBGVX returns an error code,
+*> the absolute value of it is returned.
+*> Modified.
+*>
+*> ----------------------------------------------------------------------
+*>
+*> Some Local Variables and Parameters:
+*> ---- ----- --------- --- ----------
+*> ZERO, ONE Real 0 and 1.
+*> MAXTYP The number of types defined.
+*> NTEST The number of tests that have been run
+*> on this matrix.
+*> NTESTT The total number of tests for this call.
+*> NMAX Largest value in NN.
+*> NMATS The number of matrices generated so far.
+*> NERRS The number of tests which have exceeded THRESH
+*> so far (computed by SLAFTS).
+*> COND, IMODE Values to be passed to the matrix generators.
+*> ANORM Norm of A; passed to matrix generators.
+*>
+*> OVFL, UNFL Overflow and underflow thresholds.
+*> ULP, ULPINV Finest relative precision and its inverse.
+*> RTOVFL, RTUNFL Square roots of the previous 2 values.
+*> The following four arrays decode JTYPE:
+*> KTYPE(j) The general type (1-10) for type "j".
+*> KMODE(j) The MODE value to be passed to the matrix
+*> generator for type "j".
+*> KMAGN(j) The order of magnitude ( O(1),
+*> O(overflow^(1/2) ), O(underflow^(1/2) )
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup real_eig
+*
+* =====================================================================
+ SUBROUTINE SDRVSG2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+ $ NOUNIT, A, LDA, B, LDB, D, D2, Z, LDZ, AB,
+ $ BB, AP, BP, WORK, NWORK, IWORK, LIWORK,
+ $ RESULT, INFO )
+*
+ IMPLICIT NONE
+*
+* -- LAPACK test routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDB, LDZ, LIWORK, NOUNIT, NSIZES,
+ $ NTYPES, NWORK
+ REAL THRESH
+* ..
+* .. Array Arguments ..
+ LOGICAL DOTYPE( * )
+ INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+ REAL A( LDA, * ), AB( LDA, * ), AP( * ),
+ $ B( LDB, * ), BB( LDB, * ), BP( * ), D( * ),
+ $ D2( * ), RESULT( * ), WORK( * ), Z( LDZ, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE, TEN
+ PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TEN = 10.0E0 )
+ INTEGER MAXTYP
+ PARAMETER ( MAXTYP = 21 )
+* ..
+* .. Local Scalars ..
+ LOGICAL BADNN
+ CHARACTER UPLO
+ INTEGER I, IBTYPE, IBUPLO, IINFO, IJ, IL, IMODE, ITEMP,
+ $ ITYPE, IU, J, JCOL, JSIZE, JTYPE, KA, KA9, KB,
+ $ KB9, M, MTYPES, N, NERRS, NMATS, NMAX, NTEST,
+ $ NTESTT
+ REAL ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
+ $ RTUNFL, ULP, ULPINV, UNFL, VL, VU, TEMP1, TEMP2
+* ..
+* .. Local Arrays ..
+ INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
+ $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
+ $ KTYPE( MAXTYP )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ REAL SLAMCH, SLARND
+ EXTERNAL LSAME, SLAMCH, SLARND
+* ..
+* .. External Subroutines ..
+ EXTERNAL SLABAD, SLACPY, SLAFTS, SLASET, SLASUM, SLATMR,
+ $ SLATMS, SSBGV, SSBGVD, SSBGVX, SSGT01, SSPGV,
+ $ SSPGVD, SSPGVX, SSYGV, SSYGVD, SSYGVX, XERBLA,
+ $ SSYGV_2STAGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, REAL, MAX, MIN, SQRT
+* ..
+* .. Data statements ..
+ DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 6*9 /
+ DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
+ $ 2, 3, 6*1 /
+ DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
+ $ 0, 0, 6*4 /
+* ..
+* .. Executable Statements ..
+*
+* 1) Check for errors
+*
+ NTESTT = 0
+ INFO = 0
+*
+ BADNN = .FALSE.
+ NMAX = 0
+ DO 10 J = 1, NSIZES
+ NMAX = MAX( NMAX, NN( J ) )
+ IF( NN( J ).LT.0 )
+ $ BADNN = .TRUE.
+ 10 CONTINUE
+*
+* Check for errors
+*
+ IF( NSIZES.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( BADNN ) THEN
+ INFO = -2
+ ELSE IF( NTYPES.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
+ INFO = -9
+ ELSE IF( LDZ.LE.1 .OR. LDZ.LT.NMAX ) THEN
+ INFO = -16
+ ELSE IF( 2*MAX( NMAX, 3 )**2.GT.NWORK ) THEN
+ INFO = -21
+ ELSE IF( 2*MAX( NMAX, 3 )**2.GT.LIWORK ) THEN
+ INFO = -23
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SDRVSG2STG', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
+ $ RETURN
+*
+* More Important constants
+*
+ UNFL = SLAMCH( 'Safe minimum' )
+ OVFL = SLAMCH( 'Overflow' )
+ CALL SLABAD( UNFL, OVFL )
+ ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
+ ULPINV = ONE / ULP
+ RTUNFL = SQRT( UNFL )
+ RTOVFL = SQRT( OVFL )
+*
+ DO 20 I = 1, 4
+ ISEED2( I ) = ISEED( I )
+ 20 CONTINUE
+*
+* Loop over sizes, types
+*
+ NERRS = 0
+ NMATS = 0
+*
+ DO 650 JSIZE = 1, NSIZES
+ N = NN( JSIZE )
+ ANINV = ONE / REAL( MAX( 1, N ) )
+*
+ IF( NSIZES.NE.1 ) THEN
+ MTYPES = MIN( MAXTYP, NTYPES )
+ ELSE
+ MTYPES = MIN( MAXTYP+1, NTYPES )
+ END IF
+*
+ KA9 = 0
+ KB9 = 0
+ DO 640 JTYPE = 1, MTYPES
+ IF( .NOT.DOTYPE( JTYPE ) )
+ $ GO TO 640
+ NMATS = NMATS + 1
+ NTEST = 0
+*
+ DO 30 J = 1, 4
+ IOLDSD( J ) = ISEED( J )
+ 30 CONTINUE
+*
+* 2) Compute "A"
+*
+* Control parameters:
+*
+* KMAGN KMODE KTYPE
+* =1 O(1) clustered 1 zero
+* =2 large clustered 2 identity
+* =3 small exponential (none)
+* =4 arithmetic diagonal, w/ eigenvalues
+* =5 random log hermitian, w/ eigenvalues
+* =6 random (none)
+* =7 random diagonal
+* =8 random hermitian
+* =9 banded, w/ eigenvalues
+*
+ IF( MTYPES.GT.MAXTYP )
+ $ GO TO 90
+*
+ ITYPE = KTYPE( JTYPE )
+ IMODE = KMODE( JTYPE )
+*
+* Compute norm
+*
+ GO TO ( 40, 50, 60 )KMAGN( JTYPE )
+*
+ 40 CONTINUE
+ ANORM = ONE
+ GO TO 70
+*
+ 50 CONTINUE
+ ANORM = ( RTOVFL*ULP )*ANINV
+ GO TO 70
+*
+ 60 CONTINUE
+ ANORM = RTUNFL*N*ULPINV
+ GO TO 70
+*
+ 70 CONTINUE
+*
+ IINFO = 0
+ COND = ULPINV
+*
+* Special Matrices -- Identity & Jordan block
+*
+ IF( ITYPE.EQ.1 ) THEN
+*
+* Zero
+*
+ KA = 0
+ KB = 0
+ CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
+*
+ ELSE IF( ITYPE.EQ.2 ) THEN
+*
+* Identity
+*
+ KA = 0
+ KB = 0
+ CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
+ DO 80 JCOL = 1, N
+ A( JCOL, JCOL ) = ANORM
+ 80 CONTINUE
+*
+ ELSE IF( ITYPE.EQ.4 ) THEN
+*
+* Diagonal Matrix, [Eigen]values Specified
+*
+ KA = 0
+ KB = 0
+ CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+ ELSE IF( ITYPE.EQ.5 ) THEN
+*
+* symmetric, eigenvalues specified
+*
+ KA = MAX( 0, N-1 )
+ KB = KA
+ CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+ ELSE IF( ITYPE.EQ.7 ) THEN
+*
+* Diagonal, random eigenvalues
+*
+ KA = 0
+ KB = 0
+ CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.8 ) THEN
+*
+* symmetric, random eigenvalues
+*
+ KA = MAX( 0, N-1 )
+ KB = KA
+ CALL SLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, ONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.9 ) THEN
+*
+* symmetric banded, eigenvalues specified
+*
+* The following values are used for the half-bandwidths:
+*
+* ka = 1 kb = 1
+* ka = 2 kb = 1
+* ka = 2 kb = 2
+* ka = 3 kb = 1
+* ka = 3 kb = 2
+* ka = 3 kb = 3
+*
+ KB9 = KB9 + 1
+ IF( KB9.GT.KA9 ) THEN
+ KA9 = KA9 + 1
+ KB9 = 1
+ END IF
+ KA = MAX( 0, MIN( N-1, KA9 ) )
+ KB = MAX( 0, MIN( N-1, KB9 ) )
+ CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, KA, KA, 'N', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+ ELSE
+*
+ IINFO = 1
+ END IF
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ RETURN
+ END IF
+*
+ 90 CONTINUE
+*
+ ABSTOL = UNFL + UNFL
+ IF( N.LE.1 ) THEN
+ IL = 1
+ IU = N
+ ELSE
+ IL = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) )
+ IU = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) )
+ IF( IL.GT.IU ) THEN
+ ITEMP = IL
+ IL = IU
+ IU = ITEMP
+ END IF
+ END IF
+*
+* 3) Call SSYGV, SSPGV, SSBGV, SSYGVD, SSPGVD, SSBGVD,
+* SSYGVX, SSPGVX, and SSBGVX, do tests.
+*
+* loop over the three generalized problems
+* IBTYPE = 1: A*x = (lambda)*B*x
+* IBTYPE = 2: A*B*x = (lambda)*x
+* IBTYPE = 3: B*A*x = (lambda)*x
+*
+ DO 630 IBTYPE = 1, 3
+*
+* loop over the setting UPLO
+*
+ DO 620 IBUPLO = 1, 2
+ IF( IBUPLO.EQ.1 )
+ $ UPLO = 'U'
+ IF( IBUPLO.EQ.2 )
+ $ UPLO = 'L'
+*
+* Generate random well-conditioned positive definite
+* matrix B, of bandwidth not greater than that of A.
+*
+ CALL SLATMS( N, N, 'U', ISEED, 'P', WORK, 5, TEN, ONE,
+ $ KB, KB, UPLO, B, LDB, WORK( N+1 ),
+ $ IINFO )
+*
+* Test SSYGV
+*
+ NTEST = NTEST + 1
+*
+ CALL SLACPY( ' ', N, N, A, LDA, Z, LDZ )
+ CALL SLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL SSYGV( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D,
+ $ WORK, NWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSYGV(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL SSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+* Test SSYGV_2STAGE
+*
+ NTEST = NTEST + 1
+*
+ CALL SLACPY( ' ', N, N, A, LDA, Z, LDZ )
+ CALL SLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL SSYGV_2STAGE( IBTYPE, 'N', UPLO, N, Z, LDZ,
+ $ BB, LDB, D2, WORK, NWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'SSYGV_2STAGE(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+C CALL SSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+C $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+*
+* Do Tests | D1 - D2 | / ( |D1| ulp )
+* D1 computed using the standard 1-stage reduction as reference
+* D2 computed using the 2-stage reduction
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 151 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D( J ) ),
+ $ ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D( J )-D2( J ) ) )
+ 151 CONTINUE
+*
+ RESULT( NTEST ) = TEMP2 /
+ $ MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Test SSYGVD
+*
+ NTEST = NTEST + 1
+*
+ CALL SLACPY( ' ', N, N, A, LDA, Z, LDZ )
+ CALL SLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL SSYGVD( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D,
+ $ WORK, NWORK, IWORK, LIWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSYGVD(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL SSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+* Test SSYGVX
+*
+ NTEST = NTEST + 1
+*
+ CALL SLACPY( ' ', N, N, A, LDA, AB, LDA )
+ CALL SLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL SSYGVX( IBTYPE, 'V', 'A', UPLO, N, AB, LDA, BB,
+ $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
+ $ LDZ, WORK, NWORK, IWORK( N+1 ), IWORK,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSYGVX(V,A' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL SSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+ CALL SLACPY( ' ', N, N, A, LDA, AB, LDA )
+ CALL SLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+* since we do not know the exact eigenvalues of this
+* eigenpair, we just set VL and VU as constants.
+* It is quite possible that there are no eigenvalues
+* in this interval.
+*
+ VL = ZERO
+ VU = ANORM
+ CALL SSYGVX( IBTYPE, 'V', 'V', UPLO, N, AB, LDA, BB,
+ $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
+ $ LDZ, WORK, NWORK, IWORK( N+1 ), IWORK,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSYGVX(V,V,' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL SSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+ CALL SLACPY( ' ', N, N, A, LDA, AB, LDA )
+ CALL SLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL SSYGVX( IBTYPE, 'V', 'I', UPLO, N, AB, LDA, BB,
+ $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
+ $ LDZ, WORK, NWORK, IWORK( N+1 ), IWORK,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSYGVX(V,I,' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL SSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+ 100 CONTINUE
+*
+* Test SSPGV
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 120 J = 1, N
+ DO 110 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 110 CONTINUE
+ 120 CONTINUE
+ ELSE
+ IJ = 1
+ DO 140 J = 1, N
+ DO 130 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 130 CONTINUE
+ 140 CONTINUE
+ END IF
+*
+ CALL SSPGV( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ,
+ $ WORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSPGV(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL SSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+* Test SSPGVD
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 160 J = 1, N
+ DO 150 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 150 CONTINUE
+ 160 CONTINUE
+ ELSE
+ IJ = 1
+ DO 180 J = 1, N
+ DO 170 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 170 CONTINUE
+ 180 CONTINUE
+ END IF
+*
+ CALL SSPGVD( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ,
+ $ WORK, NWORK, IWORK, LIWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSPGVD(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL SSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+* Test SSPGVX
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 200 J = 1, N
+ DO 190 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 190 CONTINUE
+ 200 CONTINUE
+ ELSE
+ IJ = 1
+ DO 220 J = 1, N
+ DO 210 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 210 CONTINUE
+ 220 CONTINUE
+ END IF
+*
+ CALL SSPGVX( IBTYPE, 'V', 'A', UPLO, N, AP, BP, VL,
+ $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
+ $ IWORK( N+1 ), IWORK, INFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSPGVX(V,A' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL SSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 240 J = 1, N
+ DO 230 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 230 CONTINUE
+ 240 CONTINUE
+ ELSE
+ IJ = 1
+ DO 260 J = 1, N
+ DO 250 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 250 CONTINUE
+ 260 CONTINUE
+ END IF
+*
+ VL = ZERO
+ VU = ANORM
+ CALL SSPGVX( IBTYPE, 'V', 'V', UPLO, N, AP, BP, VL,
+ $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
+ $ IWORK( N+1 ), IWORK, INFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSPGVX(V,V' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL SSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 280 J = 1, N
+ DO 270 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 270 CONTINUE
+ 280 CONTINUE
+ ELSE
+ IJ = 1
+ DO 300 J = 1, N
+ DO 290 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 290 CONTINUE
+ 300 CONTINUE
+ END IF
+*
+ CALL SSPGVX( IBTYPE, 'V', 'I', UPLO, N, AP, BP, VL,
+ $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
+ $ IWORK( N+1 ), IWORK, INFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSPGVX(V,I' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL SSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+ 310 CONTINUE
+*
+ IF( IBTYPE.EQ.1 ) THEN
+*
+* TEST SSBGV
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 340 J = 1, N
+ DO 320 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 320 CONTINUE
+ DO 330 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 330 CONTINUE
+ 340 CONTINUE
+ ELSE
+ DO 370 J = 1, N
+ DO 350 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 350 CONTINUE
+ DO 360 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 360 CONTINUE
+ 370 CONTINUE
+ END IF
+*
+ CALL SSBGV( 'V', UPLO, N, KA, KB, AB, LDA, BB, LDB,
+ $ D, Z, LDZ, WORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSBGV(V,' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL SSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+* TEST SSBGVD
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 400 J = 1, N
+ DO 380 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 380 CONTINUE
+ DO 390 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 390 CONTINUE
+ 400 CONTINUE
+ ELSE
+ DO 430 J = 1, N
+ DO 410 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 410 CONTINUE
+ DO 420 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 420 CONTINUE
+ 430 CONTINUE
+ END IF
+*
+ CALL SSBGVD( 'V', UPLO, N, KA, KB, AB, LDA, BB,
+ $ LDB, D, Z, LDZ, WORK, NWORK, IWORK,
+ $ LIWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSBGVD(V,' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL SSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+* Test SSBGVX
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 460 J = 1, N
+ DO 440 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 440 CONTINUE
+ DO 450 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 450 CONTINUE
+ 460 CONTINUE
+ ELSE
+ DO 490 J = 1, N
+ DO 470 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 470 CONTINUE
+ DO 480 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 480 CONTINUE
+ 490 CONTINUE
+ END IF
+*
+ CALL SSBGVX( 'V', 'A', UPLO, N, KA, KB, AB, LDA,
+ $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
+ $ IU, ABSTOL, M, D, Z, LDZ, WORK,
+ $ IWORK( N+1 ), IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSBGVX(V,A' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL SSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 520 J = 1, N
+ DO 500 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 500 CONTINUE
+ DO 510 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 510 CONTINUE
+ 520 CONTINUE
+ ELSE
+ DO 550 J = 1, N
+ DO 530 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 530 CONTINUE
+ DO 540 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 540 CONTINUE
+ 550 CONTINUE
+ END IF
+*
+ VL = ZERO
+ VU = ANORM
+ CALL SSBGVX( 'V', 'V', UPLO, N, KA, KB, AB, LDA,
+ $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
+ $ IU, ABSTOL, M, D, Z, LDZ, WORK,
+ $ IWORK( N+1 ), IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSBGVX(V,V' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL SSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 580 J = 1, N
+ DO 560 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 560 CONTINUE
+ DO 570 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 570 CONTINUE
+ 580 CONTINUE
+ ELSE
+ DO 610 J = 1, N
+ DO 590 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 590 CONTINUE
+ DO 600 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 600 CONTINUE
+ 610 CONTINUE
+ END IF
+*
+ CALL SSBGVX( 'V', 'I', UPLO, N, KA, KB, AB, LDA,
+ $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
+ $ IU, ABSTOL, M, D, Z, LDZ, WORK,
+ $ IWORK( N+1 ), IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSBGVX(V,I' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL SSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RESULT( NTEST ) )
+*
+ END IF
+*
+ 620 CONTINUE
+ 630 CONTINUE
+*
+* End of Loop -- Check for RESULT(j) > THRESH
+*
+ NTESTT = NTESTT + NTEST
+ CALL SLAFTS( 'SSG', N, N, JTYPE, NTEST, RESULT, IOLDSD,
+ $ THRESH, NOUNIT, NERRS )
+ 640 CONTINUE
+ 650 CONTINUE
+*
+* Summary
+*
+ CALL SLASUM( 'SSG', NOUNIT, NERRS, NTESTT )
+*
+ RETURN
+*
+* End of SDRVSG2STG
+*
+ 9999 FORMAT( ' SDRVSG2STG: ', A, ' returned INFO=', I6, '.', / 9X,
+ $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
+ END
diff --git a/TESTING/EIG/sdrvst2stg.f b/TESTING/EIG/sdrvst2stg.f
new file mode 100644
index 00000000..727706a8
--- /dev/null
+++ b/TESTING/EIG/sdrvst2stg.f
@@ -0,0 +1,2874 @@
+*> \brief \b SDRVST2STG
+*
+* @generated from ddrvst2stg.f, fortran d -> s, Sun Nov 6 00:06:01 2016
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE SDRVST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+* NOUNIT, A, LDA, D1, D2, D3, D4, EVEIGS, WA1,
+* WA2, WA3, U, LDU, V, TAU, Z, WORK, LWORK,
+* IWORK, LIWORK, RESULT, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDU, LIWORK, LWORK, NOUNIT, NSIZES,
+* $ NTYPES
+* REAL THRESH
+* ..
+* .. Array Arguments ..
+* LOGICAL DOTYPE( * )
+* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+* REAL A( LDA, * ), D1( * ), D2( * ), D3( * ),
+* $ D4( * ), EVEIGS( * ), RESULT( * ), TAU( * ),
+* $ U( LDU, * ), V( LDU, * ), WA1( * ), WA2( * ),
+* $ WA3( * ), WORK( * ), Z( LDU, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> SDRVST2STG checks the symmetric eigenvalue problem drivers.
+*>
+*> SSTEV computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric tridiagonal matrix.
+*>
+*> SSTEVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a real symmetric tridiagonal matrix.
+*>
+*> SSTEVR computes selected eigenvalues and, optionally,
+*> eigenvectors of a real symmetric tridiagonal matrix
+*> using the Relatively Robust Representation where it can.
+*>
+*> SSYEV computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric matrix.
+*>
+*> SSYEVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a real symmetric matrix.
+*>
+*> SSYEVR computes selected eigenvalues and, optionally,
+*> eigenvectors of a real symmetric matrix
+*> using the Relatively Robust Representation where it can.
+*>
+*> SSPEV computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric matrix in packed
+*> storage.
+*>
+*> SSPEVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a real symmetric matrix in packed
+*> storage.
+*>
+*> SSBEV computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric band matrix.
+*>
+*> SSBEVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a real symmetric band matrix.
+*>
+*> SSYEVD computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric matrix using
+*> a divide and conquer algorithm.
+*>
+*> SSPEVD computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric matrix in packed
+*> storage, using a divide and conquer algorithm.
+*>
+*> SSBEVD computes all eigenvalues and, optionally,
+*> eigenvectors of a real symmetric band matrix,
+*> using a divide and conquer algorithm.
+*>
+*> When SDRVST2STG is called, a number of matrix "sizes" ("n's") and a
+*> number of matrix "types" are specified. For each size ("n")
+*> and each type of matrix, one matrix will be generated and used
+*> to test the appropriate drivers. For each matrix and each
+*> driver routine called, the following tests will be performed:
+*>
+*> (1) | A - Z D Z' | / ( |A| n ulp )
+*>
+*> (2) | I - Z Z' | / ( n ulp )
+*>
+*> (3) | D1 - D2 | / ( |D1| ulp )
+*>
+*> where Z is the matrix of eigenvectors returned when the
+*> eigenvector option is given and D1 and D2 are the eigenvalues
+*> returned with and without the eigenvector option.
+*>
+*> The "sizes" are specified by an array NN(1:NSIZES); the value of
+*> each element NN(j) specifies one size.
+*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
+*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
+*> Currently, the list of possible types is:
+*>
+*> (1) The zero matrix.
+*> (2) The identity matrix.
+*>
+*> (3) A diagonal matrix with evenly spaced eigenvalues
+*> 1, ..., ULP and random signs.
+*> (ULP = (first number larger than 1) - 1 )
+*> (4) A diagonal matrix with geometrically spaced eigenvalues
+*> 1, ..., ULP and random signs.
+*> (5) A diagonal matrix with "clustered" eigenvalues
+*> 1, ULP, ..., ULP and random signs.
+*>
+*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
+*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
+*>
+*> (8) A matrix of the form U' D U, where U is orthogonal and
+*> D has evenly spaced entries 1, ..., ULP with random signs
+*> on the diagonal.
+*>
+*> (9) A matrix of the form U' D U, where U is orthogonal and
+*> D has geometrically spaced entries 1, ..., ULP with random
+*> signs on the diagonal.
+*>
+*> (10) A matrix of the form U' D U, where U is orthogonal and
+*> D has "clustered" entries 1, ULP,..., ULP with random
+*> signs on the diagonal.
+*>
+*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
+*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
+*>
+*> (13) Symmetric matrix with random entries chosen from (-1,1).
+*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
+*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
+*> (16) A band matrix with half bandwidth randomly chosen between
+*> 0 and N-1, with evenly spaced eigenvalues 1, ..., ULP
+*> with random signs.
+*> (17) Same as (16), but multiplied by SQRT( overflow threshold )
+*> (18) Same as (16), but multiplied by SQRT( underflow threshold )
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \verbatim
+*> NSIZES INTEGER
+*> The number of sizes of matrices to use. If it is zero,
+*> SDRVST2STG does nothing. It must be at least zero.
+*> Not modified.
+*>
+*> NN INTEGER array, dimension (NSIZES)
+*> An array containing the sizes to be used for the matrices.
+*> Zero values will be skipped. The values must be at least
+*> zero.
+*> Not modified.
+*>
+*> NTYPES INTEGER
+*> The number of elements in DOTYPE. If it is zero, SDRVST2STG
+*> does nothing. It must be at least zero. If it is MAXTYP+1
+*> and NSIZES is 1, then an additional type, MAXTYP+1 is
+*> defined, which is to use whatever matrix is in A. This
+*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
+*> DOTYPE(MAXTYP+1) is .TRUE. .
+*> Not modified.
+*>
+*> DOTYPE LOGICAL array, dimension (NTYPES)
+*> If DOTYPE(j) is .TRUE., then for each size in NN a
+*> matrix of that size and of type j will be generated.
+*> If NTYPES is smaller than the maximum number of types
+*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
+*> MAXTYP will not be generated. If NTYPES is larger
+*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
+*> will be ignored.
+*> Not modified.
+*>
+*> ISEED INTEGER array, dimension (4)
+*> On entry ISEED specifies the seed of the random number
+*> generator. The array elements should be between 0 and 4095;
+*> if not they will be reduced mod 4096. Also, ISEED(4) must
+*> be odd. The random number generator uses a linear
+*> congruential sequence limited to small integers, and so
+*> should produce machine independent random numbers. The
+*> values of ISEED are changed on exit, and can be used in the
+*> next call to SDRVST2STG to continue the same random number
+*> sequence.
+*> Modified.
+*>
+*> THRESH REAL
+*> A test will count as "failed" if the "error", computed as
+*> described above, exceeds THRESH. Note that the error
+*> is scaled to be O(1), so THRESH should be a reasonably
+*> small multiple of 1, e.g., 10 or 100. In particular,
+*> it should not depend on the precision (single vs. double)
+*> or the size of the matrix. It must be at least zero.
+*> Not modified.
+*>
+*> NOUNIT INTEGER
+*> The FORTRAN unit number for printing out error messages
+*> (e.g., if a routine returns IINFO not equal to 0.)
+*> Not modified.
+*>
+*> A REAL array, dimension (LDA , max(NN))
+*> Used to hold the matrix whose eigenvalues are to be
+*> computed. On exit, A contains the last matrix actually
+*> used.
+*> Modified.
+*>
+*> LDA INTEGER
+*> The leading dimension of A. It must be at
+*> least 1 and at least max( NN ).
+*> Not modified.
+*>
+*> D1 REAL array, dimension (max(NN))
+*> The eigenvalues of A, as computed by SSTEQR simlutaneously
+*> with Z. On exit, the eigenvalues in D1 correspond with the
+*> matrix in A.
+*> Modified.
+*>
+*> D2 REAL array, dimension (max(NN))
+*> The eigenvalues of A, as computed by SSTEQR if Z is not
+*> computed. On exit, the eigenvalues in D2 correspond with
+*> the matrix in A.
+*> Modified.
+*>
+*> D3 REAL array, dimension (max(NN))
+*> The eigenvalues of A, as computed by SSTERF. On exit, the
+*> eigenvalues in D3 correspond with the matrix in A.
+*> Modified.
+*>
+*> D4 REAL array, dimension
+*>
+*> EVEIGS REAL array, dimension (max(NN))
+*> The eigenvalues as computed by SSTEV('N', ... )
+*> (I reserve the right to change this to the output of
+*> whichever algorithm computes the most accurate eigenvalues).
+*>
+*> WA1 REAL array, dimension
+*>
+*> WA2 REAL array, dimension
+*>
+*> WA3 REAL array, dimension
+*>
+*> U REAL array, dimension (LDU, max(NN))
+*> The orthogonal matrix computed by SSYTRD + SORGTR.
+*> Modified.
+*>
+*> LDU INTEGER
+*> The leading dimension of U, Z, and V. It must be at
+*> least 1 and at least max( NN ).
+*> Not modified.
+*>
+*> V REAL array, dimension (LDU, max(NN))
+*> The Housholder vectors computed by SSYTRD in reducing A to
+*> tridiagonal form.
+*> Modified.
+*>
+*> TAU REAL array, dimension (max(NN))
+*> The Householder factors computed by SSYTRD in reducing A
+*> to tridiagonal form.
+*> Modified.
+*>
+*> Z REAL array, dimension (LDU, max(NN))
+*> The orthogonal matrix of eigenvectors computed by SSTEQR,
+*> SPTEQR, and SSTEIN.
+*> Modified.
+*>
+*> WORK REAL array, dimension (LWORK)
+*> Workspace.
+*> Modified.
+*>
+*> LWORK INTEGER
+*> The number of entries in WORK. This must be at least
+*> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 4 * Nmax**2
+*> where Nmax = max( NN(j), 2 ) and lg = log base 2.
+*> Not modified.
+*>
+*> IWORK INTEGER array,
+*> dimension (6 + 6*Nmax + 5 * Nmax * lg Nmax )
+*> where Nmax = max( NN(j), 2 ) and lg = log base 2.
+*> Workspace.
+*> Modified.
+*>
+*> RESULT REAL array, dimension (105)
+*> The values computed by the tests described above.
+*> The values are currently limited to 1/ulp, to avoid
+*> overflow.
+*> Modified.
+*>
+*> INFO INTEGER
+*> If 0, then everything ran OK.
+*> -1: NSIZES < 0
+*> -2: Some NN(j) < 0
+*> -3: NTYPES < 0
+*> -5: THRESH < 0
+*> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
+*> -16: LDU < 1 or LDU < NMAX.
+*> -21: LWORK too small.
+*> If SLATMR, SLATMS, SSYTRD, SORGTR, SSTEQR, SSTERF,
+*> or SORMTR returns an error code, the
+*> absolute value of it is returned.
+*> Modified.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> Some Local Variables and Parameters:
+*> ---- ----- --------- --- ----------
+*> ZERO, ONE Real 0 and 1.
+*> MAXTYP The number of types defined.
+*> NTEST The number of tests performed, or which can
+*> be performed so far, for the current matrix.
+*> NTESTT The total number of tests performed so far.
+*> NMAX Largest value in NN.
+*> NMATS The number of matrices generated so far.
+*> NERRS The number of tests which have exceeded THRESH
+*> so far (computed by SLAFTS).
+*> COND, IMODE Values to be passed to the matrix generators.
+*> ANORM Norm of A; passed to matrix generators.
+*>
+*> OVFL, UNFL Overflow and underflow thresholds.
+*> ULP, ULPINV Finest relative precision and its inverse.
+*> RTOVFL, RTUNFL Square roots of the previous 2 values.
+*> The following four arrays decode JTYPE:
+*> KTYPE(j) The general type (1-10) for type "j".
+*> KMODE(j) The MODE value to be passed to the matrix
+*> generator for type "j".
+*> KMAGN(j) The order of magnitude ( O(1),
+*> O(overflow^(1/2) ), O(underflow^(1/2) )
+*>
+*> The tests performed are: Routine tested
+*> 1= | A - U S U' | / ( |A| n ulp ) SSTEV('V', ... )
+*> 2= | I - U U' | / ( n ulp ) SSTEV('V', ... )
+*> 3= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEV('N', ... )
+*> 4= | A - U S U' | / ( |A| n ulp ) SSTEVX('V','A', ... )
+*> 5= | I - U U' | / ( n ulp ) SSTEVX('V','A', ... )
+*> 6= |D(with Z) - EVEIGS| / (|D| ulp) SSTEVX('N','A', ... )
+*> 7= | A - U S U' | / ( |A| n ulp ) SSTEVR('V','A', ... )
+*> 8= | I - U U' | / ( n ulp ) SSTEVR('V','A', ... )
+*> 9= |D(with Z) - EVEIGS| / (|D| ulp) SSTEVR('N','A', ... )
+*> 10= | A - U S U' | / ( |A| n ulp ) SSTEVX('V','I', ... )
+*> 11= | I - U U' | / ( n ulp ) SSTEVX('V','I', ... )
+*> 12= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEVX('N','I', ... )
+*> 13= | A - U S U' | / ( |A| n ulp ) SSTEVX('V','V', ... )
+*> 14= | I - U U' | / ( n ulp ) SSTEVX('V','V', ... )
+*> 15= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEVX('N','V', ... )
+*> 16= | A - U S U' | / ( |A| n ulp ) SSTEVD('V', ... )
+*> 17= | I - U U' | / ( n ulp ) SSTEVD('V', ... )
+*> 18= |D(with Z) - EVEIGS| / (|D| ulp) SSTEVD('N', ... )
+*> 19= | A - U S U' | / ( |A| n ulp ) SSTEVR('V','I', ... )
+*> 20= | I - U U' | / ( n ulp ) SSTEVR('V','I', ... )
+*> 21= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEVR('N','I', ... )
+*> 22= | A - U S U' | / ( |A| n ulp ) SSTEVR('V','V', ... )
+*> 23= | I - U U' | / ( n ulp ) SSTEVR('V','V', ... )
+*> 24= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEVR('N','V', ... )
+*>
+*> 25= | A - U S U' | / ( |A| n ulp ) SSYEV('L','V', ... )
+*> 26= | I - U U' | / ( n ulp ) SSYEV('L','V', ... )
+*> 27= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEV_2STAGE('L','N', ... )
+*> 28= | A - U S U' | / ( |A| n ulp ) SSYEVX('L','V','A', ... )
+*> 29= | I - U U' | / ( n ulp ) SSYEVX('L','V','A', ... )
+*> 30= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVX_2STAGE('L','N','A', ... )
+*> 31= | A - U S U' | / ( |A| n ulp ) SSYEVX('L','V','I', ... )
+*> 32= | I - U U' | / ( n ulp ) SSYEVX('L','V','I', ... )
+*> 33= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVX_2STAGE('L','N','I', ... )
+*> 34= | A - U S U' | / ( |A| n ulp ) SSYEVX('L','V','V', ... )
+*> 35= | I - U U' | / ( n ulp ) SSYEVX('L','V','V', ... )
+*> 36= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVX_2STAGE('L','N','V', ... )
+*> 37= | A - U S U' | / ( |A| n ulp ) SSPEV('L','V', ... )
+*> 38= | I - U U' | / ( n ulp ) SSPEV('L','V', ... )
+*> 39= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEV('L','N', ... )
+*> 40= | A - U S U' | / ( |A| n ulp ) SSPEVX('L','V','A', ... )
+*> 41= | I - U U' | / ( n ulp ) SSPEVX('L','V','A', ... )
+*> 42= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVX('L','N','A', ... )
+*> 43= | A - U S U' | / ( |A| n ulp ) SSPEVX('L','V','I', ... )
+*> 44= | I - U U' | / ( n ulp ) SSPEVX('L','V','I', ... )
+*> 45= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVX('L','N','I', ... )
+*> 46= | A - U S U' | / ( |A| n ulp ) SSPEVX('L','V','V', ... )
+*> 47= | I - U U' | / ( n ulp ) SSPEVX('L','V','V', ... )
+*> 48= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVX('L','N','V', ... )
+*> 49= | A - U S U' | / ( |A| n ulp ) SSBEV('L','V', ... )
+*> 50= | I - U U' | / ( n ulp ) SSBEV('L','V', ... )
+*> 51= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEV_2STAGE('L','N', ... )
+*> 52= | A - U S U' | / ( |A| n ulp ) SSBEVX('L','V','A', ... )
+*> 53= | I - U U' | / ( n ulp ) SSBEVX('L','V','A', ... )
+*> 54= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVX_2STAGE('L','N','A', ... )
+*> 55= | A - U S U' | / ( |A| n ulp ) SSBEVX('L','V','I', ... )
+*> 56= | I - U U' | / ( n ulp ) SSBEVX('L','V','I', ... )
+*> 57= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVX_2STAGE('L','N','I', ... )
+*> 58= | A - U S U' | / ( |A| n ulp ) SSBEVX('L','V','V', ... )
+*> 59= | I - U U' | / ( n ulp ) SSBEVX('L','V','V', ... )
+*> 60= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVX_2STAGE('L','N','V', ... )
+*> 61= | A - U S U' | / ( |A| n ulp ) SSYEVD('L','V', ... )
+*> 62= | I - U U' | / ( n ulp ) SSYEVD('L','V', ... )
+*> 63= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVD_2STAGE('L','N', ... )
+*> 64= | A - U S U' | / ( |A| n ulp ) SSPEVD('L','V', ... )
+*> 65= | I - U U' | / ( n ulp ) SSPEVD('L','V', ... )
+*> 66= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVD('L','N', ... )
+*> 67= | A - U S U' | / ( |A| n ulp ) SSBEVD('L','V', ... )
+*> 68= | I - U U' | / ( n ulp ) SSBEVD('L','V', ... )
+*> 69= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVD_2STAGE('L','N', ... )
+*> 70= | A - U S U' | / ( |A| n ulp ) SSYEVR('L','V','A', ... )
+*> 71= | I - U U' | / ( n ulp ) SSYEVR('L','V','A', ... )
+*> 72= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVR_2STAGE('L','N','A', ... )
+*> 73= | A - U S U' | / ( |A| n ulp ) SSYEVR('L','V','I', ... )
+*> 74= | I - U U' | / ( n ulp ) SSYEVR('L','V','I', ... )
+*> 75= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVR_2STAGE('L','N','I', ... )
+*> 76= | A - U S U' | / ( |A| n ulp ) SSYEVR('L','V','V', ... )
+*> 77= | I - U U' | / ( n ulp ) SSYEVR('L','V','V', ... )
+*> 78= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVR_2STAGE('L','N','V', ... )
+*>
+*> Tests 25 through 78 are repeated (as tests 79 through 132)
+*> with UPLO='U'
+*>
+*> To be added in 1999
+*>
+*> 79= | A - U S U' | / ( |A| n ulp ) SSPEVR('L','V','A', ... )
+*> 80= | I - U U' | / ( n ulp ) SSPEVR('L','V','A', ... )
+*> 81= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVR('L','N','A', ... )
+*> 82= | A - U S U' | / ( |A| n ulp ) SSPEVR('L','V','I', ... )
+*> 83= | I - U U' | / ( n ulp ) SSPEVR('L','V','I', ... )
+*> 84= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVR('L','N','I', ... )
+*> 85= | A - U S U' | / ( |A| n ulp ) SSPEVR('L','V','V', ... )
+*> 86= | I - U U' | / ( n ulp ) SSPEVR('L','V','V', ... )
+*> 87= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVR('L','N','V', ... )
+*> 88= | A - U S U' | / ( |A| n ulp ) SSBEVR('L','V','A', ... )
+*> 89= | I - U U' | / ( n ulp ) SSBEVR('L','V','A', ... )
+*> 90= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVR('L','N','A', ... )
+*> 91= | A - U S U' | / ( |A| n ulp ) SSBEVR('L','V','I', ... )
+*> 92= | I - U U' | / ( n ulp ) SSBEVR('L','V','I', ... )
+*> 93= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVR('L','N','I', ... )
+*> 94= | A - U S U' | / ( |A| n ulp ) SSBEVR('L','V','V', ... )
+*> 95= | I - U U' | / ( n ulp ) SSBEVR('L','V','V', ... )
+*> 96= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVR('L','N','V', ... )
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup single_eig
+*
+* =====================================================================
+ SUBROUTINE SDRVST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+ $ NOUNIT, A, LDA, D1, D2, D3, D4, EVEIGS, WA1,
+ $ WA2, WA3, U, LDU, V, TAU, Z, WORK, LWORK,
+ $ IWORK, LIWORK, RESULT, INFO )
+*
+* -- LAPACK test routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDU, LIWORK, LWORK, NOUNIT, NSIZES,
+ $ NTYPES
+ REAL THRESH
+* ..
+* .. Array Arguments ..
+ LOGICAL DOTYPE( * )
+ INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+ REAL A( LDA, * ), D1( * ), D2( * ), D3( * ),
+ $ D4( * ), EVEIGS( * ), RESULT( * ), TAU( * ),
+ $ U( LDU, * ), V( LDU, * ), WA1( * ), WA2( * ),
+ $ WA3( * ), WORK( * ), Z( LDU, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE, TWO, TEN
+ PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
+ $ TEN = 10.0E0 )
+ REAL HALF
+ PARAMETER ( HALF = 0.5E+0 )
+ INTEGER MAXTYP
+ PARAMETER ( MAXTYP = 18 )
+* ..
+* .. Local Scalars ..
+ LOGICAL BADNN
+ CHARACTER UPLO
+ INTEGER I, IDIAG, IHBW, IINFO, IL, IMODE, INDX, IROW,
+ $ ITEMP, ITYPE, IU, IUPLO, J, J1, J2, JCOL,
+ $ JSIZE, JTYPE, KD, LGN, LIWEDC, LWEDC, M, M2,
+ $ M3, MTYPES, N, NERRS, NMATS, NMAX, NTEST,
+ $ NTESTT
+ REAL ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
+ $ RTUNFL, TEMP1, TEMP2, TEMP3, ULP, ULPINV, UNFL,
+ $ VL, VU
+* ..
+* .. Local Arrays ..
+ INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
+ $ ISEED3( 4 ), KMAGN( MAXTYP ), KMODE( MAXTYP ),
+ $ KTYPE( MAXTYP )
+* ..
+* .. External Functions ..
+ REAL SLAMCH, SLARND, SSXT1
+ EXTERNAL SLAMCH, SLARND, SSXT1
+* ..
+* .. External Subroutines ..
+ EXTERNAL ALASVM, SLABAD, SLACPY, SLAFTS, SLASET, SLATMR,
+ $ SLATMS, SSBEV, SSBEVD, SSBEVX, SSPEV, SSPEVD,
+ $ SSPEVX, SSTEV, SSTEVD, SSTEVR, SSTEVX, SSTT21,
+ $ SSTT22, SSYEV, SSYEVD, SSYEVR, SSYEVX, SSYT21,
+ $ SSYEVD_2STAGE, SSYEVR_2STAGE, SSYEVX_2STAGE,
+ $ SSYEV_2STAGE, SSBEV_2STAGE, SSBEVD_2STAGE,
+ $ SSBEVX_2STAGE, SSYTRD_2STAGE, SSYTRD_SY2SB,
+ $ SSYTRD_SB2ST, SSYT22, XERBLA
+* ..
+* .. Scalars in Common ..
+ CHARACTER*32 SRNAMT
+* ..
+* .. Common blocks ..
+ COMMON / SRNAMC / SRNAMT
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, REAL, INT, LOG, MAX, MIN, SQRT
+* ..
+* .. Data statements ..
+ DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 3*9 /
+ DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
+ $ 2, 3, 1, 2, 3 /
+ DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
+ $ 0, 0, 4, 4, 4 /
+* ..
+* .. Executable Statements ..
+*
+* Keep ftrnchek happy
+*
+ VL = ZERO
+ VU = ZERO
+*
+* 1) Check for errors
+*
+ NTESTT = 0
+ INFO = 0
+*
+ BADNN = .FALSE.
+ NMAX = 1
+ DO 10 J = 1, NSIZES
+ NMAX = MAX( NMAX, NN( J ) )
+ IF( NN( J ).LT.0 )
+ $ BADNN = .TRUE.
+ 10 CONTINUE
+*
+* Check for errors
+*
+ IF( NSIZES.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( BADNN ) THEN
+ INFO = -2
+ ELSE IF( NTYPES.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.NMAX ) THEN
+ INFO = -9
+ ELSE IF( LDU.LT.NMAX ) THEN
+ INFO = -16
+ ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
+ INFO = -21
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SDRVST2STG', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if nothing to do
+*
+ IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
+ $ RETURN
+*
+* More Important constants
+*
+ UNFL = SLAMCH( 'Safe minimum' )
+ OVFL = SLAMCH( 'Overflow' )
+ CALL SLABAD( UNFL, OVFL )
+ ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
+ ULPINV = ONE / ULP
+ RTUNFL = SQRT( UNFL )
+ RTOVFL = SQRT( OVFL )
+*
+* Loop over sizes, types
+*
+ DO 20 I = 1, 4
+ ISEED2( I ) = ISEED( I )
+ ISEED3( I ) = ISEED( I )
+ 20 CONTINUE
+*
+ NERRS = 0
+ NMATS = 0
+*
+*
+ DO 1740 JSIZE = 1, NSIZES
+ N = NN( JSIZE )
+ IF( N.GT.0 ) THEN
+ LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
+ IF( 2**LGN.LT.N )
+ $ LGN = LGN + 1
+ IF( 2**LGN.LT.N )
+ $ LGN = LGN + 1
+ LWEDC = 1 + 4*N + 2*N*LGN + 4*N**2
+c LIWEDC = 6 + 6*N + 5*N*LGN
+ LIWEDC = 3 + 5*N
+ ELSE
+ LWEDC = 9
+c LIWEDC = 12
+ LIWEDC = 8
+ END IF
+ ANINV = ONE / REAL( MAX( 1, N ) )
+*
+ IF( NSIZES.NE.1 ) THEN
+ MTYPES = MIN( MAXTYP, NTYPES )
+ ELSE
+ MTYPES = MIN( MAXTYP+1, NTYPES )
+ END IF
+*
+ DO 1730 JTYPE = 1, MTYPES
+*
+ IF( .NOT.DOTYPE( JTYPE ) )
+ $ GO TO 1730
+ NMATS = NMATS + 1
+ NTEST = 0
+*
+ DO 30 J = 1, 4
+ IOLDSD( J ) = ISEED( J )
+ 30 CONTINUE
+*
+* 2) Compute "A"
+*
+* Control parameters:
+*
+* KMAGN KMODE KTYPE
+* =1 O(1) clustered 1 zero
+* =2 large clustered 2 identity
+* =3 small exponential (none)
+* =4 arithmetic diagonal, (w/ eigenvalues)
+* =5 random log symmetric, w/ eigenvalues
+* =6 random (none)
+* =7 random diagonal
+* =8 random symmetric
+* =9 band symmetric, w/ eigenvalues
+*
+ IF( MTYPES.GT.MAXTYP )
+ $ GO TO 110
+*
+ ITYPE = KTYPE( JTYPE )
+ IMODE = KMODE( JTYPE )
+*
+* Compute norm
+*
+ GO TO ( 40, 50, 60 )KMAGN( JTYPE )
+*
+ 40 CONTINUE
+ ANORM = ONE
+ GO TO 70
+*
+ 50 CONTINUE
+ ANORM = ( RTOVFL*ULP )*ANINV
+ GO TO 70
+*
+ 60 CONTINUE
+ ANORM = RTUNFL*N*ULPINV
+ GO TO 70
+*
+ 70 CONTINUE
+*
+ CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
+ IINFO = 0
+ COND = ULPINV
+*
+* Special Matrices -- Identity & Jordan block
+*
+* Zero
+*
+ IF( ITYPE.EQ.1 ) THEN
+ IINFO = 0
+*
+ ELSE IF( ITYPE.EQ.2 ) THEN
+*
+* Identity
+*
+ DO 80 JCOL = 1, N
+ A( JCOL, JCOL ) = ANORM
+ 80 CONTINUE
+*
+ ELSE IF( ITYPE.EQ.4 ) THEN
+*
+* Diagonal Matrix, [Eigen]values Specified
+*
+ CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+ ELSE IF( ITYPE.EQ.5 ) THEN
+*
+* Symmetric, eigenvalues specified
+*
+ CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
+ $ IINFO )
+*
+ ELSE IF( ITYPE.EQ.7 ) THEN
+*
+* Diagonal, random eigenvalues
+*
+ IDUMMA( 1 ) = 1
+ CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.8 ) THEN
+*
+* Symmetric, random eigenvalues
+*
+ IDUMMA( 1 ) = 1
+ CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.9 ) THEN
+*
+* Symmetric banded, eigenvalues specified
+*
+ IHBW = INT( ( N-1 )*SLARND( 1, ISEED3 ) )
+ CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
+ $ ANORM, IHBW, IHBW, 'Z', U, LDU, WORK( N+1 ),
+ $ IINFO )
+*
+* Store as dense matrix for most routines.
+*
+ CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
+ DO 100 IDIAG = -IHBW, IHBW
+ IROW = IHBW - IDIAG + 1
+ J1 = MAX( 1, IDIAG+1 )
+ J2 = MIN( N, N+IDIAG )
+ DO 90 J = J1, J2
+ I = J - IDIAG
+ A( I, J ) = U( IROW, J )
+ 90 CONTINUE
+ 100 CONTINUE
+ ELSE
+ IINFO = 1
+ END IF
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ RETURN
+ END IF
+*
+ 110 CONTINUE
+*
+ ABSTOL = UNFL + UNFL
+ IF( N.LE.1 ) THEN
+ IL = 1
+ IU = N
+ ELSE
+ IL = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) )
+ IU = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) )
+ IF( IL.GT.IU ) THEN
+ ITEMP = IL
+ IL = IU
+ IU = ITEMP
+ END IF
+ END IF
+*
+* 3) If matrix is tridiagonal, call SSTEV and SSTEVX.
+*
+ IF( JTYPE.LE.7 ) THEN
+ NTEST = 1
+ DO 120 I = 1, N
+ D1( I ) = REAL( A( I, I ) )
+ 120 CONTINUE
+ DO 130 I = 1, N - 1
+ D2( I ) = REAL( A( I+1, I ) )
+ 130 CONTINUE
+ SRNAMT = 'SSTEV'
+ CALL SSTEV( 'V', N, D1, D2, Z, LDU, WORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEV(V)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 1 ) = ULPINV
+ RESULT( 2 ) = ULPINV
+ RESULT( 3 ) = ULPINV
+ GO TO 180
+ END IF
+ END IF
+*
+* Do tests 1 and 2.
+*
+ DO 140 I = 1, N
+ D3( I ) = REAL( A( I, I ) )
+ 140 CONTINUE
+ DO 150 I = 1, N - 1
+ D4( I ) = REAL( A( I+1, I ) )
+ 150 CONTINUE
+ CALL SSTT21( N, 0, D3, D4, D1, D2, Z, LDU, WORK,
+ $ RESULT( 1 ) )
+*
+ NTEST = 3
+ DO 160 I = 1, N - 1
+ D4( I ) = REAL( A( I+1, I ) )
+ 160 CONTINUE
+ SRNAMT = 'SSTEV'
+ CALL SSTEV( 'N', N, D3, D4, Z, LDU, WORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEV(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 3 ) = ULPINV
+ GO TO 180
+ END IF
+ END IF
+*
+* Do test 3.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 170 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 170 CONTINUE
+ RESULT( 3 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 180 CONTINUE
+*
+ NTEST = 4
+ DO 190 I = 1, N
+ EVEIGS( I ) = D3( I )
+ D1( I ) = REAL( A( I, I ) )
+ 190 CONTINUE
+ DO 200 I = 1, N - 1
+ D2( I ) = REAL( A( I+1, I ) )
+ 200 CONTINUE
+ SRNAMT = 'SSTEVX'
+ CALL SSTEVX( 'V', 'A', N, D1, D2, VL, VU, IL, IU, ABSTOL,
+ $ M, WA1, Z, LDU, WORK, IWORK, IWORK( 5*N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEVX(V,A)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 4 ) = ULPINV
+ RESULT( 5 ) = ULPINV
+ RESULT( 6 ) = ULPINV
+ GO TO 250
+ END IF
+ END IF
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+*
+* Do tests 4 and 5.
+*
+ DO 210 I = 1, N
+ D3( I ) = REAL( A( I, I ) )
+ 210 CONTINUE
+ DO 220 I = 1, N - 1
+ D4( I ) = REAL( A( I+1, I ) )
+ 220 CONTINUE
+ CALL SSTT21( N, 0, D3, D4, WA1, D2, Z, LDU, WORK,
+ $ RESULT( 4 ) )
+*
+ NTEST = 6
+ DO 230 I = 1, N - 1
+ D4( I ) = REAL( A( I+1, I ) )
+ 230 CONTINUE
+ SRNAMT = 'SSTEVX'
+ CALL SSTEVX( 'N', 'A', N, D3, D4, VL, VU, IL, IU, ABSTOL,
+ $ M2, WA2, Z, LDU, WORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEVX(N,A)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 6 ) = ULPINV
+ GO TO 250
+ END IF
+ END IF
+*
+* Do test 6.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 240 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA2( J ) ),
+ $ ABS( EVEIGS( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA2( J )-EVEIGS( J ) ) )
+ 240 CONTINUE
+ RESULT( 6 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 250 CONTINUE
+*
+ NTEST = 7
+ DO 260 I = 1, N
+ D1( I ) = REAL( A( I, I ) )
+ 260 CONTINUE
+ DO 270 I = 1, N - 1
+ D2( I ) = REAL( A( I+1, I ) )
+ 270 CONTINUE
+ SRNAMT = 'SSTEVR'
+ CALL SSTEVR( 'V', 'A', N, D1, D2, VL, VU, IL, IU, ABSTOL,
+ $ M, WA1, Z, LDU, IWORK, WORK, LWORK,
+ $ IWORK(2*N+1), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEVR(V,A)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 7 ) = ULPINV
+ RESULT( 8 ) = ULPINV
+ GO TO 320
+ END IF
+ END IF
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+*
+* Do tests 7 and 8.
+*
+ DO 280 I = 1, N
+ D3( I ) = REAL( A( I, I ) )
+ 280 CONTINUE
+ DO 290 I = 1, N - 1
+ D4( I ) = REAL( A( I+1, I ) )
+ 290 CONTINUE
+ CALL SSTT21( N, 0, D3, D4, WA1, D2, Z, LDU, WORK,
+ $ RESULT( 7 ) )
+*
+ NTEST = 9
+ DO 300 I = 1, N - 1
+ D4( I ) = REAL( A( I+1, I ) )
+ 300 CONTINUE
+ SRNAMT = 'SSTEVR'
+ CALL SSTEVR( 'N', 'A', N, D3, D4, VL, VU, IL, IU, ABSTOL,
+ $ M2, WA2, Z, LDU, IWORK, WORK, LWORK,
+ $ IWORK(2*N+1), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEVR(N,A)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 9 ) = ULPINV
+ GO TO 320
+ END IF
+ END IF
+*
+* Do test 9.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 310 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA2( J ) ),
+ $ ABS( EVEIGS( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA2( J )-EVEIGS( J ) ) )
+ 310 CONTINUE
+ RESULT( 9 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 320 CONTINUE
+*
+*
+ NTEST = 10
+ DO 330 I = 1, N
+ D1( I ) = REAL( A( I, I ) )
+ 330 CONTINUE
+ DO 340 I = 1, N - 1
+ D2( I ) = REAL( A( I+1, I ) )
+ 340 CONTINUE
+ SRNAMT = 'SSTEVX'
+ CALL SSTEVX( 'V', 'I', N, D1, D2, VL, VU, IL, IU, ABSTOL,
+ $ M2, WA2, Z, LDU, WORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEVX(V,I)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 10 ) = ULPINV
+ RESULT( 11 ) = ULPINV
+ RESULT( 12 ) = ULPINV
+ GO TO 380
+ END IF
+ END IF
+*
+* Do tests 10 and 11.
+*
+ DO 350 I = 1, N
+ D3( I ) = REAL( A( I, I ) )
+ 350 CONTINUE
+ DO 360 I = 1, N - 1
+ D4( I ) = REAL( A( I+1, I ) )
+ 360 CONTINUE
+ CALL SSTT22( N, M2, 0, D3, D4, WA2, D2, Z, LDU, WORK,
+ $ MAX( 1, M2 ), RESULT( 10 ) )
+*
+*
+ NTEST = 12
+ DO 370 I = 1, N - 1
+ D4( I ) = REAL( A( I+1, I ) )
+ 370 CONTINUE
+ SRNAMT = 'SSTEVX'
+ CALL SSTEVX( 'N', 'I', N, D3, D4, VL, VU, IL, IU, ABSTOL,
+ $ M3, WA3, Z, LDU, WORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEVX(N,I)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 12 ) = ULPINV
+ GO TO 380
+ END IF
+ END IF
+*
+* Do test 12.
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ RESULT( 12 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, ULP*TEMP3 )
+*
+ 380 CONTINUE
+*
+ NTEST = 12
+ IF( N.GT.0 ) THEN
+ IF( IL.NE.1 ) THEN
+ VL = WA1( IL ) - MAX( HALF*
+ $ ( WA1( IL )-WA1( IL-1 ) ), TEN*ULP*TEMP3,
+ $ TEN*RTUNFL )
+ ELSE
+ VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = WA1( IU ) + MAX( HALF*
+ $ ( WA1( IU+1 )-WA1( IU ) ), TEN*ULP*TEMP3,
+ $ TEN*RTUNFL )
+ ELSE
+ VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ ELSE
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ DO 390 I = 1, N
+ D1( I ) = REAL( A( I, I ) )
+ 390 CONTINUE
+ DO 400 I = 1, N - 1
+ D2( I ) = REAL( A( I+1, I ) )
+ 400 CONTINUE
+ SRNAMT = 'SSTEVX'
+ CALL SSTEVX( 'V', 'V', N, D1, D2, VL, VU, IL, IU, ABSTOL,
+ $ M2, WA2, Z, LDU, WORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEVX(V,V)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 13 ) = ULPINV
+ RESULT( 14 ) = ULPINV
+ RESULT( 15 ) = ULPINV
+ GO TO 440
+ END IF
+ END IF
+*
+ IF( M2.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( 13 ) = ULPINV
+ RESULT( 14 ) = ULPINV
+ RESULT( 15 ) = ULPINV
+ GO TO 440
+ END IF
+*
+* Do tests 13 and 14.
+*
+ DO 410 I = 1, N
+ D3( I ) = REAL( A( I, I ) )
+ 410 CONTINUE
+ DO 420 I = 1, N - 1
+ D4( I ) = REAL( A( I+1, I ) )
+ 420 CONTINUE
+ CALL SSTT22( N, M2, 0, D3, D4, WA2, D2, Z, LDU, WORK,
+ $ MAX( 1, M2 ), RESULT( 13 ) )
+*
+ NTEST = 15
+ DO 430 I = 1, N - 1
+ D4( I ) = REAL( A( I+1, I ) )
+ 430 CONTINUE
+ SRNAMT = 'SSTEVX'
+ CALL SSTEVX( 'N', 'V', N, D3, D4, VL, VU, IL, IU, ABSTOL,
+ $ M3, WA3, Z, LDU, WORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEVX(N,V)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 15 ) = ULPINV
+ GO TO 440
+ END IF
+ END IF
+*
+* Do test 15.
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ RESULT( 15 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP )
+*
+ 440 CONTINUE
+*
+ NTEST = 16
+ DO 450 I = 1, N
+ D1( I ) = REAL( A( I, I ) )
+ 450 CONTINUE
+ DO 460 I = 1, N - 1
+ D2( I ) = REAL( A( I+1, I ) )
+ 460 CONTINUE
+ SRNAMT = 'SSTEVD'
+ CALL SSTEVD( 'V', N, D1, D2, Z, LDU, WORK, LWEDC, IWORK,
+ $ LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEVD(V)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 16 ) = ULPINV
+ RESULT( 17 ) = ULPINV
+ RESULT( 18 ) = ULPINV
+ GO TO 510
+ END IF
+ END IF
+*
+* Do tests 16 and 17.
+*
+ DO 470 I = 1, N
+ D3( I ) = REAL( A( I, I ) )
+ 470 CONTINUE
+ DO 480 I = 1, N - 1
+ D4( I ) = REAL( A( I+1, I ) )
+ 480 CONTINUE
+ CALL SSTT21( N, 0, D3, D4, D1, D2, Z, LDU, WORK,
+ $ RESULT( 16 ) )
+*
+ NTEST = 18
+ DO 490 I = 1, N - 1
+ D4( I ) = REAL( A( I+1, I ) )
+ 490 CONTINUE
+ SRNAMT = 'SSTEVD'
+ CALL SSTEVD( 'N', N, D3, D4, Z, LDU, WORK, LWEDC, IWORK,
+ $ LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEVD(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 18 ) = ULPINV
+ GO TO 510
+ END IF
+ END IF
+*
+* Do test 18.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 500 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( EVEIGS( J ) ),
+ $ ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( EVEIGS( J )-D3( J ) ) )
+ 500 CONTINUE
+ RESULT( 18 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 510 CONTINUE
+*
+ NTEST = 19
+ DO 520 I = 1, N
+ D1( I ) = REAL( A( I, I ) )
+ 520 CONTINUE
+ DO 530 I = 1, N - 1
+ D2( I ) = REAL( A( I+1, I ) )
+ 530 CONTINUE
+ SRNAMT = 'SSTEVR'
+ CALL SSTEVR( 'V', 'I', N, D1, D2, VL, VU, IL, IU, ABSTOL,
+ $ M2, WA2, Z, LDU, IWORK, WORK, LWORK,
+ $ IWORK(2*N+1), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEVR(V,I)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 19 ) = ULPINV
+ RESULT( 20 ) = ULPINV
+ RESULT( 21 ) = ULPINV
+ GO TO 570
+ END IF
+ END IF
+*
+* DO tests 19 and 20.
+*
+ DO 540 I = 1, N
+ D3( I ) = REAL( A( I, I ) )
+ 540 CONTINUE
+ DO 550 I = 1, N - 1
+ D4( I ) = REAL( A( I+1, I ) )
+ 550 CONTINUE
+ CALL SSTT22( N, M2, 0, D3, D4, WA2, D2, Z, LDU, WORK,
+ $ MAX( 1, M2 ), RESULT( 19 ) )
+*
+*
+ NTEST = 21
+ DO 560 I = 1, N - 1
+ D4( I ) = REAL( A( I+1, I ) )
+ 560 CONTINUE
+ SRNAMT = 'SSTEVR'
+ CALL SSTEVR( 'N', 'I', N, D3, D4, VL, VU, IL, IU, ABSTOL,
+ $ M3, WA3, Z, LDU, IWORK, WORK, LWORK,
+ $ IWORK(2*N+1), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEVR(N,I)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 21 ) = ULPINV
+ GO TO 570
+ END IF
+ END IF
+*
+* Do test 21.
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ RESULT( 21 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, ULP*TEMP3 )
+*
+ 570 CONTINUE
+*
+ NTEST = 21
+ IF( N.GT.0 ) THEN
+ IF( IL.NE.1 ) THEN
+ VL = WA1( IL ) - MAX( HALF*
+ $ ( WA1( IL )-WA1( IL-1 ) ), TEN*ULP*TEMP3,
+ $ TEN*RTUNFL )
+ ELSE
+ VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = WA1( IU ) + MAX( HALF*
+ $ ( WA1( IU+1 )-WA1( IU ) ), TEN*ULP*TEMP3,
+ $ TEN*RTUNFL )
+ ELSE
+ VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ ELSE
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ DO 580 I = 1, N
+ D1( I ) = REAL( A( I, I ) )
+ 580 CONTINUE
+ DO 590 I = 1, N - 1
+ D2( I ) = REAL( A( I+1, I ) )
+ 590 CONTINUE
+ SRNAMT = 'SSTEVR'
+ CALL SSTEVR( 'V', 'V', N, D1, D2, VL, VU, IL, IU, ABSTOL,
+ $ M2, WA2, Z, LDU, IWORK, WORK, LWORK,
+ $ IWORK(2*N+1), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEVR(V,V)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 22 ) = ULPINV
+ RESULT( 23 ) = ULPINV
+ RESULT( 24 ) = ULPINV
+ GO TO 630
+ END IF
+ END IF
+*
+ IF( M2.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( 22 ) = ULPINV
+ RESULT( 23 ) = ULPINV
+ RESULT( 24 ) = ULPINV
+ GO TO 630
+ END IF
+*
+* Do tests 22 and 23.
+*
+ DO 600 I = 1, N
+ D3( I ) = REAL( A( I, I ) )
+ 600 CONTINUE
+ DO 610 I = 1, N - 1
+ D4( I ) = REAL( A( I+1, I ) )
+ 610 CONTINUE
+ CALL SSTT22( N, M2, 0, D3, D4, WA2, D2, Z, LDU, WORK,
+ $ MAX( 1, M2 ), RESULT( 22 ) )
+*
+ NTEST = 24
+ DO 620 I = 1, N - 1
+ D4( I ) = REAL( A( I+1, I ) )
+ 620 CONTINUE
+ SRNAMT = 'SSTEVR'
+ CALL SSTEVR( 'N', 'V', N, D3, D4, VL, VU, IL, IU, ABSTOL,
+ $ M3, WA3, Z, LDU, IWORK, WORK, LWORK,
+ $ IWORK(2*N+1), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSTEVR(N,V)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 24 ) = ULPINV
+ GO TO 630
+ END IF
+ END IF
+*
+* Do test 24.
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ RESULT( 24 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP )
+*
+ 630 CONTINUE
+*
+*
+*
+ ELSE
+*
+ DO 640 I = 1, 24
+ RESULT( I ) = ZERO
+ 640 CONTINUE
+ NTEST = 24
+ END IF
+*
+* Perform remaining tests storing upper or lower triangular
+* part of matrix.
+*
+ DO 1720 IUPLO = 0, 1
+ IF( IUPLO.EQ.0 ) THEN
+ UPLO = 'L'
+ ELSE
+ UPLO = 'U'
+ END IF
+*
+* 4) Call SSYEV and SSYEVX.
+*
+ CALL SLACPY( ' ', N, N, A, LDA, V, LDU )
+*
+ NTEST = NTEST + 1
+ SRNAMT = 'SSYEV'
+ CALL SSYEV( 'V', UPLO, N, A, LDU, D1, WORK, LWORK,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSYEV(V,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 660
+ END IF
+ END IF
+*
+* Do tests 25 and 26 (or +54)
+*
+ CALL SSYT21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ NTEST = NTEST + 2
+ SRNAMT = 'SSYEV_2STAGE'
+ CALL SSYEV_2STAGE( 'N', UPLO, N, A, LDU, D3, WORK, LWORK,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'SSYEV_2STAGE(N,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 660
+ END IF
+ END IF
+*
+* Do test 27 (or +54)
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 650 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 650 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 660 CONTINUE
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ NTEST = NTEST + 1
+*
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
+ IF( IL.NE.1 ) THEN
+ VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ ELSE IF( N.GT.0 ) THEN
+ VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ ELSE IF( N.GT.0 ) THEN
+ VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ ELSE
+ TEMP3 = ZERO
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ SRNAMT = 'SSYEVX'
+ CALL SSYEVX( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M, WA1, Z, LDU, WORK, LWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSYEVX(V,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 680
+ END IF
+ END IF
+*
+* Do tests 28 and 29 (or +54)
+*
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL SSYT21( 1, UPLO, N, 0, A, LDU, D1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ SRNAMT = 'SSYEVX_2STAGE'
+ CALL SSYEVX_2STAGE( 'N', 'A', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
+ $ LWORK, IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'SSYEVX_2STAGE(N,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 680
+ END IF
+ END IF
+*
+* Do test 30 (or +54)
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 670 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
+ 670 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 680 CONTINUE
+*
+ NTEST = NTEST + 1
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+ SRNAMT = 'SSYEVX'
+ CALL SSYEVX( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSYEVX(V,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 690
+ END IF
+ END IF
+*
+* Do tests 31 and 32 (or +54)
+*
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+ SRNAMT = 'SSYEVX_2STAGE'
+ CALL SSYEVX_2STAGE( 'N', 'I', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M3, WA3, Z, LDU, WORK,
+ $ LWORK, IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'SSYEVX_2STAGE(N,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 690
+ END IF
+ END IF
+*
+* Do test 33 (or +54)
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, ULP*TEMP3 )
+ 690 CONTINUE
+*
+ NTEST = NTEST + 1
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+ SRNAMT = 'SSYEVX'
+ CALL SSYEVX( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSYEVX(V,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 700
+ END IF
+ END IF
+*
+* Do tests 34 and 35 (or +54)
+*
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+ SRNAMT = 'SSYEVX_2STAGE'
+ CALL SSYEVX_2STAGE( 'N', 'V', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M3, WA3, Z, LDU, WORK,
+ $ LWORK, IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'SSYEVX_2STAGE(N,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 700
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( NTEST ) = ULPINV
+ GO TO 700
+ END IF
+*
+* Do test 36 (or +54)
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 700 CONTINUE
+*
+* 5) Call SSPEV and SSPEVX.
+*
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+* Load array WORK with the upper or lower triangular
+* part of the matrix in packed form.
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 720 J = 1, N
+ DO 710 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 710 CONTINUE
+ 720 CONTINUE
+ ELSE
+ INDX = 1
+ DO 740 J = 1, N
+ DO 730 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 730 CONTINUE
+ 740 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ SRNAMT = 'SSPEV'
+ CALL SSPEV( 'V', UPLO, N, WORK, D1, Z, LDU, V, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSPEV(V,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 800
+ END IF
+ END IF
+*
+* Do tests 37 and 38 (or +54)
+*
+ CALL SSYT21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 760 J = 1, N
+ DO 750 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 750 CONTINUE
+ 760 CONTINUE
+ ELSE
+ INDX = 1
+ DO 780 J = 1, N
+ DO 770 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 770 CONTINUE
+ 780 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 2
+ SRNAMT = 'SSPEV'
+ CALL SSPEV( 'N', UPLO, N, WORK, D3, Z, LDU, V, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSPEV(N,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 800
+ END IF
+ END IF
+*
+* Do test 39 (or +54)
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 790 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 790 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Load array WORK with the upper or lower triangular part
+* of the matrix in packed form.
+*
+ 800 CONTINUE
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 820 J = 1, N
+ DO 810 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 810 CONTINUE
+ 820 CONTINUE
+ ELSE
+ INDX = 1
+ DO 840 J = 1, N
+ DO 830 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 830 CONTINUE
+ 840 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+*
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
+ IF( IL.NE.1 ) THEN
+ VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ ELSE IF( N.GT.0 ) THEN
+ VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ ELSE IF( N.GT.0 ) THEN
+ VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ ELSE
+ TEMP3 = ZERO
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ SRNAMT = 'SSPEVX'
+ CALL SSPEVX( 'V', 'A', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M, WA1, Z, LDU, V, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSPEVX(V,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 900
+ END IF
+ END IF
+*
+* Do tests 40 and 41 (or +54)
+*
+ CALL SSYT21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 860 J = 1, N
+ DO 850 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 850 CONTINUE
+ 860 CONTINUE
+ ELSE
+ INDX = 1
+ DO 880 J = 1, N
+ DO 870 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 870 CONTINUE
+ 880 CONTINUE
+ END IF
+*
+ SRNAMT = 'SSPEVX'
+ CALL SSPEVX( 'N', 'A', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, V, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSPEVX(N,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 900
+ END IF
+ END IF
+*
+* Do test 42 (or +54)
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 890 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
+ 890 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 900 CONTINUE
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 920 J = 1, N
+ DO 910 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 910 CONTINUE
+ 920 CONTINUE
+ ELSE
+ INDX = 1
+ DO 940 J = 1, N
+ DO 930 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 930 CONTINUE
+ 940 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+*
+ SRNAMT = 'SSPEVX'
+ CALL SSPEVX( 'V', 'I', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, V, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSPEVX(V,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 990
+ END IF
+ END IF
+*
+* Do tests 43 and 44 (or +54)
+*
+ CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 960 J = 1, N
+ DO 950 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 950 CONTINUE
+ 960 CONTINUE
+ ELSE
+ INDX = 1
+ DO 980 J = 1, N
+ DO 970 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 970 CONTINUE
+ 980 CONTINUE
+ END IF
+*
+ SRNAMT = 'SSPEVX'
+ CALL SSPEVX( 'N', 'I', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M3, WA3, Z, LDU, V, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSPEVX(N,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 990
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( NTEST ) = ULPINV
+ GO TO 990
+ END IF
+*
+* Do test 45 (or +54)
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 990 CONTINUE
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 1010 J = 1, N
+ DO 1000 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1000 CONTINUE
+ 1010 CONTINUE
+ ELSE
+ INDX = 1
+ DO 1030 J = 1, N
+ DO 1020 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1020 CONTINUE
+ 1030 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+*
+ SRNAMT = 'SSPEVX'
+ CALL SSPEVX( 'V', 'V', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, V, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSPEVX(V,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1080
+ END IF
+ END IF
+*
+* Do tests 46 and 47 (or +54)
+*
+ CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 1050 J = 1, N
+ DO 1040 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1040 CONTINUE
+ 1050 CONTINUE
+ ELSE
+ INDX = 1
+ DO 1070 J = 1, N
+ DO 1060 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1060 CONTINUE
+ 1070 CONTINUE
+ END IF
+*
+ SRNAMT = 'SSPEVX'
+ CALL SSPEVX( 'N', 'V', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M3, WA3, Z, LDU, V, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSPEVX(N,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1080
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( NTEST ) = ULPINV
+ GO TO 1080
+ END IF
+*
+* Do test 48 (or +54)
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 1080 CONTINUE
+*
+* 6) Call SSBEV and SSBEVX.
+*
+ IF( JTYPE.LE.7 ) THEN
+ KD = 1
+ ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
+ KD = MAX( N-1, 0 )
+ ELSE
+ KD = IHBW
+ END IF
+*
+* Load array V with the upper or lower triangular part
+* of the matrix in band form.
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1100 J = 1, N
+ DO 1090 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1090 CONTINUE
+ 1100 CONTINUE
+ ELSE
+ DO 1120 J = 1, N
+ DO 1110 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1110 CONTINUE
+ 1120 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ SRNAMT = 'SSBEV'
+ CALL SSBEV( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSBEV(V,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1180
+ END IF
+ END IF
+*
+* Do tests 49 and 50 (or ... )
+*
+ CALL SSYT21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1140 J = 1, N
+ DO 1130 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1130 CONTINUE
+ 1140 CONTINUE
+ ELSE
+ DO 1160 J = 1, N
+ DO 1150 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1150 CONTINUE
+ 1160 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 2
+ SRNAMT = 'SSBEV_2STAGE'
+ CALL SSBEV_2STAGE( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU,
+ $ WORK, LWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'SSBEV_2STAGE(N,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1180
+ END IF
+ END IF
+*
+* Do test 51 (or +54)
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 1170 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 1170 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Load array V with the upper or lower triangular part
+* of the matrix in band form.
+*
+ 1180 CONTINUE
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1200 J = 1, N
+ DO 1190 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1190 CONTINUE
+ 1200 CONTINUE
+ ELSE
+ DO 1220 J = 1, N
+ DO 1210 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1210 CONTINUE
+ 1220 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ SRNAMT = 'SSBEVX'
+ CALL SSBEVX( 'V', 'A', UPLO, N, KD, V, LDU, U, LDU, VL,
+ $ VU, IL, IU, ABSTOL, M, WA2, Z, LDU, WORK,
+ $ IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSBEVX(V,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1280
+ END IF
+ END IF
+*
+* Do tests 52 and 53 (or +54)
+*
+ CALL SSYT21( 1, UPLO, N, 0, A, LDU, WA2, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1240 J = 1, N
+ DO 1230 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1230 CONTINUE
+ 1240 CONTINUE
+ ELSE
+ DO 1260 J = 1, N
+ DO 1250 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1250 CONTINUE
+ 1260 CONTINUE
+ END IF
+*
+ SRNAMT = 'SSBEVX_2STAGE'
+ CALL SSBEVX_2STAGE( 'N', 'A', UPLO, N, KD, V, LDU,
+ $ U, LDU, VL, VU, IL, IU, ABSTOL, M3, WA3,
+ $ Z, LDU, WORK, LWORK, IWORK, IWORK( 5*N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'SSBEVX_2STAGE(N,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1280
+ END IF
+ END IF
+*
+* Do test 54 (or +54)
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 1270 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA2( J ) ), ABS( WA3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA2( J )-WA3( J ) ) )
+ 1270 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 1280 CONTINUE
+ NTEST = NTEST + 1
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1300 J = 1, N
+ DO 1290 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1290 CONTINUE
+ 1300 CONTINUE
+ ELSE
+ DO 1320 J = 1, N
+ DO 1310 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1310 CONTINUE
+ 1320 CONTINUE
+ END IF
+*
+ SRNAMT = 'SSBEVX'
+ CALL SSBEVX( 'V', 'I', UPLO, N, KD, V, LDU, U, LDU, VL,
+ $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
+ $ IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSBEVX(V,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1370
+ END IF
+ END IF
+*
+* Do tests 55 and 56 (or +54)
+*
+ CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1340 J = 1, N
+ DO 1330 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1330 CONTINUE
+ 1340 CONTINUE
+ ELSE
+ DO 1360 J = 1, N
+ DO 1350 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1350 CONTINUE
+ 1360 CONTINUE
+ END IF
+*
+ SRNAMT = 'SSBEVX_2STAGE'
+ CALL SSBEVX_2STAGE( 'N', 'I', UPLO, N, KD, V, LDU,
+ $ U, LDU, VL, VU, IL, IU, ABSTOL, M3, WA3,
+ $ Z, LDU, WORK, LWORK, IWORK, IWORK( 5*N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'SSBEVX_2STAGE(N,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1370
+ END IF
+ END IF
+*
+* Do test 57 (or +54)
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 1370 CONTINUE
+ NTEST = NTEST + 1
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1390 J = 1, N
+ DO 1380 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1380 CONTINUE
+ 1390 CONTINUE
+ ELSE
+ DO 1410 J = 1, N
+ DO 1400 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1400 CONTINUE
+ 1410 CONTINUE
+ END IF
+*
+ SRNAMT = 'SSBEVX'
+ CALL SSBEVX( 'V', 'V', UPLO, N, KD, V, LDU, U, LDU, VL,
+ $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
+ $ IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSBEVX(V,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1460
+ END IF
+ END IF
+*
+* Do tests 58 and 59 (or +54)
+*
+ CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1430 J = 1, N
+ DO 1420 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1420 CONTINUE
+ 1430 CONTINUE
+ ELSE
+ DO 1450 J = 1, N
+ DO 1440 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1440 CONTINUE
+ 1450 CONTINUE
+ END IF
+*
+ SRNAMT = 'SSBEVX_2STAGE'
+ CALL SSBEVX_2STAGE( 'N', 'V', UPLO, N, KD, V, LDU,
+ $ U, LDU, VL, VU, IL, IU, ABSTOL, M3, WA3,
+ $ Z, LDU, WORK, LWORK, IWORK, IWORK( 5*N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'SSBEVX_2STAGE(N,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1460
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( NTEST ) = ULPINV
+ GO TO 1460
+ END IF
+*
+* Do test 60 (or +54)
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 1460 CONTINUE
+*
+* 7) Call SSYEVD
+*
+ CALL SLACPY( ' ', N, N, A, LDA, V, LDU )
+*
+ NTEST = NTEST + 1
+ SRNAMT = 'SSYEVD'
+ CALL SSYEVD( 'V', UPLO, N, A, LDU, D1, WORK, LWEDC,
+ $ IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSYEVD(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1480
+ END IF
+ END IF
+*
+* Do tests 61 and 62 (or +54)
+*
+ CALL SSYT21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ NTEST = NTEST + 2
+ SRNAMT = 'SSYEVD_2STAGE'
+ CALL SSYEVD_2STAGE( 'N', UPLO, N, A, LDU, D3, WORK,
+ $ LWORK, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'SSYEVD_2STAGE(N,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1480
+ END IF
+ END IF
+*
+* Do test 63 (or +54)
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 1470 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 1470 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 1480 CONTINUE
+*
+* 8) Call SSPEVD.
+*
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+* Load array WORK with the upper or lower triangular
+* part of the matrix in packed form.
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 1500 J = 1, N
+ DO 1490 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1490 CONTINUE
+ 1500 CONTINUE
+ ELSE
+ INDX = 1
+ DO 1520 J = 1, N
+ DO 1510 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1510 CONTINUE
+ 1520 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ SRNAMT = 'SSPEVD'
+ CALL SSPEVD( 'V', UPLO, N, WORK, D1, Z, LDU,
+ $ WORK( INDX ), LWEDC-INDX+1, IWORK, LIWEDC,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSPEVD(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1580
+ END IF
+ END IF
+*
+* Do tests 64 and 65 (or +54)
+*
+ CALL SSYT21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 1540 J = 1, N
+ DO 1530 I = 1, J
+*
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1530 CONTINUE
+ 1540 CONTINUE
+ ELSE
+ INDX = 1
+ DO 1560 J = 1, N
+ DO 1550 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1550 CONTINUE
+ 1560 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 2
+ SRNAMT = 'SSPEVD'
+ CALL SSPEVD( 'N', UPLO, N, WORK, D3, Z, LDU,
+ $ WORK( INDX ), LWEDC-INDX+1, IWORK, LIWEDC,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSPEVD(N,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1580
+ END IF
+ END IF
+*
+* Do test 66 (or +54)
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 1570 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 1570 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+ 1580 CONTINUE
+*
+* 9) Call SSBEVD.
+*
+ IF( JTYPE.LE.7 ) THEN
+ KD = 1
+ ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
+ KD = MAX( N-1, 0 )
+ ELSE
+ KD = IHBW
+ END IF
+*
+* Load array V with the upper or lower triangular part
+* of the matrix in band form.
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1600 J = 1, N
+ DO 1590 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1590 CONTINUE
+ 1600 CONTINUE
+ ELSE
+ DO 1620 J = 1, N
+ DO 1610 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1610 CONTINUE
+ 1620 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ SRNAMT = 'SSBEVD'
+ CALL SSBEVD( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
+ $ LWEDC, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSBEVD(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1680
+ END IF
+ END IF
+*
+* Do tests 67 and 68 (or +54)
+*
+ CALL SSYT21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1640 J = 1, N
+ DO 1630 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1630 CONTINUE
+ 1640 CONTINUE
+ ELSE
+ DO 1660 J = 1, N
+ DO 1650 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1650 CONTINUE
+ 1660 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 2
+ SRNAMT = 'SSBEVD_2STAGE'
+ CALL SSBEVD_2STAGE( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU,
+ $ WORK, LWORK, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'SSBEVD_2STAGE(N,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1680
+ END IF
+ END IF
+*
+* Do test 69 (or +54)
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 1670 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 1670 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 1680 CONTINUE
+*
+*
+ CALL SLACPY( ' ', N, N, A, LDA, V, LDU )
+ NTEST = NTEST + 1
+ SRNAMT = 'SSYEVR'
+ CALL SSYEVR( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M, WA1, Z, LDU, IWORK, WORK, LWORK,
+ $ IWORK(2*N+1), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSYEVR(V,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1700
+ END IF
+ END IF
+*
+* Do tests 70 and 71 (or ... )
+*
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL SSYT21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ SRNAMT = 'SSYEVR_2STAGE'
+ CALL SSYEVR_2STAGE( 'N', 'A', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M2, WA2, Z, LDU, IWORK,
+ $ WORK, LWORK, IWORK(2*N+1), LIWORK-2*N,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'SSYEVR_2STAGE(N,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1700
+ END IF
+ END IF
+*
+* Do test 72 (or ... )
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 1690 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
+ 1690 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 1700 CONTINUE
+*
+ NTEST = NTEST + 1
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+ SRNAMT = 'SSYEVR'
+ CALL SSYEVR( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
+ $ IWORK(2*N+1), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSYEVR(V,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1710
+ END IF
+ END IF
+*
+* Do tests 73 and 74 (or +54)
+*
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+ SRNAMT = 'SSYEVR_2STAGE'
+ CALL SSYEVR_2STAGE( 'N', 'I', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M3, WA3, Z, LDU, IWORK,
+ $ WORK, LWORK, IWORK(2*N+1), LIWORK-2*N,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'SSYEVR_2STAGE(N,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1710
+ END IF
+ END IF
+*
+* Do test 75 (or +54)
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, ULP*TEMP3 )
+ 1710 CONTINUE
+*
+ NTEST = NTEST + 1
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+ SRNAMT = 'SSYEVR'
+ CALL SSYEVR( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
+ $ IWORK(2*N+1), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'SSYEVR(V,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 700
+ END IF
+ END IF
+*
+* Do tests 76 and 77 (or +54)
+*
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+ SRNAMT = 'SSYEVR_2STAGE'
+ CALL SSYEVR_2STAGE( 'N', 'V', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M3, WA3, Z, LDU, IWORK,
+ $ WORK, LWORK, IWORK(2*N+1), LIWORK-2*N,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'SSYEVR_2STAGE(N,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 700
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( NTEST ) = ULPINV
+ GO TO 700
+ END IF
+*
+* Do test 78 (or +54)
+*
+ TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ 1720 CONTINUE
+*
+* End of Loop -- Check for RESULT(j) > THRESH
+*
+ NTESTT = NTESTT + NTEST
+*
+ CALL SLAFTS( 'SST', N, N, JTYPE, NTEST, RESULT, IOLDSD,
+ $ THRESH, NOUNIT, NERRS )
+*
+ 1730 CONTINUE
+ 1740 CONTINUE
+*
+* Summary
+*
+ CALL ALASVM( 'SST', NOUNIT, NERRS, NTESTT, 0 )
+*
+ 9999 FORMAT( ' SDRVST2STG: ', A, ' returned INFO=', I6, '.', / 9X,
+ $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
+*
+ RETURN
+*
+* End of SDRVST2STG
+*
+ END
diff --git a/TESTING/EIG/serrst.f b/TESTING/EIG/serrst.f
index 266e9ec1..dd341aea 100644
--- a/TESTING/EIG/serrst.f
+++ b/TESTING/EIG/serrst.f
@@ -25,6 +25,10 @@
*> SOPGTR, SOPMTR, SSTEQR, SSTERF, SSTEBZ, SSTEIN, SPTEQR, SSBTRD,
*> SSYEV, SSYEVX, SSYEVD, SSBEV, SSBEVX, SSBEVD,
*> SSPEV, SSPEVX, SSPEVD, SSTEV, SSTEVX, SSTEVD, and SSTEDC.
+*> SSYEVD_2STAGE, SSYEVR_2STAGE, SSYEVX_2STAGE,
+*> SSYEV_2STAGE, SSBEV_2STAGE, SSBEVD_2STAGE,
+*> SSBEVX_2STAGE, SSYTRD_2STAGE, SSYTRD_SY2SB,
+*> SSYTRD_SB2ST
*> \endverbatim
*
* Arguments:
@@ -94,7 +98,11 @@
$ SSBEV, SSBEVD, SSBEVX, SSBTRD, SSPEV, SSPEVD,
$ SSPEVX, SSPTRD, SSTEBZ, SSTEDC, SSTEIN, SSTEQR,
$ SSTERF, SSTEV, SSTEVD, SSTEVR, SSTEVX, SSYEV,
- $ SSYEVD, SSYEVR, SSYEVX, SSYTRD
+ $ SSYEVD, SSYEVR, SSYEVX, SSYTRD,
+ $ SSYEVD_2STAGE, SSYEVR_2STAGE, SSYEVX_2STAGE,
+ $ SSYEV_2STAGE, SSBEV_2STAGE, SSBEVD_2STAGE,
+ $ SSBEVX_2STAGE, SSYTRD_2STAGE, SSYTRD_SY2SB,
+ $ SSYTRD_SB2ST
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@@ -152,6 +160,103 @@
CALL CHKXER( 'SSYTRD', INFOT, NOUT, LERR, OK )
NT = NT + 4
*
+* SSYTRD_2STAGE
+*
+ SRNAMT = 'SSYTRD_2STAGE'
+ INFOT = 1
+ CALL SSYTRD_2STAGE( '/', 'U', 0, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL SSYTRD_2STAGE( 'H', 'U', 0, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL SSYTRD_2STAGE( 'N', '/', 0, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL SSYTRD_2STAGE( 'N', 'U', -1, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL SSYTRD_2STAGE( 'N', 'U', 2, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL SSYTRD_2STAGE( 'N', 'U', 0, A, 1, D, E, TAU,
+ $ C, 0, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 12
+ CALL SSYTRD_2STAGE( 'N', 'U', 0, A, 1, D, E, TAU,
+ $ C, 1, W, 0, INFO )
+ CALL CHKXER( 'SSYTRD_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 7
+*
+* SSYTRD_SY2SB
+*
+ SRNAMT = 'SSYTRD_SY2SB'
+ INFOT = 1
+ CALL SSYTRD_SY2SB( '/', 0, 0, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SY2SB', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL SSYTRD_SY2SB( 'U', -1, 0, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SY2SB', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL SSYTRD_SY2SB( 'U', 0, -1, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SY2SB', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL SSYTRD_SY2SB( 'U', 2, 0, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SY2SB', INFOT, NOUT, LERR, OK )
+ INFOT = 7
+ CALL SSYTRD_SY2SB( 'U', 0, 2, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SY2SB', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL SSYTRD_SY2SB( 'U', 0, 0, A, 1, C, 1, TAU, W, 0, INFO )
+ CALL CHKXER( 'SSYTRD_SY2SB', INFOT, NOUT, LERR, OK )
+ NT = NT + 6
+*
+* SSYTRD_SB2ST
+*
+ SRNAMT = 'SSYTRD_SB2ST'
+ INFOT = 1
+ CALL SSYTRD_SB2ST( '/', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL SSYTRD_SB2ST( 'Y', '/', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL SSYTRD_SB2ST( 'Y', 'H', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL SSYTRD_SB2ST( 'Y', 'N', '/', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL SSYTRD_SB2ST( 'Y', 'N', 'U', -1, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL SSYTRD_SB2ST( 'Y', 'N', 'U', 0, -1, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 7
+ CALL SSYTRD_SB2ST( 'Y', 'N', 'U', 0, 1, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL SSYTRD_SB2ST( 'Y', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 0, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL SSYTRD_SB2ST( 'Y', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 0, INFO )
+ CALL CHKXER( 'SSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ NT = NT + 9
+*
* SORGTR
*
SRNAMT = 'SORGTR'
@@ -536,6 +641,44 @@
CALL CHKXER( 'SSYEVD', INFOT, NOUT, LERR, OK )
NT = NT + 10
*
+* SSYEVD_2STAGE
+*
+ SRNAMT = 'SSYEVD_2STAGE'
+ INFOT = 1
+ CALL SSYEVD_2STAGE( '/', 'U', 0, A, 1, X, W, 1, IW, 1, INFO )
+ CALL CHKXER( 'SSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL SSYEVD_2STAGE( 'V', 'U', 0, A, 1, X, W, 1, IW, 1, INFO )
+ CALL CHKXER( 'SSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL SSYEVD_2STAGE( 'N', '/', 0, A, 1, X, W, 1, IW, 1, INFO )
+ CALL CHKXER( 'SSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL SSYEVD_2STAGE( 'N', 'U', -1, A, 1, X, W, 1, IW, 1, INFO )
+ CALL CHKXER( 'SSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL SSYEVD_2STAGE( 'N', 'U', 2, A, 1, X, W, 3, IW, 1, INFO )
+ CALL CHKXER( 'SSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL SSYEVD_2STAGE( 'N', 'U', 1, A, 1, X, W, 0, IW, 1, INFO )
+ CALL CHKXER( 'SSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL SSYEVD_2STAGE( 'N', 'U', 2, A, 2, X, W, 4, IW, 1, INFO )
+ CALL CHKXER( 'SSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 8
+* CALL SSYEVD_2STAGE( 'V', 'U', 2, A, 2, X, W, 20, IW, 12, INFO )
+* CALL CHKXER( 'SSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL SSYEVD_2STAGE( 'N', 'U', 1, A, 1, X, W, 1, IW, 0, INFO )
+ CALL CHKXER( 'SSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL SSYEVD_2STAGE( 'N', 'U', 2, A, 2, X, W, 25, IW, 0, INFO )
+ CALL CHKXER( 'SSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 10
+* CALL SSYEVD_2STAGE( 'V', 'U', 2, A, 2, X, W, 27, IW, 11, INFO )
+* CALL CHKXER( 'SSYEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 9
+*
* SSYEVR
*
SRNAMT = 'SSYEVR'
@@ -589,6 +732,74 @@
CALL CHKXER( 'SSYEVR', INFOT, NOUT, LERR, OK )
NT = NT + 11
*
+* SSYEVR_2STAGE
+*
+ SRNAMT = 'SSYEVR_2STAGE'
+ N = 1
+ INFOT = 1
+ CALL SSYEVR_2STAGE( '/', 'A', 'U', 0, A, 1,
+ $ 0.0E0, 0.0E0, 1, 1, 0.0E0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'SSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL SSYEVR_2STAGE( 'V', 'A', 'U', 0, A, 1,
+ $ 0.0E0, 0.0E0, 1, 1, 0.0E0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'SSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL SSYEVR_2STAGE( 'N', '/', 'U', 0, A, 1,
+ $ 0.0E0, 0.0E0, 1, 1, 0.0E0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'SSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL SSYEVR_2STAGE( 'N', 'A', '/', -1, A, 1,
+ $ 0.0E0, 0.0E0, 1, 1, 0.0E0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'SSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL SSYEVR_2STAGE( 'N', 'A', 'U', -1, A, 1,
+ $ 0.0E0, 0.0E0, 1, 1, 0.0E0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'SSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL SSYEVR_2STAGE( 'N', 'A', 'U', 2, A, 1,
+ $ 0.0E0, 0.0E0, 1, 1, 0.0E0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'SSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL SSYEVR_2STAGE( 'N', 'V', 'U', 1, A, 1,
+ $ 0.0E0, 0.0E0, 1, 1, 0.0E0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'SSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 9
+ CALL SSYEVR_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0E0, 0.0E0, 0, 1, 0.0E0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'SSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL SSYEVR_2STAGE( 'N', 'I', 'U', 2, A, 2,
+ $ 0.0E0, 0.0E0, 2, 1, 0.0E0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'SSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 15
+ CALL SSYEVR_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0E0, 0.0E0, 1, 1, 0.0E0,
+ $ M, R, Z, 0, IW, Q, 26*N, IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'SSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 18
+ CALL SSYEVR_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0E0, 0.0E0, 1, 1, 0.0E0,
+ $ M, R, Z, 1, IW, Q, 0, IW( 2*N+1 ), 10*N,
+ $ INFO )
+ CALL CHKXER( 'SSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 20
+ CALL SSYEVR_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0E0, 0.0E0, 1, 1, 0.0E0,
+ $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 0,
+ $ INFO )
+ CALL CHKXER( 'SSYEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 12
+*
* SSYEV
*
SRNAMT = 'SSYEV '
@@ -609,6 +820,29 @@
CALL CHKXER( 'SSYEV ', INFOT, NOUT, LERR, OK )
NT = NT + 5
*
+* SSYEV_2STAGE
+*
+ SRNAMT = 'SSYEV_2STAGE '
+ INFOT = 1
+ CALL SSYEV_2STAGE( '/', 'U', 0, A, 1, X, W, 1, INFO )
+ CALL CHKXER( 'SSYEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL SSYEV_2STAGE( 'V', 'U', 0, A, 1, X, W, 1, INFO )
+ CALL CHKXER( 'SSYEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL SSYEV_2STAGE( 'N', '/', 0, A, 1, X, W, 1, INFO )
+ CALL CHKXER( 'SSYEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL SSYEV_2STAGE( 'N', 'U', -1, A, 1, X, W, 1, INFO )
+ CALL CHKXER( 'SSYEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL SSYEV_2STAGE( 'N', 'U', 2, A, 1, X, W, 3, INFO )
+ CALL CHKXER( 'SSYEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL SSYEV_2STAGE( 'N', 'U', 1, A, 1, X, W, 1, INFO )
+ CALL CHKXER( 'SSYEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ NT = NT + 6
+*
* SSYEVX
*
SRNAMT = 'SSYEVX'
@@ -661,6 +895,75 @@
CALL CHKXER( 'SSYEVX', INFOT, NOUT, LERR, OK )
NT = NT + 12
*
+* SSYEVX_2STAGE
+*
+ SRNAMT = 'SSYEVX_2STAGE'
+ INFOT = 1
+ CALL SSYEVX_2STAGE( '/', 'A', 'U', 0, A, 1,
+ $ 0.0E0, 0.0E0, 0, 0, 0.0E0,
+ $ M, X, Z, 1, W, 1, IW, I3, INFO )
+ CALL CHKXER( 'SSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL SSYEVX_2STAGE( 'V', 'A', 'U', 0, A, 1,
+ $ 0.0E0, 0.0E0, 0, 0, 0.0E0,
+ $ M, X, Z, 1, W, 1, IW, I3, INFO )
+ CALL CHKXER( 'SSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL SSYEVX_2STAGE( 'N', '/', 'U', 0, A, 1,
+ $ 0.0E0, 1.0E0, 1, 0, 0.0E0,
+ $ M, X, Z, 1, W, 1, IW, I3, INFO )
+ CALL CHKXER( 'SSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL SSYEVX_2STAGE( 'N', 'A', '/', 0, A, 1,
+ $ 0.0E0, 0.0E0, 0, 0, 0.0E0,
+ $ M, X, Z, 1, W, 1, IW, I3, INFO )
+ INFOT = 4
+ CALL SSYEVX_2STAGE( 'N', 'A', 'U', -1, A, 1,
+ $ 0.0E0, 0.0E0, 0, 0, 0.0E0,
+ $ M, X, Z, 1, W, 1, IW, I3, INFO )
+ CALL CHKXER( 'SSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL SSYEVX_2STAGE( 'N', 'A', 'U', 2, A, 1,
+ $ 0.0E0, 0.0E0, 0, 0, 0.0E0,
+ $ M, X, Z, 1, W, 16, IW, I3, INFO )
+ CALL CHKXER( 'SSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL SSYEVX_2STAGE( 'N', 'V', 'U', 1, A, 1,
+ $ 0.0E0, 0.0E0, 0, 0, 0.0E0,
+ $ M, X, Z, 1, W, 8, IW, I3, INFO )
+ CALL CHKXER( 'SSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 9
+ CALL SSYEVX_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0E0, 0.0E0, 0, 0, 0.0E0,
+ $ M, X, Z, 1, W, 8, IW, I3, INFO )
+ CALL CHKXER( 'SSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 9
+ CALL SSYEVX_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0E0, 0.0E0, 2, 1, 0.0E0,
+ $ M, X, Z, 1, W, 8, IW, I3, INFO )
+ CALL CHKXER( 'SSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL SSYEVX_2STAGE( 'N', 'I', 'U', 2, A, 2,
+ $ 0.0E0, 0.0E0, 2, 1, 0.0E0,
+ $ M, X, Z, 1, W, 16, IW, I3, INFO )
+ CALL CHKXER( 'SSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL SSYEVX_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0E0, 0.0E0, 1, 2, 0.0E0,
+ $ M, X, Z, 1, W, 8, IW, I3, INFO )
+ CALL CHKXER( 'SSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 15
+ CALL SSYEVX_2STAGE( 'N', 'A', 'U', 2, A, 2,
+ $ 0.0E0, 0.0E0, 0, 0, 0.0E0,
+ $ M, X, Z, 0, W, 16, IW, I3, INFO )
+ CALL CHKXER( 'SSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 17
+ CALL SSYEVX_2STAGE( 'N', 'A', 'U', 1, A, 1,
+ $ 0.0E0, 0.0E0, 0, 0, 0.0E0,
+ $ M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'SSYEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 13
+*
* SSPEVD
*
SRNAMT = 'SSPEVD'
@@ -784,6 +1087,47 @@
CALL CHKXER( 'SSBTRD', INFOT, NOUT, LERR, OK )
NT = NT + 6
*
+* SSYTRD_SB2ST
+*
+ SRNAMT = 'SSYTRD_SB2ST'
+ INFOT = 1
+ CALL SSYTRD_SB2ST( '/', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL SSYTRD_SB2ST( 'N', '/', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL SSYTRD_SB2ST( 'N', 'H', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL SSYTRD_SB2ST( 'N', 'N', '/', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL SSYTRD_SB2ST( 'N', 'N', 'U', -1, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL SSYTRD_SB2ST( 'N', 'N', 'U', 0, -1, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 7
+ CALL SSYTRD_SB2ST( 'N', 'N', 'U', 0, 1, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL SSYTRD_SB2ST( 'N', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 0, W, 1, INFO )
+ CALL CHKXER( 'SSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL SSYTRD_SB2ST( 'N', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 0, INFO )
+ CALL CHKXER( 'SSYTRD_SB2ST', INFOT, NOUT, LERR, OK )
+ NT = NT + 9
+*
* SSBEVD
*
SRNAMT = 'SSBEVD'
@@ -827,6 +1171,60 @@
CALL CHKXER( 'SSBEVD', INFOT, NOUT, LERR, OK )
NT = NT + 11
*
+* SSBEVD_2STAGE
+*
+ SRNAMT = 'SSBEVD_2STAGE'
+ INFOT = 1
+ CALL SSBEVD_2STAGE( '/', 'U', 0, 0, A, 1, X, Z, 1, W,
+ $ 1, IW, 1, INFO )
+ CALL CHKXER( 'SSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL SSBEVD_2STAGE( 'V', 'U', 0, 0, A, 1, X, Z, 1, W,
+ $ 1, IW, 1, INFO )
+ CALL CHKXER( 'SSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL SSBEVD_2STAGE( 'N', '/', 0, 0, A, 1, X, Z, 1, W,
+ $ 1, IW, 1, INFO )
+ CALL CHKXER( 'SSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL SSBEVD_2STAGE( 'N', 'U', -1, 0, A, 1, X, Z, 1, W,
+ $ 1, IW, 1, INFO )
+ CALL CHKXER( 'SSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL SSBEVD_2STAGE( 'N', 'U', 0, -1, A, 1, X, Z, 1, W,
+ $ 1, IW, 1, INFO )
+ CALL CHKXER( 'SSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL SSBEVD_2STAGE( 'N', 'U', 2, 1, A, 1, X, Z, 1, W,
+ $ 4, IW, 1, INFO )
+ CALL CHKXER( 'SSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 9
+* CALL SSBEVD_2STAGE( 'V', 'U', 2, 1, A, 2, X, Z, 1, W,
+* $ 25, IW, 12, INFO )
+* CALL CHKXER( 'SSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL SSBEVD_2STAGE( 'N', 'U', 1, 0, A, 1, X, Z, 1, W,
+ $ 0, IW, 1, INFO )
+ CALL CHKXER( 'SSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL SSBEVD_2STAGE( 'N', 'U', 2, 0, A, 1, X, Z, 1, W,
+ $ 3, IW, 1, INFO )
+ CALL CHKXER( 'SSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 11
+* CALL SSBEVD_2STAGE( 'V', 'U', 2, 0, A, 1, X, Z, 2, W,
+* $ 18, IW, 12, INFO )
+* CALL CHKXER( 'SSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL SSBEVD_2STAGE( 'N', 'U', 1, 0, A, 1, X, Z, 1, W,
+ $ 1, IW, 0, INFO )
+ CALL CHKXER( 'SSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 13
+* CALL SSBEVD_2STAGE( 'V', 'U', 2, 0, A, 1, X, Z, 2, W,
+* $ 25, IW, 11, INFO )
+* CALL CHKXER( 'SSBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* NT = NT + 12
+ NT = NT + 9
+*
* SSBEV
*
SRNAMT = 'SSBEV '
@@ -850,6 +1248,35 @@
CALL CHKXER( 'SSBEV ', INFOT, NOUT, LERR, OK )
NT = NT + 6
*
+* SSBEV_2STAGE
+*
+ SRNAMT = 'SSBEV_2STAGE '
+ INFOT = 1
+ CALL SSBEV_2STAGE( '/', 'U', 0, 0, A, 1, X, Z, 1, W, 0, INFO )
+ CALL CHKXER( 'SSBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL SSBEV_2STAGE( 'V', 'U', 0, 0, A, 1, X, Z, 1, W, 0, INFO )
+ CALL CHKXER( 'SSBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL SSBEV_2STAGE( 'N', '/', 0, 0, A, 1, X, Z, 1, W, 0, INFO )
+ CALL CHKXER( 'SSBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL SSBEV_2STAGE( 'N', 'U', -1, 0, A, 1, X, Z, 1, W, 0, INFO )
+ CALL CHKXER( 'SSBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL SSBEV_2STAGE( 'N', 'U', 0, -1, A, 1, X, Z, 1, W, 0, INFO )
+ CALL CHKXER( 'SSBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL SSBEV_2STAGE( 'N', 'U', 2, 1, A, 1, X, Z, 1, W, 0, INFO )
+ CALL CHKXER( 'SSBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 9
+ CALL SSBEV_2STAGE( 'N', 'U', 2, 0, A, 1, X, Z, 0, W, 0, INFO )
+ CALL CHKXER( 'SSBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL SSBEV_2STAGE( 'N', 'U', 0, 0, A, 1, X, Z, 1, W, 0, INFO )
+ CALL CHKXER( 'SSBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ NT = NT + 8
+*
* SSBEVX
*
SRNAMT = 'SSBEVX'
@@ -864,6 +1291,7 @@
INFOT = 3
CALL SSBEVX( 'N', 'A', '/', 0, 0, A, 1, Q, 1, 0.0, 0.0, 0, 0,
$ 0.0, M, X, Z, 1, W, IW, I3, INFO )
+ CALL CHKXER( 'SSBEVX', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL SSBEVX( 'N', 'A', 'U', -1, 0, A, 1, Q, 1, 0.0, 0.0, 0, 0,
$ 0.0, M, X, Z, 1, W, IW, I3, INFO )
@@ -905,6 +1333,72 @@
$ 0.0, M, X, Z, 1, W, IW, I3, INFO )
CALL CHKXER( 'SSBEVX', INFOT, NOUT, LERR, OK )
NT = NT + 13
+*
+* SSBEVX_2STAGE
+*
+ SRNAMT = 'SSBEVX_2STAGE'
+ INFOT = 1
+ CALL SSBEVX_2STAGE( '/', 'A', 'U', 0, 0, A, 1, Q, 1, 0.0E0,
+ $ 0.0E0, 0, 0, 0.0E0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'SSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL SSBEVX_2STAGE( 'V', 'A', 'U', 0, 0, A, 1, Q, 1, 0.0E0,
+ $ 0.0E0, 0, 0, 0.0E0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'SSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL SSBEVX_2STAGE( 'N', '/', 'U', 0, 0, A, 1, Q, 1, 0.0E0,
+ $ 0.0E0, 0, 0, 0.0E0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'SSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL SSBEVX_2STAGE( 'N', 'A', '/', 0, 0, A, 1, Q, 1, 0.0E0,
+ $ 0.0E0, 0, 0, 0.0E0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'SSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL SSBEVX_2STAGE( 'N', 'A', 'U', -1, 0, A, 1, Q, 1, 0.0E0,
+ $ 0.0E0, 0, 0, 0.0E0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'SSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL SSBEVX_2STAGE( 'N', 'A', 'U', 0, -1, A, 1, Q, 1, 0.0E0,
+ $ 0.0E0, 0, 0, 0.0E0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'SSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 7
+ CALL SSBEVX_2STAGE( 'N', 'A', 'U', 2, 1, A, 1, Q, 1, 0.0E0,
+ $ 0.0E0, 0, 0, 0.0E0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'SSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 9
+* CALL SSBEVX_2STAGE( 'V', 'A', 'U', 2, 0, A, 1, Q, 1, 0.0E0,
+* $ 0.0E0, 0, 0, 0.0E0, M, X, Z, 2, W, 0, IW, I3, INFO )
+* CALL CHKXER( 'SSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL SSBEVX_2STAGE( 'N', 'V', 'U', 1, 0, A, 1, Q, 1, 0.0E0,
+ $ 0.0E0, 0, 0, 0.0E0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'SSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 12
+ CALL SSBEVX_2STAGE( 'N', 'I', 'U', 1, 0, A, 1, Q, 1, 0.0E0,
+ $ 0.0E0, 0, 0, 0.0E0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'SSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 12
+ CALL SSBEVX_2STAGE( 'N', 'I', 'U', 1, 0, A, 1, Q, 1, 0.0E0,
+ $ 0.0E0, 2, 1, 0.0E0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'SSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL SSBEVX_2STAGE( 'N', 'I', 'U', 2, 0, A, 1, Q, 1, 0.0E0,
+ $ 0.0E0, 2, 1, 0.0E0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'SSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL SSBEVX_2STAGE( 'N', 'I', 'U', 1, 0, A, 1, Q, 1, 0.0E0,
+ $ 0.0E0, 1, 2, 0.0E0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'SSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 18
+* CALL SSBEVX_2STAGE( 'V', 'A', 'U', 2, 0, A, 1, Q, 2, 0.0E0,
+* $ 0.0E0, 0, 0, 0.0E0, M, X, Z, 1, W, 0, IW, I3, INFO )
+* CALL CHKXER( 'SSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 20
+ CALL SSBEVX_2STAGE( 'N', 'A', 'U', 0, 0, A, 1, Q, 1, 0.0E0,
+ $ 0.0E0, 0, 0, 0.0E0, M, X, Z, 1, W, 0, IW, I3, INFO )
+ CALL CHKXER( 'SSBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+* NT = NT + 15
+ NT = NT + 13
END IF
*
* Print a summary line.
diff --git a/TESTING/EIG/zchkee.f b/TESTING/EIG/zchkee.f
index 9ca71cee..768ed7c8 100644
--- a/TESTING/EIG/zchkee.f
+++ b/TESTING/EIG/zchkee.f
@@ -1102,7 +1102,8 @@
$ ZDRGES, ZDRGEV, ZDRGSX, ZDRGVX, ZDRVBD, ZDRVES,
$ ZDRVEV, ZDRVSG, ZDRVST, ZDRVSX, ZDRVVX,
$ ZERRBD, ZERRED, ZERRGG, ZERRHS, ZERRST, ILAVER,
- $ ZDRGES3, ZDRGEV3
+ $ ZDRGES3, ZDRGEV3,
+ $ ZCHKST2STG, ZDRVST2STG, ZCHKHB2STG
* ..
* .. Intrinsic Functions ..
INTRINSIC LEN, MIN
@@ -1149,7 +1150,7 @@
PATH = LINE( 1: 3 )
NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'ZHS' )
SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'ZST' ) .OR.
- $ LSAMEN( 3, PATH, 'ZSG' )
+ $ LSAMEN( 3, PATH, 'ZSG' ) .OR. LSAMEN( 3, PATH, 'SE2' )
SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'ZBD' )
ZEV = LSAMEN( 3, PATH, 'ZEV' )
ZES = LSAMEN( 3, PATH, 'ZES' )
@@ -1829,7 +1830,8 @@
$ WRITE( NOUT, FMT = 9980 )'ZCHKHS', INFO
270 CONTINUE
*
- ELSE IF( LSAMEN( 3, C3, 'ZST' ) .OR. LSAMEN( 3, C3, 'SEP' ) ) THEN
+ ELSE IF( LSAMEN( 3, C3, 'ZST' ) .OR. LSAMEN( 3, C3, 'SEP' )
+ $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN
*
* ----------------------------------
* SEP: Symmetric Eigenvalue Problem
@@ -1859,6 +1861,17 @@
WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
$ NXVAL( I )
IF( TSTCHK ) THEN
+ IF( LSAMEN( 3, C3, 'SE2' ) ) THEN
+ CALL ZCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+ $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ),
+ $ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ),
+ $ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ),
+ $ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ),
+ $ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX,
+ $ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ),
+ $ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK,
+ $ RESULT, INFO )
+ ELSE
CALL ZCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
$ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ),
$ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ),
@@ -1868,16 +1881,26 @@
$ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ),
$ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK,
$ RESULT, INFO )
+ ENDIF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZCHKST', INFO
END IF
IF( TSTDRV ) THEN
+ IF( LSAMEN( 3, C3, 'SE2' ) ) THEN
+ CALL ZDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH,
+ $ NOUT, A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ),
+ $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ),
+ $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ),
+ $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK,
+ $ LWORK, IWORK, LIWORK, RESULT, INFO )
+ ELSE
CALL ZDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT,
- $ A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ),
- $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ),
- $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ),
- $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK,
- $ LWORK, IWORK, LIWORK, RESULT, INFO )
+ $ A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ),
+ $ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ),
+ $ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ),
+ $ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK,
+ $ LWORK, IWORK, LIWORK, RESULT, INFO )
+ ENDIF
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZDRVST', INFO
END IF
@@ -1910,12 +1933,18 @@
WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
$ NXVAL( I )
IF( TSTCHK ) THEN
- CALL ZDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
- $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
- $ DR( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ),
- $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK,
- $ LWORK, RWORK, LWORK, IWORK, LIWORK, RESULT,
- $ INFO )
+* CALL ZDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+* $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
+* $ DR( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ),
+* $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK,
+* $ LWORK, RWORK, LWORK, IWORK, LIWORK, RESULT,
+* $ INFO )
+ CALL ZDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+ $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
+ $ DR( 1, 3 ), DR( 1, 4 ), A( 1, 3 ), NMAX,
+ $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ),
+ $ A( 1, 7 ), WORK, LWORK, RWORK, LWORK,
+ $ IWORK, LIWORK, RESULT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZDRVSG', INFO
END IF
@@ -2276,10 +2305,15 @@
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
IF( TSTERR )
$ CALL ZERRST( 'ZHB', NOUT )
- CALL ZCHKHB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH,
- $ NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), DR( 1, 2 ),
- $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT,
- $ INFO )
+* CALL ZCHKHB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+* $ NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), DR( 1, 2 ),
+* $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT,
+* $ INFO )
+ CALL ZCHKHB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED,
+ $ THRESH, NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ),
+ $ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ),
+ $ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT,
+ $ INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'ZCHKHB', INFO
*
diff --git a/TESTING/EIG/zchkhb2stg.f b/TESTING/EIG/zchkhb2stg.f
new file mode 100644
index 00000000..0660b6fb
--- /dev/null
+++ b/TESTING/EIG/zchkhb2stg.f
@@ -0,0 +1,880 @@
+*> \brief \b ZCHKHBSTG
+*
+* @precisions fortran z -> c
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZCHKHBSTG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
+* ISEED, THRESH, NOUNIT, A, LDA, SD, SE, D1,
+* D2, D3, U, LDU, WORK, LWORK, RWORK RESULT,
+* INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
+* $ NWDTHS
+* DOUBLE PRECISION THRESH
+* ..
+* .. Array Arguments ..
+* LOGICAL DOTYPE( * )
+* INTEGER ISEED( 4 ), KK( * ), NN( * )
+* DOUBLE PRECISION RESULT( * ), RWORK( * ), SD( * ), SE( * )
+* COMPLEX*16 A( LDA, * ), U( LDU, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZCHKHBSTG tests the reduction of a Hermitian band matrix to tridiagonal
+*> from, used with the Hermitian eigenvalue problem.
+*>
+*> ZHBTRD factors a Hermitian band matrix A as U S U* , where * means
+*> conjugate transpose, S is symmetric tridiagonal, and U is unitary.
+*> ZHBTRD can use either just the lower or just the upper triangle
+*> of A; ZCHKHBSTG checks both cases.
+*>
+*> ZHETRD_HB2ST factors a Hermitian band matrix A as U S U* ,
+*> where * means conjugate transpose, S is symmetric tridiagonal, and U is
+*> unitary. ZHETRD_HB2ST can use either just the lower or just
+*> the upper triangle of A; ZCHKHBSTG checks both cases.
+*>
+*> DSTEQR factors S as Z D1 Z'.
+*> D1 is the matrix of eigenvalues computed when Z is not computed
+*> and from the S resulting of DSBTRD "U" (used as reference for DSYTRD_SB2ST)
+*> D2 is the matrix of eigenvalues computed when Z is not computed
+*> and from the S resulting of DSYTRD_SB2ST "U".
+*> D3 is the matrix of eigenvalues computed when Z is not computed
+*> and from the S resulting of DSYTRD_SB2ST "L".
+*>
+*> When ZCHKHBSTG is called, a number of matrix "sizes" ("n's"), a number
+*> of bandwidths ("k's"), and a number of matrix "types" are
+*> specified. For each size ("n"), each bandwidth ("k") less than or
+*> equal to "n", and each type of matrix, one matrix will be generated
+*> and used to test the hermitian banded reduction routine. For each
+*> matrix, a number of tests will be performed:
+*>
+*> (1) | A - V S V* | / ( |A| n ulp ) computed by ZHBTRD with
+*> UPLO='U'
+*>
+*> (2) | I - UU* | / ( n ulp )
+*>
+*> (3) | A - V S V* | / ( |A| n ulp ) computed by ZHBTRD with
+*> UPLO='L'
+*>
+*> (4) | I - UU* | / ( n ulp )
+*>
+*> (5) | D1 - D2 | / ( |D1| ulp ) where D1 is computed by
+*> DSBTRD with UPLO='U' and
+*> D2 is computed by
+*> ZHETRD_HB2ST with UPLO='U'
+*>
+*> (6) | D1 - D3 | / ( |D1| ulp ) where D1 is computed by
+*> DSBTRD with UPLO='U' and
+*> D3 is computed by
+*> ZHETRD_HB2ST with UPLO='L'
+*>
+*> The "sizes" are specified by an array NN(1:NSIZES); the value of
+*> each element NN(j) specifies one size.
+*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
+*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
+*> Currently, the list of possible types is:
+*>
+*> (1) The zero matrix.
+*> (2) The identity matrix.
+*>
+*> (3) A diagonal matrix with evenly spaced entries
+*> 1, ..., ULP and random signs.
+*> (ULP = (first number larger than 1) - 1 )
+*> (4) A diagonal matrix with geometrically spaced entries
+*> 1, ..., ULP and random signs.
+*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
+*> and random signs.
+*>
+*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
+*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
+*>
+*> (8) A matrix of the form U* D U, where U is unitary and
+*> D has evenly spaced entries 1, ..., ULP with random signs
+*> on the diagonal.
+*>
+*> (9) A matrix of the form U* D U, where U is unitary and
+*> D has geometrically spaced entries 1, ..., ULP with random
+*> signs on the diagonal.
+*>
+*> (10) A matrix of the form U* D U, where U is unitary and
+*> D has "clustered" entries 1, ULP,..., ULP with random
+*> signs on the diagonal.
+*>
+*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
+*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
+*>
+*> (13) Hermitian matrix with random entries chosen from (-1,1).
+*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
+*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] NSIZES
+*> \verbatim
+*> NSIZES is INTEGER
+*> The number of sizes of matrices to use. If it is zero,
+*> ZCHKHBSTG does nothing. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NN
+*> \verbatim
+*> NN is INTEGER array, dimension (NSIZES)
+*> An array containing the sizes to be used for the matrices.
+*> Zero values will be skipped. The values must be at least
+*> zero.
+*> \endverbatim
+*>
+*> \param[in] NWDTHS
+*> \verbatim
+*> NWDTHS is INTEGER
+*> The number of bandwidths to use. If it is zero,
+*> ZCHKHBSTG does nothing. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] KK
+*> \verbatim
+*> KK is INTEGER array, dimension (NWDTHS)
+*> An array containing the bandwidths to be used for the band
+*> matrices. The values must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NTYPES
+*> \verbatim
+*> NTYPES is INTEGER
+*> The number of elements in DOTYPE. If it is zero, ZCHKHBSTG
+*> does nothing. It must be at least zero. If it is MAXTYP+1
+*> and NSIZES is 1, then an additional type, MAXTYP+1 is
+*> defined, which is to use whatever matrix is in A. This
+*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
+*> DOTYPE(MAXTYP+1) is .TRUE. .
+*> \endverbatim
+*>
+*> \param[in] DOTYPE
+*> \verbatim
+*> DOTYPE is LOGICAL array, dimension (NTYPES)
+*> If DOTYPE(j) is .TRUE., then for each size in NN a
+*> matrix of that size and of type j will be generated.
+*> If NTYPES is smaller than the maximum number of types
+*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
+*> MAXTYP will not be generated. If NTYPES is larger
+*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
+*> will be ignored.
+*> \endverbatim
+*>
+*> \param[in,out] ISEED
+*> \verbatim
+*> ISEED is INTEGER array, dimension (4)
+*> On entry ISEED specifies the seed of the random number
+*> generator. The array elements should be between 0 and 4095;
+*> if not they will be reduced mod 4096. Also, ISEED(4) must
+*> be odd. The random number generator uses a linear
+*> congruential sequence limited to small integers, and so
+*> should produce machine independent random numbers. The
+*> values of ISEED are changed on exit, and can be used in the
+*> next call to ZCHKHBSTG to continue the same random number
+*> sequence.
+*> \endverbatim
+*>
+*> \param[in] THRESH
+*> \verbatim
+*> THRESH is DOUBLE PRECISION
+*> A test will count as "failed" if the "error", computed as
+*> described above, exceeds THRESH. Note that the error
+*> is scaled to be O(1), so THRESH should be a reasonably
+*> small multiple of 1, e.g., 10 or 100. In particular,
+*> it should not depend on the precision (single vs. double)
+*> or the size of the matrix. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NOUNIT
+*> \verbatim
+*> NOUNIT is INTEGER
+*> The FORTRAN unit number for printing out error messages
+*> (e.g., if a routine returns IINFO not equal to 0.)
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension
+*> (LDA, max(NN))
+*> Used to hold the matrix whose eigenvalues are to be
+*> computed.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of A. It must be at least 2 (not 1!)
+*> and at least max( KK )+1.
+*> \endverbatim
+*>
+*> \param[out] SD
+*> \verbatim
+*> SD is DOUBLE PRECISION array, dimension (max(NN))
+*> Used to hold the diagonal of the tridiagonal matrix computed
+*> by ZHBTRD.
+*> \endverbatim
+*>
+*> \param[out] SE
+*> \verbatim
+*> SE is DOUBLE PRECISION array, dimension (max(NN))
+*> Used to hold the off-diagonal of the tridiagonal matrix
+*> computed by ZHBTRD.
+*> \endverbatim
+*>
+*> \param[out] U
+*> \verbatim
+*> U is COMPLEX*16 array, dimension (LDU, max(NN))
+*> Used to hold the unitary matrix computed by ZHBTRD.
+*> \endverbatim
+*>
+*> \param[in] LDU
+*> \verbatim
+*> LDU is INTEGER
+*> The leading dimension of U. It must be at least 1
+*> and at least max( NN ).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (LWORK)
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The number of entries in WORK. This must be at least
+*> max( LDA+1, max(NN)+1 )*max(NN).
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is DOUBLE PRECISION array
+*> \endverbatim
+*>
+*> \param[out] RESULT
+*> \verbatim
+*> RESULT is DOUBLE PRECISION array, dimension (4)
+*> The values computed by the tests described above.
+*> The values are currently limited to 1/ulp, to avoid
+*> overflow.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> If 0, then everything ran OK.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> Some Local Variables and Parameters:
+*> ---- ----- --------- --- ----------
+*> ZERO, ONE Real 0 and 1.
+*> MAXTYP The number of types defined.
+*> NTEST The number of tests performed, or which can
+*> be performed so far, for the current matrix.
+*> NTESTT The total number of tests performed so far.
+*> NMAX Largest value in NN.
+*> NMATS The number of matrices generated so far.
+*> NERRS The number of tests which have exceeded THRESH
+*> so far.
+*> COND, IMODE Values to be passed to the matrix generators.
+*> ANORM Norm of A; passed to matrix generators.
+*>
+*> OVFL, UNFL Overflow and underflow thresholds.
+*> ULP, ULPINV Finest relative precision and its inverse.
+*> RTOVFL, RTUNFL Square roots of the previous 2 values.
+*> The following four arrays decode JTYPE:
+*> KTYPE(j) The general type (1-10) for type "j".
+*> KMODE(j) The MODE value to be passed to the matrix
+*> generator for type "j".
+*> KMAGN(j) The order of magnitude ( O(1),
+*> O(overflow^(1/2) ), O(underflow^(1/2) )
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complex16_eig
+*
+* =====================================================================
+ SUBROUTINE ZCHKHB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
+ $ ISEED, THRESH, NOUNIT, A, LDA, SD, SE, D1,
+ $ D2, D3, U, LDU, WORK, LWORK, RWORK, RESULT,
+ $ INFO )
+*
+* -- LAPACK test routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
+ $ NWDTHS
+ DOUBLE PRECISION THRESH
+* ..
+* .. Array Arguments ..
+ LOGICAL DOTYPE( * )
+ INTEGER ISEED( 4 ), KK( * ), NN( * )
+ DOUBLE PRECISION RESULT( * ), RWORK( * ), SD( * ), SE( * ),
+ $ D1( * ), D2( * ), D3( * )
+ COMPLEX*16 A( LDA, * ), U( LDU, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX*16 CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
+ $ CONE = ( 1.0D+0, 0.0D+0 ) )
+ DOUBLE PRECISION ZERO, ONE, TWO, TEN
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
+ $ TEN = 10.0D+0 )
+ DOUBLE PRECISION HALF
+ PARAMETER ( HALF = ONE / TWO )
+ INTEGER MAXTYP
+ PARAMETER ( MAXTYP = 15 )
+* ..
+* .. Local Scalars ..
+ LOGICAL BADNN, BADNNB
+ INTEGER I, IINFO, IMODE, ITYPE, J, JC, JCOL, JR, JSIZE,
+ $ JTYPE, JWIDTH, K, KMAX, MTYPES, N, NERRS,
+ $ NMATS, NMAX, NTEST, NTESTT
+ DOUBLE PRECISION ANINV, ANORM, COND, OVFL, RTOVFL, RTUNFL,
+ $ TEMP1, TEMP2, TEMP3, TEMP4, ULP, ULPINV, UNFL
+* ..
+* .. Local Arrays ..
+ INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
+ $ KMODE( MAXTYP ), KTYPE( MAXTYP )
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL DLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLASUM, XERBLA, ZHBT21, ZHBTRD, ZLACPY, ZLASET,
+ $ ZLATMR, ZLATMS, ZHBTRD_HB2ST, ZSTEQR
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, DCONJG, MAX, MIN, SQRT
+* ..
+* .. Data statements ..
+ DATA KTYPE / 1, 2, 5*4, 5*5, 3*8 /
+ DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
+ $ 2, 3 /
+ DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
+ $ 0, 0 /
+* ..
+* .. Executable Statements ..
+*
+* Check for errors
+*
+ NTESTT = 0
+ INFO = 0
+*
+* Important constants
+*
+ BADNN = .FALSE.
+ NMAX = 1
+ DO 10 J = 1, NSIZES
+ NMAX = MAX( NMAX, NN( J ) )
+ IF( NN( J ).LT.0 )
+ $ BADNN = .TRUE.
+ 10 CONTINUE
+*
+ BADNNB = .FALSE.
+ KMAX = 0
+ DO 20 J = 1, NSIZES
+ KMAX = MAX( KMAX, KK( J ) )
+ IF( KK( J ).LT.0 )
+ $ BADNNB = .TRUE.
+ 20 CONTINUE
+ KMAX = MIN( NMAX-1, KMAX )
+*
+* Check for errors
+*
+ IF( NSIZES.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( BADNN ) THEN
+ INFO = -2
+ ELSE IF( NWDTHS.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( BADNNB ) THEN
+ INFO = -4
+ ELSE IF( NTYPES.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.KMAX+1 ) THEN
+ INFO = -11
+ ELSE IF( LDU.LT.NMAX ) THEN
+ INFO = -15
+ ELSE IF( ( MAX( LDA, NMAX )+1 )*NMAX.GT.LWORK ) THEN
+ INFO = -17
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZCHKHBSTG', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 .OR. NWDTHS.EQ.0 )
+ $ RETURN
+*
+* More Important constants
+*
+ UNFL = DLAMCH( 'Safe minimum' )
+ OVFL = ONE / UNFL
+ ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
+ ULPINV = ONE / ULP
+ RTUNFL = SQRT( UNFL )
+ RTOVFL = SQRT( OVFL )
+*
+* Loop over sizes, types
+*
+ NERRS = 0
+ NMATS = 0
+*
+ DO 190 JSIZE = 1, NSIZES
+ N = NN( JSIZE )
+ ANINV = ONE / DBLE( MAX( 1, N ) )
+*
+ DO 180 JWIDTH = 1, NWDTHS
+ K = KK( JWIDTH )
+ IF( K.GT.N )
+ $ GO TO 180
+ K = MAX( 0, MIN( N-1, K ) )
+*
+ IF( NSIZES.NE.1 ) THEN
+ MTYPES = MIN( MAXTYP, NTYPES )
+ ELSE
+ MTYPES = MIN( MAXTYP+1, NTYPES )
+ END IF
+*
+ DO 170 JTYPE = 1, MTYPES
+ IF( .NOT.DOTYPE( JTYPE ) )
+ $ GO TO 170
+ NMATS = NMATS + 1
+ NTEST = 0
+*
+ DO 30 J = 1, 4
+ IOLDSD( J ) = ISEED( J )
+ 30 CONTINUE
+*
+* Compute "A".
+* Store as "Upper"; later, we will copy to other format.
+*
+* Control parameters:
+*
+* KMAGN KMODE KTYPE
+* =1 O(1) clustered 1 zero
+* =2 large clustered 2 identity
+* =3 small exponential (none)
+* =4 arithmetic diagonal, (w/ eigenvalues)
+* =5 random log hermitian, w/ eigenvalues
+* =6 random (none)
+* =7 random diagonal
+* =8 random hermitian
+* =9 positive definite
+* =10 diagonally dominant tridiagonal
+*
+ IF( MTYPES.GT.MAXTYP )
+ $ GO TO 100
+*
+ ITYPE = KTYPE( JTYPE )
+ IMODE = KMODE( JTYPE )
+*
+* Compute norm
+*
+ GO TO ( 40, 50, 60 )KMAGN( JTYPE )
+*
+ 40 CONTINUE
+ ANORM = ONE
+ GO TO 70
+*
+ 50 CONTINUE
+ ANORM = ( RTOVFL*ULP )*ANINV
+ GO TO 70
+*
+ 60 CONTINUE
+ ANORM = RTUNFL*N*ULPINV
+ GO TO 70
+*
+ 70 CONTINUE
+*
+ CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
+ IINFO = 0
+ IF( JTYPE.LE.15 ) THEN
+ COND = ULPINV
+ ELSE
+ COND = ULPINV*ANINV / TEN
+ END IF
+*
+* Special Matrices -- Identity & Jordan block
+*
+* Zero
+*
+ IF( ITYPE.EQ.1 ) THEN
+ IINFO = 0
+*
+ ELSE IF( ITYPE.EQ.2 ) THEN
+*
+* Identity
+*
+ DO 80 JCOL = 1, N
+ A( K+1, JCOL ) = ANORM
+ 80 CONTINUE
+*
+ ELSE IF( ITYPE.EQ.4 ) THEN
+*
+* Diagonal Matrix, [Eigen]values Specified
+*
+ CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE,
+ $ COND, ANORM, 0, 0, 'Q', A( K+1, 1 ), LDA,
+ $ WORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.5 ) THEN
+*
+* Hermitian, eigenvalues specified
+*
+ CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE,
+ $ COND, ANORM, K, K, 'Q', A, LDA, WORK,
+ $ IINFO )
+*
+ ELSE IF( ITYPE.EQ.7 ) THEN
+*
+* Diagonal, random eigenvalues
+*
+ CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE,
+ $ CONE, 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
+ $ ZERO, ANORM, 'Q', A( K+1, 1 ), LDA,
+ $ IDUMMA, IINFO )
+*
+ ELSE IF( ITYPE.EQ.8 ) THEN
+*
+* Hermitian, random eigenvalues
+*
+ CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE,
+ $ CONE, 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, K, K,
+ $ ZERO, ANORM, 'Q', A, LDA, IDUMMA, IINFO )
+*
+ ELSE IF( ITYPE.EQ.9 ) THEN
+*
+* Positive definite, eigenvalues specified.
+*
+ CALL ZLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE,
+ $ COND, ANORM, K, K, 'Q', A, LDA,
+ $ WORK( N+1 ), IINFO )
+*
+ ELSE IF( ITYPE.EQ.10 ) THEN
+*
+* Positive definite tridiagonal, eigenvalues specified.
+*
+ IF( N.GT.1 )
+ $ K = MAX( 1, K )
+ CALL ZLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE,
+ $ COND, ANORM, 1, 1, 'Q', A( K, 1 ), LDA,
+ $ WORK, IINFO )
+ DO 90 I = 2, N
+ TEMP1 = ABS( A( K, I ) ) /
+ $ SQRT( ABS( A( K+1, I-1 )*A( K+1, I ) ) )
+ IF( TEMP1.GT.HALF ) THEN
+ A( K, I ) = HALF*SQRT( ABS( A( K+1,
+ $ I-1 )*A( K+1, I ) ) )
+ END IF
+ 90 CONTINUE
+*
+ ELSE
+*
+ IINFO = 1
+ END IF
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ RETURN
+ END IF
+*
+ 100 CONTINUE
+*
+* Call ZHBTRD to compute S and U from upper triangle.
+*
+ CALL ZLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
+*
+ NTEST = 1
+ CALL ZHBTRD( 'V', 'U', N, K, WORK, LDA, SD, SE, U, LDU,
+ $ WORK( LDA*N+1 ), IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHBTRD(U)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 1 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+* Do tests 1 and 2
+*
+ CALL ZHBT21( 'Upper', N, K, 1, A, LDA, SD, SE, U, LDU,
+ $ WORK, RWORK, RESULT( 1 ) )
+*
+* Before converting A into lower for DSBTRD, run DSYTRD_SB2ST
+* otherwise matrix A will be converted to lower and then need
+* to be converted back to upper in order to run the upper case
+* ofDSYTRD_SB2ST
+*
+* Compute D1 the eigenvalues resulting from the tridiagonal
+* form using the DSBTRD and used as reference to compare
+* with the DSYTRD_SB2ST routine
+*
+* Compute D1 from the DSBTRD and used as reference for the
+* DSYTRD_SB2ST
+*
+ CALL DCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ CALL ZSTEQR( 'N', N, D1, RWORK, WORK, LDU,
+ $ RWORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEQR(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 5 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+* DSYTRD_SB2ST Upper case is used to compute D2.
+* Note to set SD and SE to zero to be sure not reusing
+* the one from above. Compare it with D1 computed
+* using the DSBTRD.
+*
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, 1 )
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, 1 )
+ CALL ZLACPY( ' ', K+1, N, A, LDA, U, LDU )
+ LH = MAX(1, 4*N)
+ LW = LWORK - LH
+ CALL ZHETRD_HB2ST( 'N', 'N', "U", N, K, U, LDU, SD, SE,
+ $ WORK, LH, WORK( LH+1 ), LW, IINFO )
+*
+* Compute D2 from the DSYTRD_SB2ST Upper case
+*
+ CALL DCOPY( N, SD, 1, D2, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ CALL ZSTEQR( 'N', N, D2, RWORK, WORK, LDU,
+ $ RWORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEQR(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 5 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+* Convert A from Upper-Triangle-Only storage to
+* Lower-Triangle-Only storage.
+*
+ DO 120 JC = 1, N
+ DO 110 JR = 0, MIN( K, N-JC )
+ A( JR+1, JC ) = DCONJG( A( K+1-JR, JC+JR ) )
+ 110 CONTINUE
+ 120 CONTINUE
+ DO 140 JC = N + 1 - K, N
+ DO 130 JR = MIN( K, N-JC ) + 1, K
+ A( JR+1, JC ) = ZERO
+ 130 CONTINUE
+ 140 CONTINUE
+*
+* Call ZHBTRD to compute S and U from lower triangle
+*
+ CALL ZLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
+*
+ NTEST = 3
+ CALL ZHBTRD( 'V', 'L', N, K, WORK, LDA, SD, SE, U, LDU,
+ $ WORK( LDA*N+1 ), IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHBTRD(L)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 3 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+ NTEST = 4
+*
+* Do tests 3 and 4
+*
+ CALL ZHBT21( 'Lower', N, K, 1, A, LDA, SD, SE, U, LDU,
+ $ WORK, RWORK, RESULT( 3 ) )
+*
+* DSYTRD_SB2ST Lower case is used to compute D3.
+* Note to set SD and SE to zero to be sure not reusing
+* the one from above. Compare it with D1 computed
+* using the DSBTRD.
+*
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, 1 )
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, 1 )
+ CALL ZLACPY( ' ', K+1, N, A, LDA, U, LDU )
+ LH = MAX(1, 4*N)
+ LW = LWORK - LH
+ CALL ZHETRD_HB2ST( 'N', 'N', "L", N, K, U, LDU, SD, SE,
+ $ WORK, LH, WORK( LH+1 ), LW, IINFO )
+*
+* Compute D3 from the 2-stage Upper case
+*
+ CALL DCOPY( N, SD, 1, D3, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ CALL ZSTEQR( 'N', N, D3, RWORK, WORK, LDU,
+ $ RWORK( N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEQR(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 6 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+*
+* Do Tests 3 and 4 which are similar to 11 and 12 but with the
+* D1 computed using the standard 1-stage reduction as reference
+*
+ NTEST = 6
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ TEMP3 = ZERO
+ TEMP4 = ZERO
+*
+ DO 151 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
+ 151 CONTINUE
+*
+ RESULT(5) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+ RESULT(6) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
+*
+* End of Loop -- Check for RESULT(j) > THRESH
+*
+ 150 CONTINUE
+ NTESTT = NTESTT + NTEST
+*
+* Print out tests which fail.
+*
+ DO 160 JR = 1, NTEST
+ IF( RESULT( JR ).GE.THRESH ) THEN
+*
+* If this is the first test to fail,
+* print a header to the data file.
+*
+ IF( NERRS.EQ.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'ZHB'
+ WRITE( NOUNIT, FMT = 9997 )
+ WRITE( NOUNIT, FMT = 9996 )
+ WRITE( NOUNIT, FMT = 9995 )'Hermitian'
+ WRITE( NOUNIT, FMT = 9994 )'unitary', '*',
+ $ 'conjugate transpose', ( '*', J = 1, 6 )
+ END IF
+ NERRS = NERRS + 1
+ WRITE( NOUNIT, FMT = 9993 )N, K, IOLDSD, JTYPE,
+ $ JR, RESULT( JR )
+ END IF
+ 160 CONTINUE
+*
+ 170 CONTINUE
+ 180 CONTINUE
+ 190 CONTINUE
+*
+* Summary
+*
+ CALL DLASUM( 'ZHB', NOUNIT, NERRS, NTESTT )
+ RETURN
+*
+ 9999 FORMAT( ' ZCHKHBSTG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
+ $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
+ 9998 FORMAT( / 1X, A3,
+ $ ' -- Complex Hermitian Banded Tridiagonal Reduction Routines'
+ $ )
+ 9997 FORMAT( ' Matrix types (see DCHK23 for details): ' )
+*
+ 9996 FORMAT( / ' Special Matrices:',
+ $ / ' 1=Zero matrix. ',
+ $ ' 5=Diagonal: clustered entries.',
+ $ / ' 2=Identity matrix. ',
+ $ ' 6=Diagonal: large, evenly spaced.',
+ $ / ' 3=Diagonal: evenly spaced entries. ',
+ $ ' 7=Diagonal: small, evenly spaced.',
+ $ / ' 4=Diagonal: geometr. spaced entries.' )
+ 9995 FORMAT( ' Dense ', A, ' Banded Matrices:',
+ $ / ' 8=Evenly spaced eigenvals. ',
+ $ ' 12=Small, evenly spaced eigenvals.',
+ $ / ' 9=Geometrically spaced eigenvals. ',
+ $ ' 13=Matrix with random O(1) entries.',
+ $ / ' 10=Clustered eigenvalues. ',
+ $ ' 14=Matrix with large random entries.',
+ $ / ' 11=Large, evenly spaced eigenvals. ',
+ $ ' 15=Matrix with small random entries.' )
+*
+ 9994 FORMAT( / ' Tests performed: (S is Tridiag, U is ', A, ',',
+ $ / 20X, A, ' means ', A, '.', / ' UPLO=''U'':',
+ $ / ' 1= | A - U S U', A1, ' | / ( |A| n ulp ) ',
+ $ ' 2= | I - U U', A1, ' | / ( n ulp )', / ' UPLO=''L'':',
+ $ / ' 3= | A - U S U', A1, ' | / ( |A| n ulp ) ',
+ $ ' 4= | I - U U', A1, ' | / ( n ulp )' / ' Eig check:',
+ $ /' 5= | D1 - D2', '', ' | / ( |D1| ulp ) ',
+ $ ' 6= | D1 - D3', '', ' | / ( |D1| ulp ) ' )
+ 9993 FORMAT( ' N=', I5, ', K=', I4, ', seed=', 4( I4, ',' ), ' type ',
+ $ I2, ', test(', I2, ')=', G10.3 )
+*
+* End of ZCHKHBSTG
+*
+ END
diff --git a/TESTING/EIG/zchkst2stg.f b/TESTING/EIG/zchkst2stg.f
new file mode 100644
index 00000000..a1aaffbc
--- /dev/null
+++ b/TESTING/EIG/zchkst2stg.f
@@ -0,0 +1,2145 @@
+*> \brief \b ZCHKST2STG
+*
+* @precisions fortran z -> c
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZCHKST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+* NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
+* WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
+* LWORK, RWORK, LRWORK, IWORK, LIWORK, RESULT,
+* INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
+* $ NSIZES, NTYPES
+* DOUBLE PRECISION THRESH
+* ..
+* .. Array Arguments ..
+* LOGICAL DOTYPE( * )
+* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+* DOUBLE PRECISION D1( * ), D2( * ), D3( * ), D4( * ), D5( * ),
+* $ RESULT( * ), RWORK( * ), SD( * ), SE( * ),
+* $ WA1( * ), WA2( * ), WA3( * ), WR( * )
+* COMPLEX*16 A( LDA, * ), AP( * ), TAU( * ), U( LDU, * ),
+* $ V( LDU, * ), VP( * ), WORK( * ), Z( LDU, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZCHKST2STG checks the Hermitian eigenvalue problem routines
+*> using the 2-stage reduction techniques. Since the generation
+*> of Q or the vectors is not available in this release, we only
+*> compare the eigenvalue resulting when using the 2-stage to the
+*> one considered as reference using the standard 1-stage reduction
+*> ZHETRD. For that, we call the standard ZHETRD and compute D1 using
+*> DSTEQR, then we call the 2-stage ZHETRD_2STAGE with Upper and Lower
+*> and we compute D2 and D3 using DSTEQR and then we replaced tests
+*> 3 and 4 by tests 11 and 12. test 1 and 2 remain to verify that
+*> the 1-stage results are OK and can be trusted.
+*> This testing routine will converge to the ZCHKST in the next
+*> release when vectors and generation of Q will be implemented.
+*>
+*> ZHETRD factors A as U S U* , where * means conjugate transpose,
+*> S is real symmetric tridiagonal, and U is unitary.
+*> ZHETRD can use either just the lower or just the upper triangle
+*> of A; ZCHKST2STG checks both cases.
+*> U is represented as a product of Householder
+*> transformations, whose vectors are stored in the first
+*> n-1 columns of V, and whose scale factors are in TAU.
+*>
+*> ZHPTRD does the same as ZHETRD, except that A and V are stored
+*> in "packed" format.
+*>
+*> ZUNGTR constructs the matrix U from the contents of V and TAU.
+*>
+*> ZUPGTR constructs the matrix U from the contents of VP and TAU.
+*>
+*> ZSTEQR factors S as Z D1 Z* , where Z is the unitary
+*> matrix of eigenvectors and D1 is a diagonal matrix with
+*> the eigenvalues on the diagonal. D2 is the matrix of
+*> eigenvalues computed when Z is not computed.
+*>
+*> DSTERF computes D3, the matrix of eigenvalues, by the
+*> PWK method, which does not yield eigenvectors.
+*>
+*> ZPTEQR factors S as Z4 D4 Z4* , for a
+*> Hermitian positive definite tridiagonal matrix.
+*> D5 is the matrix of eigenvalues computed when Z is not
+*> computed.
+*>
+*> DSTEBZ computes selected eigenvalues. WA1, WA2, and
+*> WA3 will denote eigenvalues computed to high
+*> absolute accuracy, with different range options.
+*> WR will denote eigenvalues computed to high relative
+*> accuracy.
+*>
+*> ZSTEIN computes Y, the eigenvectors of S, given the
+*> eigenvalues.
+*>
+*> ZSTEDC factors S as Z D1 Z* , where Z is the unitary
+*> matrix of eigenvectors and D1 is a diagonal matrix with
+*> the eigenvalues on the diagonal ('I' option). It may also
+*> update an input unitary matrix, usually the output
+*> from ZHETRD/ZUNGTR or ZHPTRD/ZUPGTR ('V' option). It may
+*> also just compute eigenvalues ('N' option).
+*>
+*> ZSTEMR factors S as Z D1 Z* , where Z is the unitary
+*> matrix of eigenvectors and D1 is a diagonal matrix with
+*> the eigenvalues on the diagonal ('I' option). ZSTEMR
+*> uses the Relatively Robust Representation whenever possible.
+*>
+*> When ZCHKST2STG is called, a number of matrix "sizes" ("n's") and a
+*> number of matrix "types" are specified. For each size ("n")
+*> and each type of matrix, one matrix will be generated and used
+*> to test the Hermitian eigenroutines. For each matrix, a number
+*> of tests will be performed:
+*>
+*> (1) | A - V S V* | / ( |A| n ulp ) ZHETRD( UPLO='U', ... )
+*>
+*> (2) | I - UV* | / ( n ulp ) ZUNGTR( UPLO='U', ... )
+*>
+*> (3) | A - V S V* | / ( |A| n ulp ) ZHETRD( UPLO='L', ... )
+*> replaced by | D1 - D2 | / ( |D1| ulp ) where D1 is the
+*> eigenvalue matrix computed using S and D2 is the
+*> eigenvalue matrix computed using S_2stage the output of
+*> ZHETRD_2STAGE("N", "U",....). D1 and D2 are computed
+*> via DSTEQR('N',...)
+*>
+*> (4) | I - UV* | / ( n ulp ) ZUNGTR( UPLO='L', ... )
+*> replaced by | D1 - D3 | / ( |D1| ulp ) where D1 is the
+*> eigenvalue matrix computed using S and D3 is the
+*> eigenvalue matrix computed using S_2stage the output of
+*> ZHETRD_2STAGE("N", "L",....). D1 and D3 are computed
+*> via DSTEQR('N',...)
+*>
+*> (5-8) Same as 1-4, but for ZHPTRD and ZUPGTR.
+*>
+*> (9) | S - Z D Z* | / ( |S| n ulp ) ZSTEQR('V',...)
+*>
+*> (10) | I - ZZ* | / ( n ulp ) ZSTEQR('V',...)
+*>
+*> (11) | D1 - D2 | / ( |D1| ulp ) ZSTEQR('N',...)
+*>
+*> (12) | D1 - D3 | / ( |D1| ulp ) DSTERF
+*>
+*> (13) 0 if the true eigenvalues (computed by sturm count)
+*> of S are within THRESH of
+*> those in D1. 2*THRESH if they are not. (Tested using
+*> DSTECH)
+*>
+*> For S positive definite,
+*>
+*> (14) | S - Z4 D4 Z4* | / ( |S| n ulp ) ZPTEQR('V',...)
+*>
+*> (15) | I - Z4 Z4* | / ( n ulp ) ZPTEQR('V',...)
+*>
+*> (16) | D4 - D5 | / ( 100 |D4| ulp ) ZPTEQR('N',...)
+*>
+*> When S is also diagonally dominant by the factor gamma < 1,
+*>
+*> (17) max | D4(i) - WR(i) | / ( |D4(i)| omega ) ,
+*> i
+*> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
+*> DSTEBZ( 'A', 'E', ...)
+*>
+*> (18) | WA1 - D3 | / ( |D3| ulp ) DSTEBZ( 'A', 'E', ...)
+*>
+*> (19) ( max { min | WA2(i)-WA3(j) | } +
+*> i j
+*> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
+*> i j
+*> DSTEBZ( 'I', 'E', ...)
+*>
+*> (20) | S - Y WA1 Y* | / ( |S| n ulp ) DSTEBZ, ZSTEIN
+*>
+*> (21) | I - Y Y* | / ( n ulp ) DSTEBZ, ZSTEIN
+*>
+*> (22) | S - Z D Z* | / ( |S| n ulp ) ZSTEDC('I')
+*>
+*> (23) | I - ZZ* | / ( n ulp ) ZSTEDC('I')
+*>
+*> (24) | S - Z D Z* | / ( |S| n ulp ) ZSTEDC('V')
+*>
+*> (25) | I - ZZ* | / ( n ulp ) ZSTEDC('V')
+*>
+*> (26) | D1 - D2 | / ( |D1| ulp ) ZSTEDC('V') and
+*> ZSTEDC('N')
+*>
+*> Test 27 is disabled at the moment because ZSTEMR does not
+*> guarantee high relatvie accuracy.
+*>
+*> (27) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
+*> i
+*> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
+*> ZSTEMR('V', 'A')
+*>
+*> (28) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
+*> i
+*> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
+*> ZSTEMR('V', 'I')
+*>
+*> Tests 29 through 34 are disable at present because ZSTEMR
+*> does not handle partial specturm requests.
+*>
+*> (29) | S - Z D Z* | / ( |S| n ulp ) ZSTEMR('V', 'I')
+*>
+*> (30) | I - ZZ* | / ( n ulp ) ZSTEMR('V', 'I')
+*>
+*> (31) ( max { min | WA2(i)-WA3(j) | } +
+*> i j
+*> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
+*> i j
+*> ZSTEMR('N', 'I') vs. CSTEMR('V', 'I')
+*>
+*> (32) | S - Z D Z* | / ( |S| n ulp ) ZSTEMR('V', 'V')
+*>
+*> (33) | I - ZZ* | / ( n ulp ) ZSTEMR('V', 'V')
+*>
+*> (34) ( max { min | WA2(i)-WA3(j) | } +
+*> i j
+*> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
+*> i j
+*> ZSTEMR('N', 'V') vs. CSTEMR('V', 'V')
+*>
+*> (35) | S - Z D Z* | / ( |S| n ulp ) ZSTEMR('V', 'A')
+*>
+*> (36) | I - ZZ* | / ( n ulp ) ZSTEMR('V', 'A')
+*>
+*> (37) ( max { min | WA2(i)-WA3(j) | } +
+*> i j
+*> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
+*> i j
+*> ZSTEMR('N', 'A') vs. CSTEMR('V', 'A')
+*>
+*> The "sizes" are specified by an array NN(1:NSIZES); the value of
+*> each element NN(j) specifies one size.
+*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
+*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
+*> Currently, the list of possible types is:
+*>
+*> (1) The zero matrix.
+*> (2) The identity matrix.
+*>
+*> (3) A diagonal matrix with evenly spaced entries
+*> 1, ..., ULP and random signs.
+*> (ULP = (first number larger than 1) - 1 )
+*> (4) A diagonal matrix with geometrically spaced entries
+*> 1, ..., ULP and random signs.
+*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
+*> and random signs.
+*>
+*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
+*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
+*>
+*> (8) A matrix of the form U* D U, where U is unitary and
+*> D has evenly spaced entries 1, ..., ULP with random signs
+*> on the diagonal.
+*>
+*> (9) A matrix of the form U* D U, where U is unitary and
+*> D has geometrically spaced entries 1, ..., ULP with random
+*> signs on the diagonal.
+*>
+*> (10) A matrix of the form U* D U, where U is unitary and
+*> D has "clustered" entries 1, ULP,..., ULP with random
+*> signs on the diagonal.
+*>
+*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
+*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
+*>
+*> (13) Hermitian matrix with random entries chosen from (-1,1).
+*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
+*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
+*> (16) Same as (8), but diagonal elements are all positive.
+*> (17) Same as (9), but diagonal elements are all positive.
+*> (18) Same as (10), but diagonal elements are all positive.
+*> (19) Same as (16), but multiplied by SQRT( overflow threshold )
+*> (20) Same as (16), but multiplied by SQRT( underflow threshold )
+*> (21) A diagonally dominant tridiagonal matrix with geometrically
+*> spaced diagonal entries 1, ..., ULP.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] NSIZES
+*> \verbatim
+*> NSIZES is INTEGER
+*> The number of sizes of matrices to use. If it is zero,
+*> ZCHKST2STG does nothing. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NN
+*> \verbatim
+*> NN is INTEGER array, dimension (NSIZES)
+*> An array containing the sizes to be used for the matrices.
+*> Zero values will be skipped. The values must be at least
+*> zero.
+*> \endverbatim
+*>
+*> \param[in] NTYPES
+*> \verbatim
+*> NTYPES is INTEGER
+*> The number of elements in DOTYPE. If it is zero, ZCHKST2STG
+*> does nothing. It must be at least zero. If it is MAXTYP+1
+*> and NSIZES is 1, then an additional type, MAXTYP+1 is
+*> defined, which is to use whatever matrix is in A. This
+*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
+*> DOTYPE(MAXTYP+1) is .TRUE. .
+*> \endverbatim
+*>
+*> \param[in] DOTYPE
+*> \verbatim
+*> DOTYPE is LOGICAL array, dimension (NTYPES)
+*> If DOTYPE(j) is .TRUE., then for each size in NN a
+*> matrix of that size and of type j will be generated.
+*> If NTYPES is smaller than the maximum number of types
+*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
+*> MAXTYP will not be generated. If NTYPES is larger
+*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
+*> will be ignored.
+*> \endverbatim
+*>
+*> \param[in,out] ISEED
+*> \verbatim
+*> ISEED is INTEGER array, dimension (4)
+*> On entry ISEED specifies the seed of the random number
+*> generator. The array elements should be between 0 and 4095;
+*> if not they will be reduced mod 4096. Also, ISEED(4) must
+*> be odd. The random number generator uses a linear
+*> congruential sequence limited to small integers, and so
+*> should produce machine independent random numbers. The
+*> values of ISEED are changed on exit, and can be used in the
+*> next call to ZCHKST2STG to continue the same random number
+*> sequence.
+*> \endverbatim
+*>
+*> \param[in] THRESH
+*> \verbatim
+*> THRESH is DOUBLE PRECISION
+*> A test will count as "failed" if the "error", computed as
+*> described above, exceeds THRESH. Note that the error
+*> is scaled to be O(1), so THRESH should be a reasonably
+*> small multiple of 1, e.g., 10 or 100. In particular,
+*> it should not depend on the precision (single vs. double)
+*> or the size of the matrix. It must be at least zero.
+*> \endverbatim
+*>
+*> \param[in] NOUNIT
+*> \verbatim
+*> NOUNIT is INTEGER
+*> The FORTRAN unit number for printing out error messages
+*> (e.g., if a routine returns IINFO not equal to 0.)
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array of
+*> dimension ( LDA , max(NN) )
+*> Used to hold the matrix whose eigenvalues are to be
+*> computed. On exit, A contains the last matrix actually
+*> used.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of A. It must be at
+*> least 1 and at least max( NN ).
+*> \endverbatim
+*>
+*> \param[out] AP
+*> \verbatim
+*> AP is COMPLEX*16 array of
+*> dimension( max(NN)*max(NN+1)/2 )
+*> The matrix A stored in packed format.
+*> \endverbatim
+*>
+*> \param[out] SD
+*> \verbatim
+*> SD is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> The diagonal of the tridiagonal matrix computed by ZHETRD.
+*> On exit, SD and SE contain the tridiagonal form of the
+*> matrix in A.
+*> \endverbatim
+*>
+*> \param[out] SE
+*> \verbatim
+*> SE is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> The off-diagonal of the tridiagonal matrix computed by
+*> ZHETRD. On exit, SD and SE contain the tridiagonal form of
+*> the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D1
+*> \verbatim
+*> D1 is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by ZSTEQR simlutaneously
+*> with Z. On exit, the eigenvalues in D1 correspond with the
+*> matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D2
+*> \verbatim
+*> D2 is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by ZSTEQR if Z is not
+*> computed. On exit, the eigenvalues in D2 correspond with
+*> the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D3
+*> \verbatim
+*> D3 is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by DSTERF. On exit, the
+*> eigenvalues in D3 correspond with the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D4
+*> \verbatim
+*> D4 is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by ZPTEQR(V).
+*> ZPTEQR factors S as Z4 D4 Z4*
+*> On exit, the eigenvalues in D4 correspond with the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] D5
+*> \verbatim
+*> D5 is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> The eigenvalues of A, as computed by ZPTEQR(N)
+*> when Z is not computed. On exit, the
+*> eigenvalues in D4 correspond with the matrix in A.
+*> \endverbatim
+*>
+*> \param[out] WA1
+*> \verbatim
+*> WA1 is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> All eigenvalues of A, computed to high
+*> absolute accuracy, with different range options.
+*> as computed by DSTEBZ.
+*> \endverbatim
+*>
+*> \param[out] WA2
+*> \verbatim
+*> WA2 is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> Selected eigenvalues of A, computed to high
+*> absolute accuracy, with different range options.
+*> as computed by DSTEBZ.
+*> Choose random values for IL and IU, and ask for the
+*> IL-th through IU-th eigenvalues.
+*> \endverbatim
+*>
+*> \param[out] WA3
+*> \verbatim
+*> WA3 is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> Selected eigenvalues of A, computed to high
+*> absolute accuracy, with different range options.
+*> as computed by DSTEBZ.
+*> Determine the values VL and VU of the IL-th and IU-th
+*> eigenvalues and ask for all eigenvalues in this range.
+*> \endverbatim
+*>
+*> \param[out] WR
+*> \verbatim
+*> WR is DOUBLE PRECISION array of
+*> dimension( max(NN) )
+*> All eigenvalues of A, computed to high
+*> absolute accuracy, with different options.
+*> as computed by DSTEBZ.
+*> \endverbatim
+*>
+*> \param[out] U
+*> \verbatim
+*> U is COMPLEX*16 array of
+*> dimension( LDU, max(NN) ).
+*> The unitary matrix computed by ZHETRD + ZUNGTR.
+*> \endverbatim
+*>
+*> \param[in] LDU
+*> \verbatim
+*> LDU is INTEGER
+*> The leading dimension of U, Z, and V. It must be at least 1
+*> and at least max( NN ).
+*> \endverbatim
+*>
+*> \param[out] V
+*> \verbatim
+*> V is COMPLEX*16 array of
+*> dimension( LDU, max(NN) ).
+*> The Housholder vectors computed by ZHETRD in reducing A to
+*> tridiagonal form. The vectors computed with UPLO='U' are
+*> in the upper triangle, and the vectors computed with UPLO='L'
+*> are in the lower triangle. (As described in ZHETRD, the
+*> sub- and superdiagonal are not set to 1, although the
+*> true Householder vector has a 1 in that position. The
+*> routines that use V, such as ZUNGTR, set those entries to
+*> 1 before using them, and then restore them later.)
+*> \endverbatim
+*>
+*> \param[out] VP
+*> \verbatim
+*> VP is COMPLEX*16 array of
+*> dimension( max(NN)*max(NN+1)/2 )
+*> The matrix V stored in packed format.
+*> \endverbatim
+*>
+*> \param[out] TAU
+*> \verbatim
+*> TAU is COMPLEX*16 array of
+*> dimension( max(NN) )
+*> The Householder factors computed by ZHETRD in reducing A
+*> to tridiagonal form.
+*> \endverbatim
+*>
+*> \param[out] Z
+*> \verbatim
+*> Z is COMPLEX*16 array of
+*> dimension( LDU, max(NN) ).
+*> The unitary matrix of eigenvectors computed by ZSTEQR,
+*> ZPTEQR, and ZSTEIN.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array of
+*> dimension( LWORK )
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The number of entries in WORK. This must be at least
+*> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 3 * Nmax**2
+*> where Nmax = max( NN(j), 2 ) and lg = log base 2.
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array,
+*> Workspace.
+*> \endverbatim
+*>
+*> \param[out] LIWORK
+*> \verbatim
+*> LIWORK is INTEGER
+*> The number of entries in IWORK. This must be at least
+*> 6 + 6*Nmax + 5 * Nmax * lg Nmax
+*> where Nmax = max( NN(j), 2 ) and lg = log base 2.
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is DOUBLE PRECISION array
+*> \endverbatim
+*>
+*> \param[in] LRWORK
+*> \verbatim
+*> LRWORK is INTEGER
+*> The number of entries in LRWORK (dimension( ??? )
+*> \endverbatim
+*>
+*> \param[out] RESULT
+*> \verbatim
+*> RESULT is DOUBLE PRECISION array, dimension (26)
+*> The values computed by the tests described above.
+*> The values are currently limited to 1/ulp, to avoid
+*> overflow.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> If 0, then everything ran OK.
+*> -1: NSIZES < 0
+*> -2: Some NN(j) < 0
+*> -3: NTYPES < 0
+*> -5: THRESH < 0
+*> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
+*> -23: LDU < 1 or LDU < NMAX.
+*> -29: LWORK too small.
+*> If ZLATMR, CLATMS, ZHETRD, ZUNGTR, ZSTEQR, DSTERF,
+*> or ZUNMC2 returns an error code, the
+*> absolute value of it is returned.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> Some Local Variables and Parameters:
+*> ---- ----- --------- --- ----------
+*> ZERO, ONE Real 0 and 1.
+*> MAXTYP The number of types defined.
+*> NTEST The number of tests performed, or which can
+*> be performed so far, for the current matrix.
+*> NTESTT The total number of tests performed so far.
+*> NBLOCK Blocksize as returned by ENVIR.
+*> NMAX Largest value in NN.
+*> NMATS The number of matrices generated so far.
+*> NERRS The number of tests which have exceeded THRESH
+*> so far.
+*> COND, IMODE Values to be passed to the matrix generators.
+*> ANORM Norm of A; passed to matrix generators.
+*>
+*> OVFL, UNFL Overflow and underflow thresholds.
+*> ULP, ULPINV Finest relative precision and its inverse.
+*> RTOVFL, RTUNFL Square roots of the previous 2 values.
+*> The following four arrays decode JTYPE:
+*> KTYPE(j) The general type (1-10) for type "j".
+*> KMODE(j) The MODE value to be passed to the matrix
+*> generator for type "j".
+*> KMAGN(j) The order of magnitude ( O(1),
+*> O(overflow^(1/2) ), O(underflow^(1/2) )
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complex16_eig
+*
+* =====================================================================
+ SUBROUTINE ZCHKST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+ $ NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
+ $ WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
+ $ LWORK, RWORK, LRWORK, IWORK, LIWORK, RESULT,
+ $ INFO )
+*
+* -- LAPACK test routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
+ $ NSIZES, NTYPES
+ DOUBLE PRECISION THRESH
+* ..
+* .. Array Arguments ..
+ LOGICAL DOTYPE( * )
+ INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+ DOUBLE PRECISION D1( * ), D2( * ), D3( * ), D4( * ), D5( * ),
+ $ RESULT( * ), RWORK( * ), SD( * ), SE( * ),
+ $ WA1( * ), WA2( * ), WA3( * ), WR( * )
+ COMPLEX*16 A( LDA, * ), AP( * ), TAU( * ), U( LDU, * ),
+ $ V( LDU, * ), VP( * ), WORK( * ), Z( LDU, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE, TWO, EIGHT, TEN, HUN
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
+ $ EIGHT = 8.0D0, TEN = 10.0D0, HUN = 100.0D0 )
+ COMPLEX*16 CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
+ $ CONE = ( 1.0D+0, 0.0D+0 ) )
+ DOUBLE PRECISION HALF
+ PARAMETER ( HALF = ONE / TWO )
+ INTEGER MAXTYP
+ PARAMETER ( MAXTYP = 21 )
+ LOGICAL CRANGE
+ PARAMETER ( CRANGE = .FALSE. )
+ LOGICAL CREL
+ PARAMETER ( CREL = .FALSE. )
+* ..
+* .. Local Scalars ..
+ LOGICAL BADNN, TRYRAC
+ INTEGER I, IINFO, IL, IMODE, INDE, INDRWK, ITEMP,
+ $ ITYPE, IU, J, JC, JR, JSIZE, JTYPE, LGN,
+ $ LIWEDC, LOG2UI, LRWEDC, LWEDC, M, M2, M3,
+ $ MTYPES, N, NAP, NBLOCK, NERRS, NMATS, NMAX,
+ $ NSPLIT, NTEST, NTESTT, LH, LW
+ DOUBLE PRECISION ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
+ $ RTUNFL, TEMP1, TEMP2, TEMP3, TEMP4, ULP,
+ $ ULPINV, UNFL, VL, VU
+* ..
+* .. Local Arrays ..
+ INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
+ $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
+ $ KTYPE( MAXTYP )
+ DOUBLE PRECISION DUMMA( 1 )
+* ..
+* .. External Functions ..
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH, DLARND, DSXT1
+ EXTERNAL ILAENV, DLAMCH, DLARND, DSXT1
+* ..
+* .. External Subroutines ..
+ EXTERNAL DCOPY, DLABAD, DLASUM, DSTEBZ, DSTECH, DSTERF,
+ $ XERBLA, ZCOPY, ZHET21, ZHETRD, ZHPT21, ZHPTRD,
+ $ ZLACPY, ZLASET, ZLATMR, ZLATMS, ZPTEQR, ZSTEDC,
+ $ ZSTEMR, ZSTEIN, ZSTEQR, ZSTT21, ZSTT22, ZUNGTR,
+ $ ZUPGTR, ZHETRD_2STAGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, DCONJG, INT, LOG, MAX, MIN, SQRT
+* ..
+* .. Data statements ..
+ DATA KTYPE / 1, 2, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 8,
+ $ 8, 8, 9, 9, 9, 9, 9, 10 /
+ DATA KMAGN / 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
+ $ 2, 3, 1, 1, 1, 2, 3, 1 /
+ DATA KMODE / 0, 0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
+ $ 0, 0, 4, 3, 1, 4, 4, 3 /
+* ..
+* .. Executable Statements ..
+*
+* Keep ftnchek happy
+ IDUMMA( 1 ) = 1
+*
+* Check for errors
+*
+ NTESTT = 0
+ INFO = 0
+*
+* Important constants
+*
+ BADNN = .FALSE.
+ TRYRAC = .TRUE.
+ NMAX = 1
+ DO 10 J = 1, NSIZES
+ NMAX = MAX( NMAX, NN( J ) )
+ IF( NN( J ).LT.0 )
+ $ BADNN = .TRUE.
+ 10 CONTINUE
+*
+ NBLOCK = ILAENV( 1, 'ZHETRD', 'L', NMAX, -1, -1, -1 )
+ NBLOCK = MIN( NMAX, MAX( 1, NBLOCK ) )
+*
+* Check for errors
+*
+ IF( NSIZES.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( BADNN ) THEN
+ INFO = -2
+ ELSE IF( NTYPES.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.NMAX ) THEN
+ INFO = -9
+ ELSE IF( LDU.LT.NMAX ) THEN
+ INFO = -23
+ ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
+ INFO = -29
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZCHKST2STG', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
+ $ RETURN
+*
+* More Important constants
+*
+ UNFL = DLAMCH( 'Safe minimum' )
+ OVFL = ONE / UNFL
+ CALL DLABAD( UNFL, OVFL )
+ ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
+ ULPINV = ONE / ULP
+ LOG2UI = INT( LOG( ULPINV ) / LOG( TWO ) )
+ RTUNFL = SQRT( UNFL )
+ RTOVFL = SQRT( OVFL )
+*
+* Loop over sizes, types
+*
+ DO 20 I = 1, 4
+ ISEED2( I ) = ISEED( I )
+ 20 CONTINUE
+ NERRS = 0
+ NMATS = 0
+*
+ DO 310 JSIZE = 1, NSIZES
+ N = NN( JSIZE )
+ IF( N.GT.0 ) THEN
+ LGN = INT( LOG( DBLE( N ) ) / LOG( TWO ) )
+ IF( 2**LGN.LT.N )
+ $ LGN = LGN + 1
+ IF( 2**LGN.LT.N )
+ $ LGN = LGN + 1
+ LWEDC = 1 + 4*N + 2*N*LGN + 4*N**2
+ LRWEDC = 1 + 3*N + 2*N*LGN + 4*N**2
+ LIWEDC = 6 + 6*N + 5*N*LGN
+ ELSE
+ LWEDC = 8
+ LRWEDC = 7
+ LIWEDC = 12
+ END IF
+ NAP = ( N*( N+1 ) ) / 2
+ ANINV = ONE / DBLE( MAX( 1, N ) )
+*
+ IF( NSIZES.NE.1 ) THEN
+ MTYPES = MIN( MAXTYP, NTYPES )
+ ELSE
+ MTYPES = MIN( MAXTYP+1, NTYPES )
+ END IF
+*
+ DO 300 JTYPE = 1, MTYPES
+ IF( .NOT.DOTYPE( JTYPE ) )
+ $ GO TO 300
+ NMATS = NMATS + 1
+ NTEST = 0
+*
+ DO 30 J = 1, 4
+ IOLDSD( J ) = ISEED( J )
+ 30 CONTINUE
+*
+* Compute "A"
+*
+* Control parameters:
+*
+* KMAGN KMODE KTYPE
+* =1 O(1) clustered 1 zero
+* =2 large clustered 2 identity
+* =3 small exponential (none)
+* =4 arithmetic diagonal, (w/ eigenvalues)
+* =5 random log Hermitian, w/ eigenvalues
+* =6 random (none)
+* =7 random diagonal
+* =8 random Hermitian
+* =9 positive definite
+* =10 diagonally dominant tridiagonal
+*
+ IF( MTYPES.GT.MAXTYP )
+ $ GO TO 100
+*
+ ITYPE = KTYPE( JTYPE )
+ IMODE = KMODE( JTYPE )
+*
+* Compute norm
+*
+ GO TO ( 40, 50, 60 )KMAGN( JTYPE )
+*
+ 40 CONTINUE
+ ANORM = ONE
+ GO TO 70
+*
+ 50 CONTINUE
+ ANORM = ( RTOVFL*ULP )*ANINV
+ GO TO 70
+*
+ 60 CONTINUE
+ ANORM = RTUNFL*N*ULPINV
+ GO TO 70
+*
+ 70 CONTINUE
+*
+ CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
+ IINFO = 0
+ IF( JTYPE.LE.15 ) THEN
+ COND = ULPINV
+ ELSE
+ COND = ULPINV*ANINV / TEN
+ END IF
+*
+* Special Matrices -- Identity & Jordan block
+*
+* Zero
+*
+ IF( ITYPE.EQ.1 ) THEN
+ IINFO = 0
+*
+ ELSE IF( ITYPE.EQ.2 ) THEN
+*
+* Identity
+*
+ DO 80 JC = 1, N
+ A( JC, JC ) = ANORM
+ 80 CONTINUE
+*
+ ELSE IF( ITYPE.EQ.4 ) THEN
+*
+* Diagonal Matrix, [Eigen]values Specified
+*
+ CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
+ $ ANORM, 0, 0, 'N', A, LDA, WORK, IINFO )
+*
+*
+ ELSE IF( ITYPE.EQ.5 ) THEN
+*
+* Hermitian, eigenvalues specified
+*
+ CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
+ $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.7 ) THEN
+*
+* Diagonal, random eigenvalues
+*
+ CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.8 ) THEN
+*
+* Hermitian, random eigenvalues
+*
+ CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.9 ) THEN
+*
+* Positive definite, eigenvalues specified.
+*
+ CALL ZLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE, COND,
+ $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.10 ) THEN
+*
+* Positive definite tridiagonal, eigenvalues specified.
+*
+ CALL ZLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE, COND,
+ $ ANORM, 1, 1, 'N', A, LDA, WORK, IINFO )
+ DO 90 I = 2, N
+ TEMP1 = ABS( A( I-1, I ) )
+ TEMP2 = SQRT( ABS( A( I-1, I-1 )*A( I, I ) ) )
+ IF( TEMP1.GT.HALF*TEMP2 ) THEN
+ A( I-1, I ) = A( I-1, I )*
+ $ ( HALF*TEMP2 / ( UNFL+TEMP1 ) )
+ A( I, I-1 ) = DCONJG( A( I-1, I ) )
+ END IF
+ 90 CONTINUE
+*
+ ELSE
+*
+ IINFO = 1
+ END IF
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ RETURN
+ END IF
+*
+ 100 CONTINUE
+*
+* Call ZHETRD and ZUNGTR to compute S and U from
+* upper triangle.
+*
+ CALL ZLACPY( 'U', N, N, A, LDA, V, LDU )
+*
+ NTEST = 1
+ CALL ZHETRD( 'U', N, V, LDU, SD, SE, TAU, WORK, LWORK,
+ $ IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHETRD(U)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 1 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL ZLACPY( 'U', N, N, V, LDU, U, LDU )
+*
+ NTEST = 2
+ CALL ZUNGTR( 'U', N, U, LDU, TAU, WORK, LWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZUNGTR(U)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 2 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do tests 1 and 2
+*
+ CALL ZHET21( 2, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( 1 ) )
+ CALL ZHET21( 3, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( 2 ) )
+*
+* Compute D1 the eigenvalues resulting from the tridiagonal
+* form using the standard 1-stage algorithm and use it as a
+* reference to compare with the 2-stage technique
+*
+* Compute D1 from the 1-stage and used as reference for the
+* 2-stage
+*
+ CALL DCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ CALL ZSTEQR( 'N', N, D1, RWORK, WORK, LDU, RWORK( N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEQR(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 3 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* 2-STAGE TRD Upper case is used to compute D2.
+* Note to set SD and SE to zero to be sure not reusing
+* the one from above. Compare it with D1 computed
+* using the 1-stage.
+*
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, 1 )
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, 1 )
+ CALL ZLACPY( 'U', N, N, A, LDA, V, LDU )
+ LH = MAX(1, 4*N)
+ LW = LWORK - LH
+ CALL ZHETRD_2STAGE( 'N', "U", N, V, LDU, SD, SE, TAU,
+ $ WORK, LH, WORK( LH+1 ), LW, IINFO )
+*
+* Compute D2 from the 2-stage Upper case
+*
+ CALL DCOPY( N, SD, 1, D2, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ NTEST = 3
+ CALL ZSTEQR( 'N', N, D2, RWORK, WORK, LDU, RWORK( N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEQR(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 3 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* 2-STAGE TRD Lower case is used to compute D3.
+* Note to set SD and SE to zero to be sure not reusing
+* the one from above. Compare it with D1 computed
+* using the 1-stage.
+*
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, 1 )
+ CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, 1 )
+ CALL ZLACPY( 'L', N, N, A, LDA, V, LDU )
+ CALL ZHETRD_2STAGE( 'N', "L", N, V, LDU, SD, SE, TAU,
+ $ WORK, LH, WORK( LH+1 ), LW, IINFO )
+*
+* Compute D3 from the 2-stage Upper case
+*
+ CALL DCOPY( N, SD, 1, D3, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ NTEST = 4
+ CALL ZSTEQR( 'N', N, D3, RWORK, WORK, LDU, RWORK( N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEQR(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 4 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+*
+* Do Tests 3 and 4 which are similar to 11 and 12 but with the
+* D1 computed using the standard 1-stage reduction as reference
+*
+ NTEST = 4
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ TEMP3 = ZERO
+ TEMP4 = ZERO
+*
+ DO 151 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
+ 151 CONTINUE
+*
+ RESULT( 3 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+ RESULT( 4 ) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
+*
+* Skip the DSYTRD for lower that since we replaced its testing
+* 3 and 4 by the 2-stage one.
+ GOTO 101
+*
+* Call ZHETRD and ZUNGTR to compute S and U from
+* lower triangle, do tests.
+*
+ CALL ZLACPY( 'L', N, N, A, LDA, V, LDU )
+*
+ NTEST = 3
+ CALL ZHETRD( 'L', N, V, LDU, SD, SE, TAU, WORK, LWORK,
+ $ IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHETRD(L)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 3 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL ZLACPY( 'L', N, N, V, LDU, U, LDU )
+*
+ NTEST = 4
+ CALL ZUNGTR( 'L', N, U, LDU, TAU, WORK, LWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZUNGTR(L)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 4 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL ZHET21( 2, 'Lower', N, 1, A, LDA, SD, SE, U, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( 3 ) )
+ CALL ZHET21( 3, 'Lower', N, 1, A, LDA, SD, SE, U, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( 4 ) )
+*
+*after skipping old tests 3 4 back to the normal
+*
+ 101 CONTINUE
+*
+* Store the upper triangle of A in AP
+*
+ I = 0
+ DO 120 JC = 1, N
+ DO 110 JR = 1, JC
+ I = I + 1
+ AP( I ) = A( JR, JC )
+ 110 CONTINUE
+ 120 CONTINUE
+*
+* Call ZHPTRD and ZUPGTR to compute S and U from AP
+*
+ CALL ZCOPY( NAP, AP, 1, VP, 1 )
+*
+ NTEST = 5
+ CALL ZHPTRD( 'U', N, VP, SD, SE, TAU, IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHPTRD(U)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 5 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ NTEST = 6
+ CALL ZUPGTR( 'U', N, VP, TAU, U, LDU, WORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZUPGTR(U)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 6 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do tests 5 and 6
+*
+ CALL ZHPT21( 2, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
+ $ WORK, RWORK, RESULT( 5 ) )
+ CALL ZHPT21( 3, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
+ $ WORK, RWORK, RESULT( 6 ) )
+*
+* Store the lower triangle of A in AP
+*
+ I = 0
+ DO 140 JC = 1, N
+ DO 130 JR = JC, N
+ I = I + 1
+ AP( I ) = A( JR, JC )
+ 130 CONTINUE
+ 140 CONTINUE
+*
+* Call ZHPTRD and ZUPGTR to compute S and U from AP
+*
+ CALL ZCOPY( NAP, AP, 1, VP, 1 )
+*
+ NTEST = 7
+ CALL ZHPTRD( 'L', N, VP, SD, SE, TAU, IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHPTRD(L)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 7 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ NTEST = 8
+ CALL ZUPGTR( 'L', N, VP, TAU, U, LDU, WORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZUPGTR(L)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 8 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL ZHPT21( 2, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
+ $ WORK, RWORK, RESULT( 7 ) )
+ CALL ZHPT21( 3, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
+ $ WORK, RWORK, RESULT( 8 ) )
+*
+* Call ZSTEQR to compute D1, D2, and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL DCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
+ CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
+*
+ NTEST = 9
+ CALL ZSTEQR( 'V', N, D1, RWORK, Z, LDU, RWORK( N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEQR(V)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 9 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Compute D2
+*
+ CALL DCOPY( N, SD, 1, D2, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ NTEST = 11
+ CALL ZSTEQR( 'N', N, D2, RWORK, WORK, LDU, RWORK( N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEQR(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 11 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Compute D3 (using PWK method)
+*
+ CALL DCOPY( N, SD, 1, D3, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ NTEST = 12
+ CALL DSTERF( N, D3, RWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTERF', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 12 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 9 and 10
+*
+ CALL ZSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK,
+ $ RESULT( 9 ) )
+*
+* Do Tests 11 and 12
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ TEMP3 = ZERO
+ TEMP4 = ZERO
+*
+ DO 150 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
+ 150 CONTINUE
+*
+ RESULT( 11 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+ RESULT( 12 ) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
+*
+* Do Test 13 -- Sturm Sequence Test of Eigenvalues
+* Go up by factors of two until it succeeds
+*
+ NTEST = 13
+ TEMP1 = THRESH*( HALF-ULP )
+*
+ DO 160 J = 0, LOG2UI
+ CALL DSTECH( N, SD, SE, D1, TEMP1, RWORK, IINFO )
+ IF( IINFO.EQ.0 )
+ $ GO TO 170
+ TEMP1 = TEMP1*TWO
+ 160 CONTINUE
+*
+ 170 CONTINUE
+ RESULT( 13 ) = TEMP1
+*
+* For positive definite matrices ( JTYPE.GT.15 ) call ZPTEQR
+* and do tests 14, 15, and 16 .
+*
+ IF( JTYPE.GT.15 ) THEN
+*
+* Compute D4 and Z4
+*
+ CALL DCOPY( N, SD, 1, D4, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
+ CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
+*
+ NTEST = 14
+ CALL ZPTEQR( 'V', N, D4, RWORK, Z, LDU, RWORK( N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZPTEQR(V)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 14 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 14 and 15
+*
+ CALL ZSTT21( N, 0, SD, SE, D4, DUMMA, Z, LDU, WORK,
+ $ RWORK, RESULT( 14 ) )
+*
+* Compute D5
+*
+ CALL DCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ NTEST = 16
+ CALL ZPTEQR( 'N', N, D5, RWORK, Z, LDU, RWORK( N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZPTEQR(N)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 16 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 16
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 180 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D4( J ) ), ABS( D5( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D4( J )-D5( J ) ) )
+ 180 CONTINUE
+*
+ RESULT( 16 ) = TEMP2 / MAX( UNFL,
+ $ HUN*ULP*MAX( TEMP1, TEMP2 ) )
+ ELSE
+ RESULT( 14 ) = ZERO
+ RESULT( 15 ) = ZERO
+ RESULT( 16 ) = ZERO
+ END IF
+*
+* Call DSTEBZ with different options and do tests 17-18.
+*
+* If S is positive definite and diagonally dominant,
+* ask for all eigenvalues with high relative accuracy.
+*
+ VL = ZERO
+ VU = ZERO
+ IL = 0
+ IU = 0
+ IF( JTYPE.EQ.21 ) THEN
+ NTEST = 17
+ ABSTOL = UNFL + UNFL
+ CALL DSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
+ $ M, NSPLIT, WR, IWORK( 1 ), IWORK( N+1 ),
+ $ RWORK, IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(A,rel)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 17 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do test 17
+*
+ TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
+ $ ( ONE-HALF )**4
+*
+ TEMP1 = ZERO
+ DO 190 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
+ $ ( ABSTOL+ABS( D4( J ) ) ) )
+ 190 CONTINUE
+*
+ RESULT( 17 ) = TEMP1 / TEMP2
+ ELSE
+ RESULT( 17 ) = ZERO
+ END IF
+*
+* Now ask for all eigenvalues with high absolute accuracy.
+*
+ NTEST = 18
+ ABSTOL = UNFL + UNFL
+ CALL DSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
+ $ NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), RWORK,
+ $ IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(A)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 18 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do test 18
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 200 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D3( J ) ), ABS( WA1( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D3( J )-WA1( J ) ) )
+ 200 CONTINUE
+*
+ RESULT( 18 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Choose random values for IL and IU, and ask for the
+* IL-th through IU-th eigenvalues.
+*
+ NTEST = 19
+ IF( N.LE.1 ) THEN
+ IL = 1
+ IU = N
+ ELSE
+ IL = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
+ IU = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
+ IF( IU.LT.IL ) THEN
+ ITEMP = IU
+ IU = IL
+ IL = ITEMP
+ END IF
+ END IF
+*
+ CALL DSTEBZ( 'I', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
+ $ M2, NSPLIT, WA2, IWORK( 1 ), IWORK( N+1 ),
+ $ RWORK, IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(I)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 19 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Determine the values VL and VU of the IL-th and IU-th
+* eigenvalues and ask for all eigenvalues in this range.
+*
+ IF( N.GT.0 ) THEN
+ IF( IL.NE.1 ) THEN
+ VL = WA1( IL ) - MAX( HALF*( WA1( IL )-WA1( IL-1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ ELSE
+ VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = WA1( IU ) + MAX( HALF*( WA1( IU+1 )-WA1( IU ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ ELSE
+ VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ END IF
+ ELSE
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ CALL DSTEBZ( 'V', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
+ $ M3, NSPLIT, WA3, IWORK( 1 ), IWORK( N+1 ),
+ $ RWORK, IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(V)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 19 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.NE.0 ) THEN
+ RESULT( 19 ) = ULPINV
+ GO TO 280
+ END IF
+*
+* Do test 19
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( N ) ), ABS( WA1( 1 ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+*
+ RESULT( 19 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP )
+*
+* Call ZSTEIN to compute eigenvectors corresponding to
+* eigenvalues in WA1. (First call DSTEBZ again, to make sure
+* it returns these eigenvalues in the correct order.)
+*
+ NTEST = 21
+ CALL DSTEBZ( 'A', 'B', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
+ $ NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), RWORK,
+ $ IWORK( 2*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(A,B)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 20 ) = ULPINV
+ RESULT( 21 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+ CALL ZSTEIN( N, SD, SE, M, WA1, IWORK( 1 ), IWORK( N+1 ), Z,
+ $ LDU, RWORK, IWORK( 2*N+1 ), IWORK( 3*N+1 ),
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEIN', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 20 ) = ULPINV
+ RESULT( 21 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do tests 20 and 21
+*
+ CALL ZSTT21( N, 0, SD, SE, WA1, DUMMA, Z, LDU, WORK, RWORK,
+ $ RESULT( 20 ) )
+*
+* Call ZSTEDC(I) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ INDE = 1
+ INDRWK = INDE + N
+ CALL DCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK( INDE ), 1 )
+ CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
+*
+ NTEST = 22
+ CALL ZSTEDC( 'I', N, D1, RWORK( INDE ), Z, LDU, WORK, LWEDC,
+ $ RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEDC(I)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 22 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 22 and 23
+*
+ CALL ZSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK,
+ $ RESULT( 22 ) )
+*
+* Call ZSTEDC(V) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL DCOPY( N, SD, 1, D1, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK( INDE ), 1 )
+ CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
+*
+ NTEST = 24
+ CALL ZSTEDC( 'V', N, D1, RWORK( INDE ), Z, LDU, WORK, LWEDC,
+ $ RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEDC(V)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 24 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 24 and 25
+*
+ CALL ZSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK,
+ $ RESULT( 24 ) )
+*
+* Call ZSTEDC(N) to compute D2, do tests.
+*
+* Compute D2
+*
+ CALL DCOPY( N, SD, 1, D2, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK( INDE ), 1 )
+ CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
+*
+ NTEST = 26
+ CALL ZSTEDC( 'N', N, D2, RWORK( INDE ), Z, LDU, WORK, LWEDC,
+ $ RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEDC(N)', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 26 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 26
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+*
+ DO 210 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ 210 CONTINUE
+*
+ RESULT( 26 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Only test ZSTEMR if IEEE compliant
+*
+ IF( ILAENV( 10, 'ZSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 .AND.
+ $ ILAENV( 11, 'ZSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 ) THEN
+*
+* Call ZSTEMR, do test 27 (relative eigenvalue accuracy)
+*
+* If S is positive definite and diagonally dominant,
+* ask for all eigenvalues with high relative accuracy.
+*
+ VL = ZERO
+ VU = ZERO
+ IL = 0
+ IU = 0
+ IF( JTYPE.EQ.21 .AND. CREL ) THEN
+ NTEST = 27
+ ABSTOL = UNFL + UNFL
+ CALL ZSTEMR( 'V', 'A', N, SD, SE, VL, VU, IL, IU,
+ $ M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ RWORK, LRWORK, IWORK( 2*N+1 ), LWORK-2*N,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(V,A,rel)',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 27 ) = ULPINV
+ GO TO 270
+ END IF
+ END IF
+*
+* Do test 27
+*
+ TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
+ $ ( ONE-HALF )**4
+*
+ TEMP1 = ZERO
+ DO 220 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
+ $ ( ABSTOL+ABS( D4( J ) ) ) )
+ 220 CONTINUE
+*
+ RESULT( 27 ) = TEMP1 / TEMP2
+*
+ IL = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
+ IU = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
+ IF( IU.LT.IL ) THEN
+ ITEMP = IU
+ IU = IL
+ IL = ITEMP
+ END IF
+*
+ IF( CRANGE ) THEN
+ NTEST = 28
+ ABSTOL = UNFL + UNFL
+ CALL ZSTEMR( 'V', 'I', N, SD, SE, VL, VU, IL, IU,
+ $ M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ RWORK, LRWORK, IWORK( 2*N+1 ),
+ $ LWORK-2*N, IINFO )
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(V,I,rel)',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 28 ) = ULPINV
+ GO TO 270
+ END IF
+ END IF
+*
+*
+* Do test 28
+*
+ TEMP2 = TWO*( TWO*N-ONE )*ULP*
+ $ ( ONE+EIGHT*HALF**2 ) / ( ONE-HALF )**4
+*
+ TEMP1 = ZERO
+ DO 230 J = IL, IU
+ TEMP1 = MAX( TEMP1, ABS( WR( J-IL+1 )-D4( N-J+
+ $ 1 ) ) / ( ABSTOL+ABS( WR( J-IL+1 ) ) ) )
+ 230 CONTINUE
+*
+ RESULT( 28 ) = TEMP1 / TEMP2
+ ELSE
+ RESULT( 28 ) = ZERO
+ END IF
+ ELSE
+ RESULT( 27 ) = ZERO
+ RESULT( 28 ) = ZERO
+ END IF
+*
+* Call ZSTEMR(V,I) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL DCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
+ CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
+*
+ IF( CRANGE ) THEN
+ NTEST = 29
+ IL = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
+ IU = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
+ IF( IU.LT.IL ) THEN
+ ITEMP = IU
+ IU = IL
+ IL = ITEMP
+ END IF
+ CALL ZSTEMR( 'V', 'I', N, D5, RWORK, VL, VU, IL, IU,
+ $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(V,I)', IINFO,
+ $ N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 29 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 29 and 30
+*
+*
+* Call ZSTEMR to compute D2, do tests.
+*
+* Compute D2
+*
+ CALL DCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ NTEST = 31
+ CALL ZSTEMR( 'N', 'I', N, D5, RWORK, VL, VU, IL, IU,
+ $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(N,I)', IINFO,
+ $ N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 31 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 31
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+*
+ DO 240 J = 1, IU - IL + 1
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
+ $ ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ 240 CONTINUE
+*
+ RESULT( 31 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+*
+* Call ZSTEMR(V,V) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL DCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
+ CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
+*
+ NTEST = 32
+*
+ IF( N.GT.0 ) THEN
+ IF( IL.NE.1 ) THEN
+ VL = D2( IL ) - MAX( HALF*
+ $ ( D2( IL )-D2( IL-1 ) ), ULP*ANORM,
+ $ TWO*RTUNFL )
+ ELSE
+ VL = D2( 1 ) - MAX( HALF*( D2( N )-D2( 1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = D2( IU ) + MAX( HALF*
+ $ ( D2( IU+1 )-D2( IU ) ), ULP*ANORM,
+ $ TWO*RTUNFL )
+ ELSE
+ VU = D2( N ) + MAX( HALF*( D2( N )-D2( 1 ) ),
+ $ ULP*ANORM, TWO*RTUNFL )
+ END IF
+ ELSE
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ CALL ZSTEMR( 'V', 'V', N, D5, RWORK, VL, VU, IL, IU,
+ $ M, D1, Z, LDU, M, IWORK( 1 ), TRYRAC,
+ $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(V,V)', IINFO,
+ $ N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 32 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 32 and 33
+*
+ CALL ZSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
+ $ M, RWORK, RESULT( 32 ) )
+*
+* Call ZSTEMR to compute D2, do tests.
+*
+* Compute D2
+*
+ CALL DCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ NTEST = 34
+ CALL ZSTEMR( 'N', 'V', N, D5, RWORK, VL, VU, IL, IU,
+ $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(N,V)', IINFO,
+ $ N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 34 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 34
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+*
+ DO 250 J = 1, IU - IL + 1
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
+ $ ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ 250 CONTINUE
+*
+ RESULT( 34 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+ ELSE
+ RESULT( 29 ) = ZERO
+ RESULT( 30 ) = ZERO
+ RESULT( 31 ) = ZERO
+ RESULT( 32 ) = ZERO
+ RESULT( 33 ) = ZERO
+ RESULT( 34 ) = ZERO
+ END IF
+*
+*
+* Call ZSTEMR(V,A) to compute D1 and Z, do tests.
+*
+* Compute D1 and Z
+*
+ CALL DCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ NTEST = 35
+*
+ CALL ZSTEMR( 'V', 'A', N, D5, RWORK, VL, VU, IL, IU,
+ $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(V,A)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 35 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Tests 35 and 36
+*
+ CALL ZSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, M,
+ $ RWORK, RESULT( 35 ) )
+*
+* Call ZSTEMR to compute D2, do tests.
+*
+* Compute D2
+*
+ CALL DCOPY( N, SD, 1, D5, 1 )
+ IF( N.GT.0 )
+ $ CALL DCOPY( N-1, SE, 1, RWORK, 1 )
+*
+ NTEST = 37
+ CALL ZSTEMR( 'N', 'A', N, D5, RWORK, VL, VU, IL, IU,
+ $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
+ $ RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
+ $ LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZSTEMR(N,A)', IINFO, N,
+ $ JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( 37 ) = ULPINV
+ GO TO 280
+ END IF
+ END IF
+*
+* Do Test 34
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+*
+ DO 260 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
+ 260 CONTINUE
+*
+ RESULT( 37 ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+ END IF
+ 270 CONTINUE
+ 280 CONTINUE
+ NTESTT = NTESTT + NTEST
+*
+* End of Loop -- Check for RESULT(j) > THRESH
+*
+*
+* Print out tests which fail.
+*
+ DO 290 JR = 1, NTEST
+ IF( RESULT( JR ).GE.THRESH ) THEN
+*
+* If this is the first test to fail,
+* print a header to the data file.
+*
+ IF( NERRS.EQ.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'ZST'
+ WRITE( NOUNIT, FMT = 9997 )
+ WRITE( NOUNIT, FMT = 9996 )
+ WRITE( NOUNIT, FMT = 9995 )'Hermitian'
+ WRITE( NOUNIT, FMT = 9994 )
+*
+* Tests performed
+*
+ WRITE( NOUNIT, FMT = 9987 )
+ END IF
+ NERRS = NERRS + 1
+ IF( RESULT( JR ).LT.10000.0D0 ) THEN
+ WRITE( NOUNIT, FMT = 9989 )N, JTYPE, IOLDSD, JR,
+ $ RESULT( JR )
+ ELSE
+ WRITE( NOUNIT, FMT = 9988 )N, JTYPE, IOLDSD, JR,
+ $ RESULT( JR )
+ END IF
+ END IF
+ 290 CONTINUE
+ 300 CONTINUE
+ 310 CONTINUE
+*
+* Summary
+*
+ CALL DLASUM( 'ZST', NOUNIT, NERRS, NTESTT )
+ RETURN
+*
+ 9999 FORMAT( ' ZCHKST2STG: ', A, ' returned INFO=', I6, '.', / 9X,
+ $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
+*
+ 9998 FORMAT( / 1X, A3, ' -- Complex Hermitian eigenvalue problem' )
+ 9997 FORMAT( ' Matrix types (see ZCHKST2STG for details): ' )
+*
+ 9996 FORMAT( / ' Special Matrices:',
+ $ / ' 1=Zero matrix. ',
+ $ ' 5=Diagonal: clustered entries.',
+ $ / ' 2=Identity matrix. ',
+ $ ' 6=Diagonal: large, evenly spaced.',
+ $ / ' 3=Diagonal: evenly spaced entries. ',
+ $ ' 7=Diagonal: small, evenly spaced.',
+ $ / ' 4=Diagonal: geometr. spaced entries.' )
+ 9995 FORMAT( ' Dense ', A, ' Matrices:',
+ $ / ' 8=Evenly spaced eigenvals. ',
+ $ ' 12=Small, evenly spaced eigenvals.',
+ $ / ' 9=Geometrically spaced eigenvals. ',
+ $ ' 13=Matrix with random O(1) entries.',
+ $ / ' 10=Clustered eigenvalues. ',
+ $ ' 14=Matrix with large random entries.',
+ $ / ' 11=Large, evenly spaced eigenvals. ',
+ $ ' 15=Matrix with small random entries.' )
+ 9994 FORMAT( ' 16=Positive definite, evenly spaced eigenvalues',
+ $ / ' 17=Positive definite, geometrically spaced eigenvlaues',
+ $ / ' 18=Positive definite, clustered eigenvalues',
+ $ / ' 19=Positive definite, small evenly spaced eigenvalues',
+ $ / ' 20=Positive definite, large evenly spaced eigenvalues',
+ $ / ' 21=Diagonally dominant tridiagonal, geometrically',
+ $ ' spaced eigenvalues' )
+*
+ 9989 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
+ $ 4( I4, ',' ), ' result ', I3, ' is', 0P, F8.2 )
+ 9988 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
+ $ 4( I4, ',' ), ' result ', I3, ' is', 1P, D10.3 )
+*
+ 9987 FORMAT( / 'Test performed: see ZCHKST2STG for details.', / )
+* End of ZCHKST2STG
+*
+ END
diff --git a/TESTING/EIG/zdrvsg2stg.f b/TESTING/EIG/zdrvsg2stg.f
new file mode 100644
index 00000000..f75ce60c
--- /dev/null
+++ b/TESTING/EIG/zdrvsg2stg.f
@@ -0,0 +1,1384 @@
+*> \brief \b ZDRVSG2STG
+*
+* @precisions fortran z -> c
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZDRVSG2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+* NOUNIT, A, LDA, B, LDB, D, D2, Z, LDZ, AB,
+* BB, AP, BP, WORK, NWORK, RWORK, LRWORK,
+* IWORK, LIWORK, RESULT, INFO )
+*
+* IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDB, LDZ, LIWORK, LRWORK, NOUNIT,
+* $ NSIZES, NTYPES, NWORK
+* DOUBLE PRECISION THRESH
+* ..
+* .. Array Arguments ..
+* LOGICAL DOTYPE( * )
+* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+* DOUBLE PRECISION D( * ), RESULT( * ), RWORK( * )
+* COMPLEX*16 A( LDA, * ), AB( LDA, * ), AP( * ),
+* $ B( LDB, * ), BB( LDB, * ), BP( * ), WORK( * ),
+* $ Z( LDZ, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZDRVSG2STG checks the complex Hermitian generalized eigenproblem
+*> drivers.
+*>
+*> ZHEGV computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian-definite generalized
+*> eigenproblem.
+*>
+*> ZHEGVD computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian-definite generalized
+*> eigenproblem using a divide and conquer algorithm.
+*>
+*> ZHEGVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian-definite generalized
+*> eigenproblem.
+*>
+*> ZHPGV computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian-definite generalized
+*> eigenproblem in packed storage.
+*>
+*> ZHPGVD computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian-definite generalized
+*> eigenproblem in packed storage using a divide and
+*> conquer algorithm.
+*>
+*> ZHPGVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian-definite generalized
+*> eigenproblem in packed storage.
+*>
+*> ZHBGV computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian-definite banded
+*> generalized eigenproblem.
+*>
+*> ZHBGVD computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian-definite banded
+*> generalized eigenproblem using a divide and conquer
+*> algorithm.
+*>
+*> ZHBGVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian-definite banded
+*> generalized eigenproblem.
+*>
+*> When ZDRVSG2STG is called, a number of matrix "sizes" ("n's") and a
+*> number of matrix "types" are specified. For each size ("n")
+*> and each type of matrix, one matrix A of the given type will be
+*> generated; a random well-conditioned matrix B is also generated
+*> and the pair (A,B) is used to test the drivers.
+*>
+*> For each pair (A,B), the following tests are performed:
+*>
+*> (1) ZHEGV with ITYPE = 1 and UPLO ='U':
+*>
+*> | A Z - B Z D | / ( |A| |Z| n ulp )
+*> | D - D2 | / ( |D| ulp ) where D is computed by
+*> ZHEGV and D2 is computed by
+*> ZHEGV_2STAGE. This test is
+*> only performed for DSYGV
+*>
+*> (2) as (1) but calling ZHPGV
+*> (3) as (1) but calling ZHBGV
+*> (4) as (1) but with UPLO = 'L'
+*> (5) as (4) but calling ZHPGV
+*> (6) as (4) but calling ZHBGV
+*>
+*> (7) ZHEGV with ITYPE = 2 and UPLO ='U':
+*>
+*> | A B Z - Z D | / ( |A| |Z| n ulp )
+*>
+*> (8) as (7) but calling ZHPGV
+*> (9) as (7) but with UPLO = 'L'
+*> (10) as (9) but calling ZHPGV
+*>
+*> (11) ZHEGV with ITYPE = 3 and UPLO ='U':
+*>
+*> | B A Z - Z D | / ( |A| |Z| n ulp )
+*>
+*> (12) as (11) but calling ZHPGV
+*> (13) as (11) but with UPLO = 'L'
+*> (14) as (13) but calling ZHPGV
+*>
+*> ZHEGVD, ZHPGVD and ZHBGVD performed the same 14 tests.
+*>
+*> ZHEGVX, ZHPGVX and ZHBGVX performed the above 14 tests with
+*> the parameter RANGE = 'A', 'N' and 'I', respectively.
+*>
+*> The "sizes" are specified by an array NN(1:NSIZES); the value of
+*> each element NN(j) specifies one size.
+*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
+*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
+*> This type is used for the matrix A which has half-bandwidth KA.
+*> B is generated as a well-conditioned positive definite matrix
+*> with half-bandwidth KB (<= KA).
+*> Currently, the list of possible types for A is:
+*>
+*> (1) The zero matrix.
+*> (2) The identity matrix.
+*>
+*> (3) A diagonal matrix with evenly spaced entries
+*> 1, ..., ULP and random signs.
+*> (ULP = (first number larger than 1) - 1 )
+*> (4) A diagonal matrix with geometrically spaced entries
+*> 1, ..., ULP and random signs.
+*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
+*> and random signs.
+*>
+*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
+*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
+*>
+*> (8) A matrix of the form U* D U, where U is unitary and
+*> D has evenly spaced entries 1, ..., ULP with random signs
+*> on the diagonal.
+*>
+*> (9) A matrix of the form U* D U, where U is unitary and
+*> D has geometrically spaced entries 1, ..., ULP with random
+*> signs on the diagonal.
+*>
+*> (10) A matrix of the form U* D U, where U is unitary and
+*> D has "clustered" entries 1, ULP,..., ULP with random
+*> signs on the diagonal.
+*>
+*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
+*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
+*>
+*> (13) Hermitian matrix with random entries chosen from (-1,1).
+*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
+*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
+*>
+*> (16) Same as (8), but with KA = 1 and KB = 1
+*> (17) Same as (8), but with KA = 2 and KB = 1
+*> (18) Same as (8), but with KA = 2 and KB = 2
+*> (19) Same as (8), but with KA = 3 and KB = 1
+*> (20) Same as (8), but with KA = 3 and KB = 2
+*> (21) Same as (8), but with KA = 3 and KB = 3
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \verbatim
+*> NSIZES INTEGER
+*> The number of sizes of matrices to use. If it is zero,
+*> ZDRVSG2STG does nothing. It must be at least zero.
+*> Not modified.
+*>
+*> NN INTEGER array, dimension (NSIZES)
+*> An array containing the sizes to be used for the matrices.
+*> Zero values will be skipped. The values must be at least
+*> zero.
+*> Not modified.
+*>
+*> NTYPES INTEGER
+*> The number of elements in DOTYPE. If it is zero, ZDRVSG2STG
+*> does nothing. It must be at least zero. If it is MAXTYP+1
+*> and NSIZES is 1, then an additional type, MAXTYP+1 is
+*> defined, which is to use whatever matrix is in A. This
+*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
+*> DOTYPE(MAXTYP+1) is .TRUE. .
+*> Not modified.
+*>
+*> DOTYPE LOGICAL array, dimension (NTYPES)
+*> If DOTYPE(j) is .TRUE., then for each size in NN a
+*> matrix of that size and of type j will be generated.
+*> If NTYPES is smaller than the maximum number of types
+*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
+*> MAXTYP will not be generated. If NTYPES is larger
+*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
+*> will be ignored.
+*> Not modified.
+*>
+*> ISEED INTEGER array, dimension (4)
+*> On entry ISEED specifies the seed of the random number
+*> generator. The array elements should be between 0 and 4095;
+*> if not they will be reduced mod 4096. Also, ISEED(4) must
+*> be odd. The random number generator uses a linear
+*> congruential sequence limited to small integers, and so
+*> should produce machine independent random numbers. The
+*> values of ISEED are changed on exit, and can be used in the
+*> next call to ZDRVSG2STG to continue the same random number
+*> sequence.
+*> Modified.
+*>
+*> THRESH DOUBLE PRECISION
+*> A test will count as "failed" if the "error", computed as
+*> described above, exceeds THRESH. Note that the error
+*> is scaled to be O(1), so THRESH should be a reasonably
+*> small multiple of 1, e.g., 10 or 100. In particular,
+*> it should not depend on the precision (single vs. double)
+*> or the size of the matrix. It must be at least zero.
+*> Not modified.
+*>
+*> NOUNIT INTEGER
+*> The FORTRAN unit number for printing out error messages
+*> (e.g., if a routine returns IINFO not equal to 0.)
+*> Not modified.
+*>
+*> A COMPLEX*16 array, dimension (LDA , max(NN))
+*> Used to hold the matrix whose eigenvalues are to be
+*> computed. On exit, A contains the last matrix actually
+*> used.
+*> Modified.
+*>
+*> LDA INTEGER
+*> The leading dimension of A. It must be at
+*> least 1 and at least max( NN ).
+*> Not modified.
+*>
+*> B COMPLEX*16 array, dimension (LDB , max(NN))
+*> Used to hold the Hermitian positive definite matrix for
+*> the generailzed problem.
+*> On exit, B contains the last matrix actually
+*> used.
+*> Modified.
+*>
+*> LDB INTEGER
+*> The leading dimension of B. It must be at
+*> least 1 and at least max( NN ).
+*> Not modified.
+*>
+*> D DOUBLE PRECISION array, dimension (max(NN))
+*> The eigenvalues of A. On exit, the eigenvalues in D
+*> correspond with the matrix in A.
+*> Modified.
+*>
+*> Z COMPLEX*16 array, dimension (LDZ, max(NN))
+*> The matrix of eigenvectors.
+*> Modified.
+*>
+*> LDZ INTEGER
+*> The leading dimension of ZZ. It must be at least 1 and
+*> at least max( NN ).
+*> Not modified.
+*>
+*> AB COMPLEX*16 array, dimension (LDA, max(NN))
+*> Workspace.
+*> Modified.
+*>
+*> BB COMPLEX*16 array, dimension (LDB, max(NN))
+*> Workspace.
+*> Modified.
+*>
+*> AP COMPLEX*16 array, dimension (max(NN)**2)
+*> Workspace.
+*> Modified.
+*>
+*> BP COMPLEX*16 array, dimension (max(NN)**2)
+*> Workspace.
+*> Modified.
+*>
+*> WORK COMPLEX*16 array, dimension (NWORK)
+*> Workspace.
+*> Modified.
+*>
+*> NWORK INTEGER
+*> The number of entries in WORK. This must be at least
+*> 2*N + N**2 where N = max( NN(j), 2 ).
+*> Not modified.
+*>
+*> RWORK DOUBLE PRECISION array, dimension (LRWORK)
+*> Workspace.
+*> Modified.
+*>
+*> LRWORK INTEGER
+*> The number of entries in RWORK. This must be at least
+*> max( 7*N, 1 + 4*N + 2*N*lg(N) + 3*N**2 ) where
+*> N = max( NN(j) ) and lg( N ) = smallest integer k such
+*> that 2**k >= N .
+*> Not modified.
+*>
+*> IWORK INTEGER array, dimension (LIWORK))
+*> Workspace.
+*> Modified.
+*>
+*> LIWORK INTEGER
+*> The number of entries in IWORK. This must be at least
+*> 2 + 5*max( NN(j) ).
+*> Not modified.
+*>
+*> RESULT DOUBLE PRECISION array, dimension (70)
+*> The values computed by the 70 tests described above.
+*> Modified.
+*>
+*> INFO INTEGER
+*> If 0, then everything ran OK.
+*> -1: NSIZES < 0
+*> -2: Some NN(j) < 0
+*> -3: NTYPES < 0
+*> -5: THRESH < 0
+*> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
+*> -16: LDZ < 1 or LDZ < NMAX.
+*> -21: NWORK too small.
+*> -23: LRWORK too small.
+*> -25: LIWORK too small.
+*> If ZLATMR, CLATMS, ZHEGV, ZHPGV, ZHBGV, CHEGVD, CHPGVD,
+*> ZHPGVD, ZHEGVX, CHPGVX, ZHBGVX returns an error code,
+*> the absolute value of it is returned.
+*> Modified.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> Some Local Variables and Parameters:
+*> ---- ----- --------- --- ----------
+*> ZERO, ONE Real 0 and 1.
+*> MAXTYP The number of types defined.
+*> NTEST The number of tests that have been run
+*> on this matrix.
+*> NTESTT The total number of tests for this call.
+*> NMAX Largest value in NN.
+*> NMATS The number of matrices generated so far.
+*> NERRS The number of tests which have exceeded THRESH
+*> so far (computed by DLAFTS).
+*> COND, IMODE Values to be passed to the matrix generators.
+*> ANORM Norm of A; passed to matrix generators.
+*>
+*> OVFL, UNFL Overflow and underflow thresholds.
+*> ULP, ULPINV Finest relative precision and its inverse.
+*> RTOVFL, RTUNFL Square roots of the previous 2 values.
+*> The following four arrays decode JTYPE:
+*> KTYPE(j) The general type (1-10) for type "j".
+*> KMODE(j) The MODE value to be passed to the matrix
+*> generator for type "j".
+*> KMAGN(j) The order of magnitude ( O(1),
+*> O(overflow^(1/2) ), O(underflow^(1/2) )
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complex16_eig
+*
+* =====================================================================
+ SUBROUTINE ZDRVSG2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+ $ NOUNIT, A, LDA, B, LDB, D, D2, Z, LDZ, AB,
+ $ BB, AP, BP, WORK, NWORK, RWORK, LRWORK,
+ $ IWORK, LIWORK, RESULT, INFO )
+*
+ IMPLICIT NONE
+*
+* -- LAPACK test routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDB, LDZ, LIWORK, LRWORK, NOUNIT,
+ $ NSIZES, NTYPES, NWORK
+ DOUBLE PRECISION THRESH
+* ..
+* .. Array Arguments ..
+ LOGICAL DOTYPE( * )
+ INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+ DOUBLE PRECISION D( * ), D2( * ), RESULT( * ), RWORK( * )
+ COMPLEX*16 A( LDA, * ), AB( LDA, * ), AP( * ),
+ $ B( LDB, * ), BB( LDB, * ), BP( * ), WORK( * ),
+ $ Z( LDZ, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE, TEN
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 10.0D+0 )
+ COMPLEX*16 CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
+ $ CONE = ( 1.0D+0, 0.0D+0 ) )
+ INTEGER MAXTYP
+ PARAMETER ( MAXTYP = 21 )
+* ..
+* .. Local Scalars ..
+ LOGICAL BADNN
+ CHARACTER UPLO
+ INTEGER I, IBTYPE, IBUPLO, IINFO, IJ, IL, IMODE, ITEMP,
+ $ ITYPE, IU, J, JCOL, JSIZE, JTYPE, KA, KA9, KB,
+ $ KB9, M, MTYPES, N, NERRS, NMATS, NMAX, NTEST,
+ $ NTESTT
+ DOUBLE PRECISION ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
+ $ RTUNFL, ULP, ULPINV, UNFL, VL, VU, TEMP1, TEMP2
+* ..
+* .. Local Arrays ..
+ INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
+ $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
+ $ KTYPE( MAXTYP )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ DOUBLE PRECISION DLAMCH, DLARND
+ EXTERNAL LSAME, DLAMCH, DLARND
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLABAD, DLAFTS, DLASUM, XERBLA, ZHBGV, ZHBGVD,
+ $ ZHBGVX, ZHEGV, ZHEGVD, ZHEGVX, ZHPGV, ZHPGVD,
+ $ ZHPGVX, ZLACPY, ZLASET, ZLATMR, ZLATMS, ZSGT01,
+ $ ZHEGV_2STAGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, MAX, MIN, SQRT
+* ..
+* .. Data statements ..
+ DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 6*9 /
+ DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
+ $ 2, 3, 6*1 /
+ DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
+ $ 0, 0, 6*4 /
+* ..
+* .. Executable Statements ..
+*
+* 1) Check for errors
+*
+ NTESTT = 0
+ INFO = 0
+*
+ BADNN = .FALSE.
+ NMAX = 0
+ DO 10 J = 1, NSIZES
+ NMAX = MAX( NMAX, NN( J ) )
+ IF( NN( J ).LT.0 )
+ $ BADNN = .TRUE.
+ 10 CONTINUE
+*
+* Check for errors
+*
+ IF( NSIZES.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( BADNN ) THEN
+ INFO = -2
+ ELSE IF( NTYPES.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
+ INFO = -9
+ ELSE IF( LDZ.LE.1 .OR. LDZ.LT.NMAX ) THEN
+ INFO = -16
+ ELSE IF( 2*MAX( NMAX, 2 )**2.GT.NWORK ) THEN
+ INFO = -21
+ ELSE IF( 2*MAX( NMAX, 2 )**2.GT.LRWORK ) THEN
+ INFO = -23
+ ELSE IF( 2*MAX( NMAX, 2 )**2.GT.LIWORK ) THEN
+ INFO = -25
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZDRVSG2STG', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
+ $ RETURN
+*
+* More Important constants
+*
+ UNFL = DLAMCH( 'Safe minimum' )
+ OVFL = DLAMCH( 'Overflow' )
+ CALL DLABAD( UNFL, OVFL )
+ ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
+ ULPINV = ONE / ULP
+ RTUNFL = SQRT( UNFL )
+ RTOVFL = SQRT( OVFL )
+*
+ DO 20 I = 1, 4
+ ISEED2( I ) = ISEED( I )
+ 20 CONTINUE
+*
+* Loop over sizes, types
+*
+ NERRS = 0
+ NMATS = 0
+*
+ DO 650 JSIZE = 1, NSIZES
+ N = NN( JSIZE )
+ ANINV = ONE / DBLE( MAX( 1, N ) )
+*
+ IF( NSIZES.NE.1 ) THEN
+ MTYPES = MIN( MAXTYP, NTYPES )
+ ELSE
+ MTYPES = MIN( MAXTYP+1, NTYPES )
+ END IF
+*
+ KA9 = 0
+ KB9 = 0
+ DO 640 JTYPE = 1, MTYPES
+ IF( .NOT.DOTYPE( JTYPE ) )
+ $ GO TO 640
+ NMATS = NMATS + 1
+ NTEST = 0
+*
+ DO 30 J = 1, 4
+ IOLDSD( J ) = ISEED( J )
+ 30 CONTINUE
+*
+* 2) Compute "A"
+*
+* Control parameters:
+*
+* KMAGN KMODE KTYPE
+* =1 O(1) clustered 1 zero
+* =2 large clustered 2 identity
+* =3 small exponential (none)
+* =4 arithmetic diagonal, w/ eigenvalues
+* =5 random log hermitian, w/ eigenvalues
+* =6 random (none)
+* =7 random diagonal
+* =8 random hermitian
+* =9 banded, w/ eigenvalues
+*
+ IF( MTYPES.GT.MAXTYP )
+ $ GO TO 90
+*
+ ITYPE = KTYPE( JTYPE )
+ IMODE = KMODE( JTYPE )
+*
+* Compute norm
+*
+ GO TO ( 40, 50, 60 )KMAGN( JTYPE )
+*
+ 40 CONTINUE
+ ANORM = ONE
+ GO TO 70
+*
+ 50 CONTINUE
+ ANORM = ( RTOVFL*ULP )*ANINV
+ GO TO 70
+*
+ 60 CONTINUE
+ ANORM = RTUNFL*N*ULPINV
+ GO TO 70
+*
+ 70 CONTINUE
+*
+ IINFO = 0
+ COND = ULPINV
+*
+* Special Matrices -- Identity & Jordan block
+*
+ IF( ITYPE.EQ.1 ) THEN
+*
+* Zero
+*
+ KA = 0
+ KB = 0
+ CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
+*
+ ELSE IF( ITYPE.EQ.2 ) THEN
+*
+* Identity
+*
+ KA = 0
+ KB = 0
+ CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
+ DO 80 JCOL = 1, N
+ A( JCOL, JCOL ) = ANORM
+ 80 CONTINUE
+*
+ ELSE IF( ITYPE.EQ.4 ) THEN
+*
+* Diagonal Matrix, [Eigen]values Specified
+*
+ KA = 0
+ KB = 0
+ CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
+ $ ANORM, 0, 0, 'N', A, LDA, WORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.5 ) THEN
+*
+* Hermitian, eigenvalues specified
+*
+ KA = MAX( 0, N-1 )
+ KB = KA
+ CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
+ $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.7 ) THEN
+*
+* Diagonal, random eigenvalues
+*
+ KA = 0
+ KB = 0
+ CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.8 ) THEN
+*
+* Hermitian, random eigenvalues
+*
+ KA = MAX( 0, N-1 )
+ KB = KA
+ CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.9 ) THEN
+*
+* Hermitian banded, eigenvalues specified
+*
+* The following values are used for the half-bandwidths:
+*
+* ka = 1 kb = 1
+* ka = 2 kb = 1
+* ka = 2 kb = 2
+* ka = 3 kb = 1
+* ka = 3 kb = 2
+* ka = 3 kb = 3
+*
+ KB9 = KB9 + 1
+ IF( KB9.GT.KA9 ) THEN
+ KA9 = KA9 + 1
+ KB9 = 1
+ END IF
+ KA = MAX( 0, MIN( N-1, KA9 ) )
+ KB = MAX( 0, MIN( N-1, KB9 ) )
+ CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
+ $ ANORM, KA, KA, 'N', A, LDA, WORK, IINFO )
+*
+ ELSE
+*
+ IINFO = 1
+ END IF
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ RETURN
+ END IF
+*
+ 90 CONTINUE
+*
+ ABSTOL = UNFL + UNFL
+ IF( N.LE.1 ) THEN
+ IL = 1
+ IU = N
+ ELSE
+ IL = 1 + INT( ( N-1 )*DLARND( 1, ISEED2 ) )
+ IU = 1 + INT( ( N-1 )*DLARND( 1, ISEED2 ) )
+ IF( IL.GT.IU ) THEN
+ ITEMP = IL
+ IL = IU
+ IU = ITEMP
+ END IF
+ END IF
+*
+* 3) Call ZHEGV, ZHPGV, ZHBGV, CHEGVD, CHPGVD, CHBGVD,
+* ZHEGVX, ZHPGVX and ZHBGVX, do tests.
+*
+* loop over the three generalized problems
+* IBTYPE = 1: A*x = (lambda)*B*x
+* IBTYPE = 2: A*B*x = (lambda)*x
+* IBTYPE = 3: B*A*x = (lambda)*x
+*
+ DO 630 IBTYPE = 1, 3
+*
+* loop over the setting UPLO
+*
+ DO 620 IBUPLO = 1, 2
+ IF( IBUPLO.EQ.1 )
+ $ UPLO = 'U'
+ IF( IBUPLO.EQ.2 )
+ $ UPLO = 'L'
+*
+* Generate random well-conditioned positive definite
+* matrix B, of bandwidth not greater than that of A.
+*
+ CALL ZLATMS( N, N, 'U', ISEED, 'P', RWORK, 5, TEN,
+ $ ONE, KB, KB, UPLO, B, LDB, WORK( N+1 ),
+ $ IINFO )
+*
+* Test ZHEGV
+*
+ NTEST = NTEST + 1
+*
+ CALL ZLACPY( ' ', N, N, A, LDA, Z, LDZ )
+ CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL ZHEGV( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D,
+ $ WORK, NWORK, RWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHEGV(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+* Test ZHEGV_2STAGE
+*
+ NTEST = NTEST + 1
+*
+ CALL ZLACPY( ' ', N, N, A, LDA, Z, LDZ )
+ CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL ZHEGV_2STAGE( IBTYPE, 'N', UPLO, N, Z, LDZ,
+ $ BB, LDB, D2, WORK, NWORK, RWORK,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'ZHEGV_2STAGE(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+C CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+C $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+* Do Tests | D1 - D2 | / ( |D1| ulp )
+* D1 computed using the standard 1-stage reduction as reference
+* D2 computed using the 2-stage reduction
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 151 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D( J ) ),
+ $ ABS( D2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D( J )-D2( J ) ) )
+ 151 CONTINUE
+*
+ RESULT( NTEST ) = TEMP2 /
+ $ MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Test ZHEGVD
+*
+ NTEST = NTEST + 1
+*
+ CALL ZLACPY( ' ', N, N, A, LDA, Z, LDZ )
+ CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL ZHEGVD( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D,
+ $ WORK, NWORK, RWORK, LRWORK, IWORK,
+ $ LIWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHEGVD(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+* Test ZHEGVX
+*
+ NTEST = NTEST + 1
+*
+ CALL ZLACPY( ' ', N, N, A, LDA, AB, LDA )
+ CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL ZHEGVX( IBTYPE, 'V', 'A', UPLO, N, AB, LDA, BB,
+ $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
+ $ LDZ, WORK, NWORK, RWORK, IWORK( N+1 ),
+ $ IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHEGVX(V,A' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+ CALL ZLACPY( ' ', N, N, A, LDA, AB, LDA )
+ CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+* since we do not know the exact eigenvalues of this
+* eigenpair, we just set VL and VU as constants.
+* It is quite possible that there are no eigenvalues
+* in this interval.
+*
+ VL = ZERO
+ VU = ANORM
+ CALL ZHEGVX( IBTYPE, 'V', 'V', UPLO, N, AB, LDA, BB,
+ $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
+ $ LDZ, WORK, NWORK, RWORK, IWORK( N+1 ),
+ $ IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHEGVX(V,V,' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+ CALL ZLACPY( ' ', N, N, A, LDA, AB, LDA )
+ CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
+*
+ CALL ZHEGVX( IBTYPE, 'V', 'I', UPLO, N, AB, LDA, BB,
+ $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
+ $ LDZ, WORK, NWORK, RWORK, IWORK( N+1 ),
+ $ IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHEGVX(V,I,' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 100
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+ 100 CONTINUE
+*
+* Test ZHPGV
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 120 J = 1, N
+ DO 110 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 110 CONTINUE
+ 120 CONTINUE
+ ELSE
+ IJ = 1
+ DO 140 J = 1, N
+ DO 130 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 130 CONTINUE
+ 140 CONTINUE
+ END IF
+*
+ CALL ZHPGV( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ,
+ $ WORK, RWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHPGV(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+* Test ZHPGVD
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 160 J = 1, N
+ DO 150 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 150 CONTINUE
+ 160 CONTINUE
+ ELSE
+ IJ = 1
+ DO 180 J = 1, N
+ DO 170 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 170 CONTINUE
+ 180 CONTINUE
+ END IF
+*
+ CALL ZHPGVD( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ,
+ $ WORK, NWORK, RWORK, LRWORK, IWORK,
+ $ LIWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHPGVD(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+* Test ZHPGVX
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 200 J = 1, N
+ DO 190 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 190 CONTINUE
+ 200 CONTINUE
+ ELSE
+ IJ = 1
+ DO 220 J = 1, N
+ DO 210 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 210 CONTINUE
+ 220 CONTINUE
+ END IF
+*
+ CALL ZHPGVX( IBTYPE, 'V', 'A', UPLO, N, AP, BP, VL,
+ $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
+ $ RWORK, IWORK( N+1 ), IWORK, INFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHPGVX(V,A' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 240 J = 1, N
+ DO 230 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 230 CONTINUE
+ 240 CONTINUE
+ ELSE
+ IJ = 1
+ DO 260 J = 1, N
+ DO 250 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 250 CONTINUE
+ 260 CONTINUE
+ END IF
+*
+ VL = ZERO
+ VU = ANORM
+ CALL ZHPGVX( IBTYPE, 'V', 'V', UPLO, N, AP, BP, VL,
+ $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
+ $ RWORK, IWORK( N+1 ), IWORK, INFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHPGVX(V,V' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into packed storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IJ = 1
+ DO 280 J = 1, N
+ DO 270 I = 1, J
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 270 CONTINUE
+ 280 CONTINUE
+ ELSE
+ IJ = 1
+ DO 300 J = 1, N
+ DO 290 I = J, N
+ AP( IJ ) = A( I, J )
+ BP( IJ ) = B( I, J )
+ IJ = IJ + 1
+ 290 CONTINUE
+ 300 CONTINUE
+ END IF
+*
+ CALL ZHPGVX( IBTYPE, 'V', 'I', UPLO, N, AP, BP, VL,
+ $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
+ $ RWORK, IWORK( N+1 ), IWORK, INFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHPGVX(V,I' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 310
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+ 310 CONTINUE
+*
+ IF( IBTYPE.EQ.1 ) THEN
+*
+* TEST ZHBGV
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 340 J = 1, N
+ DO 320 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 320 CONTINUE
+ DO 330 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 330 CONTINUE
+ 340 CONTINUE
+ ELSE
+ DO 370 J = 1, N
+ DO 350 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 350 CONTINUE
+ DO 360 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 360 CONTINUE
+ 370 CONTINUE
+ END IF
+*
+ CALL ZHBGV( 'V', UPLO, N, KA, KB, AB, LDA, BB, LDB,
+ $ D, Z, LDZ, WORK, RWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHBGV(V,' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+* TEST ZHBGVD
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 400 J = 1, N
+ DO 380 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 380 CONTINUE
+ DO 390 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 390 CONTINUE
+ 400 CONTINUE
+ ELSE
+ DO 430 J = 1, N
+ DO 410 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 410 CONTINUE
+ DO 420 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 420 CONTINUE
+ 430 CONTINUE
+ END IF
+*
+ CALL ZHBGVD( 'V', UPLO, N, KA, KB, AB, LDA, BB,
+ $ LDB, D, Z, LDZ, WORK, NWORK, RWORK,
+ $ LRWORK, IWORK, LIWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHBGVD(V,' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+* Test ZHBGVX
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 460 J = 1, N
+ DO 440 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 440 CONTINUE
+ DO 450 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 450 CONTINUE
+ 460 CONTINUE
+ ELSE
+ DO 490 J = 1, N
+ DO 470 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 470 CONTINUE
+ DO 480 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 480 CONTINUE
+ 490 CONTINUE
+ END IF
+*
+ CALL ZHBGVX( 'V', 'A', UPLO, N, KA, KB, AB, LDA,
+ $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
+ $ IU, ABSTOL, M, D, Z, LDZ, WORK, RWORK,
+ $ IWORK( N+1 ), IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHBGVX(V,A' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 520 J = 1, N
+ DO 500 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 500 CONTINUE
+ DO 510 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 510 CONTINUE
+ 520 CONTINUE
+ ELSE
+ DO 550 J = 1, N
+ DO 530 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 530 CONTINUE
+ DO 540 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 540 CONTINUE
+ 550 CONTINUE
+ END IF
+*
+ VL = ZERO
+ VU = ANORM
+ CALL ZHBGVX( 'V', 'V', UPLO, N, KA, KB, AB, LDA,
+ $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
+ $ IU, ABSTOL, M, D, Z, LDZ, WORK, RWORK,
+ $ IWORK( N+1 ), IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHBGVX(V,V' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 1
+*
+* Copy the matrices into band storage.
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 580 J = 1, N
+ DO 560 I = MAX( 1, J-KA ), J
+ AB( KA+1+I-J, J ) = A( I, J )
+ 560 CONTINUE
+ DO 570 I = MAX( 1, J-KB ), J
+ BB( KB+1+I-J, J ) = B( I, J )
+ 570 CONTINUE
+ 580 CONTINUE
+ ELSE
+ DO 610 J = 1, N
+ DO 590 I = J, MIN( N, J+KA )
+ AB( 1+I-J, J ) = A( I, J )
+ 590 CONTINUE
+ DO 600 I = J, MIN( N, J+KB )
+ BB( 1+I-J, J ) = B( I, J )
+ 600 CONTINUE
+ 610 CONTINUE
+ END IF
+*
+ CALL ZHBGVX( 'V', 'I', UPLO, N, KA, KB, AB, LDA,
+ $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
+ $ IU, ABSTOL, M, D, Z, LDZ, WORK, RWORK,
+ $ IWORK( N+1 ), IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHBGVX(V,I' //
+ $ UPLO // ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 620
+ END IF
+ END IF
+*
+* Do Test
+*
+ CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
+ $ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
+*
+ END IF
+*
+ 620 CONTINUE
+ 630 CONTINUE
+*
+* End of Loop -- Check for RESULT(j) > THRESH
+*
+ NTESTT = NTESTT + NTEST
+ CALL DLAFTS( 'ZSG', N, N, JTYPE, NTEST, RESULT, IOLDSD,
+ $ THRESH, NOUNIT, NERRS )
+ 640 CONTINUE
+ 650 CONTINUE
+*
+* Summary
+*
+ CALL DLASUM( 'ZSG', NOUNIT, NERRS, NTESTT )
+*
+ RETURN
+*
+ 9999 FORMAT( ' ZDRVSG2STG: ', A, ' returned INFO=', I6, '.', / 9X,
+ $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
+*
+* End of ZDRVSG2STG
+*
+ END
diff --git a/TESTING/EIG/zdrvst2stg.f b/TESTING/EIG/zdrvst2stg.f
new file mode 100644
index 00000000..0b33f52d
--- /dev/null
+++ b/TESTING/EIG/zdrvst2stg.f
@@ -0,0 +1,2118 @@
+*> \brief \b ZDRVST2STG
+*
+* @precisions fortran z -> s d c
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZDRVST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+* NOUNIT, A, LDA, D1, D2, D3, WA1, WA2, WA3, U,
+* LDU, V, TAU, Z, WORK, LWORK, RWORK, LRWORK,
+* IWORK, LIWORK, RESULT, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
+* $ NSIZES, NTYPES
+* DOUBLE PRECISION THRESH
+* ..
+* .. Array Arguments ..
+* LOGICAL DOTYPE( * )
+* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+* DOUBLE PRECISION D1( * ), D2( * ), D3( * ), RESULT( * ),
+* $ RWORK( * ), WA1( * ), WA2( * ), WA3( * )
+* COMPLEX*16 A( LDA, * ), TAU( * ), U( LDU, * ),
+* $ V( LDU, * ), WORK( * ), Z( LDU, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZDRVST2STG checks the Hermitian eigenvalue problem drivers.
+*>
+*> ZHEEVD computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian matrix,
+*> using a divide-and-conquer algorithm.
+*>
+*> ZHEEVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian matrix.
+*>
+*> ZHEEVR computes selected eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian matrix
+*> using the Relatively Robust Representation where it can.
+*>
+*> ZHPEVD computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian matrix in packed
+*> storage, using a divide-and-conquer algorithm.
+*>
+*> ZHPEVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian matrix in packed
+*> storage.
+*>
+*> ZHBEVD computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian band matrix,
+*> using a divide-and-conquer algorithm.
+*>
+*> ZHBEVX computes selected eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian band matrix.
+*>
+*> ZHEEV computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian matrix.
+*>
+*> ZHPEV computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian matrix in packed
+*> storage.
+*>
+*> ZHBEV computes all eigenvalues and, optionally,
+*> eigenvectors of a complex Hermitian band matrix.
+*>
+*> When ZDRVST2STG is called, a number of matrix "sizes" ("n's") and a
+*> number of matrix "types" are specified. For each size ("n")
+*> and each type of matrix, one matrix will be generated and used
+*> to test the appropriate drivers. For each matrix and each
+*> driver routine called, the following tests will be performed:
+*>
+*> (1) | A - Z D Z' | / ( |A| n ulp )
+*>
+*> (2) | I - Z Z' | / ( n ulp )
+*>
+*> (3) | D1 - D2 | / ( |D1| ulp )
+*>
+*> where Z is the matrix of eigenvectors returned when the
+*> eigenvector option is given and D1 and D2 are the eigenvalues
+*> returned with and without the eigenvector option.
+*>
+*> The "sizes" are specified by an array NN(1:NSIZES); the value of
+*> each element NN(j) specifies one size.
+*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
+*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
+*> Currently, the list of possible types is:
+*>
+*> (1) The zero matrix.
+*> (2) The identity matrix.
+*>
+*> (3) A diagonal matrix with evenly spaced entries
+*> 1, ..., ULP and random signs.
+*> (ULP = (first number larger than 1) - 1 )
+*> (4) A diagonal matrix with geometrically spaced entries
+*> 1, ..., ULP and random signs.
+*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
+*> and random signs.
+*>
+*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
+*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
+*>
+*> (8) A matrix of the form U* D U, where U is unitary and
+*> D has evenly spaced entries 1, ..., ULP with random signs
+*> on the diagonal.
+*>
+*> (9) A matrix of the form U* D U, where U is unitary and
+*> D has geometrically spaced entries 1, ..., ULP with random
+*> signs on the diagonal.
+*>
+*> (10) A matrix of the form U* D U, where U is unitary and
+*> D has "clustered" entries 1, ULP,..., ULP with random
+*> signs on the diagonal.
+*>
+*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
+*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
+*>
+*> (13) Symmetric matrix with random entries chosen from (-1,1).
+*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
+*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
+*> (16) A band matrix with half bandwidth randomly chosen between
+*> 0 and N-1, with evenly spaced eigenvalues 1, ..., ULP
+*> with random signs.
+*> (17) Same as (16), but multiplied by SQRT( overflow threshold )
+*> (18) Same as (16), but multiplied by SQRT( underflow threshold )
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \verbatim
+*> NSIZES INTEGER
+*> The number of sizes of matrices to use. If it is zero,
+*> ZDRVST2STG does nothing. It must be at least zero.
+*> Not modified.
+*>
+*> NN INTEGER array, dimension (NSIZES)
+*> An array containing the sizes to be used for the matrices.
+*> Zero values will be skipped. The values must be at least
+*> zero.
+*> Not modified.
+*>
+*> NTYPES INTEGER
+*> The number of elements in DOTYPE. If it is zero, ZDRVST2STG
+*> does nothing. It must be at least zero. If it is MAXTYP+1
+*> and NSIZES is 1, then an additional type, MAXTYP+1 is
+*> defined, which is to use whatever matrix is in A. This
+*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
+*> DOTYPE(MAXTYP+1) is .TRUE. .
+*> Not modified.
+*>
+*> DOTYPE LOGICAL array, dimension (NTYPES)
+*> If DOTYPE(j) is .TRUE., then for each size in NN a
+*> matrix of that size and of type j will be generated.
+*> If NTYPES is smaller than the maximum number of types
+*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
+*> MAXTYP will not be generated. If NTYPES is larger
+*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
+*> will be ignored.
+*> Not modified.
+*>
+*> ISEED INTEGER array, dimension (4)
+*> On entry ISEED specifies the seed of the random number
+*> generator. The array elements should be between 0 and 4095;
+*> if not they will be reduced mod 4096. Also, ISEED(4) must
+*> be odd. The random number generator uses a linear
+*> congruential sequence limited to small integers, and so
+*> should produce machine independent random numbers. The
+*> values of ISEED are changed on exit, and can be used in the
+*> next call to ZDRVST2STG to continue the same random number
+*> sequence.
+*> Modified.
+*>
+*> THRESH DOUBLE PRECISION
+*> A test will count as "failed" if the "error", computed as
+*> described above, exceeds THRESH. Note that the error
+*> is scaled to be O(1), so THRESH should be a reasonably
+*> small multiple of 1, e.g., 10 or 100. In particular,
+*> it should not depend on the precision (single vs. double)
+*> or the size of the matrix. It must be at least zero.
+*> Not modified.
+*>
+*> NOUNIT INTEGER
+*> The FORTRAN unit number for printing out error messages
+*> (e.g., if a routine returns IINFO not equal to 0.)
+*> Not modified.
+*>
+*> A COMPLEX*16 array, dimension (LDA , max(NN))
+*> Used to hold the matrix whose eigenvalues are to be
+*> computed. On exit, A contains the last matrix actually
+*> used.
+*> Modified.
+*>
+*> LDA INTEGER
+*> The leading dimension of A. It must be at
+*> least 1 and at least max( NN ).
+*> Not modified.
+*>
+*> D1 DOUBLE PRECISION array, dimension (max(NN))
+*> The eigenvalues of A, as computed by ZSTEQR simlutaneously
+*> with Z. On exit, the eigenvalues in D1 correspond with the
+*> matrix in A.
+*> Modified.
+*>
+*> D2 DOUBLE PRECISION array, dimension (max(NN))
+*> The eigenvalues of A, as computed by ZSTEQR if Z is not
+*> computed. On exit, the eigenvalues in D2 correspond with
+*> the matrix in A.
+*> Modified.
+*>
+*> D3 DOUBLE PRECISION array, dimension (max(NN))
+*> The eigenvalues of A, as computed by DSTERF. On exit, the
+*> eigenvalues in D3 correspond with the matrix in A.
+*> Modified.
+*>
+*> WA1 DOUBLE PRECISION array, dimension
+*>
+*> WA2 DOUBLE PRECISION array, dimension
+*>
+*> WA3 DOUBLE PRECISION array, dimension
+*>
+*> U COMPLEX*16 array, dimension (LDU, max(NN))
+*> The unitary matrix computed by ZHETRD + ZUNGC3.
+*> Modified.
+*>
+*> LDU INTEGER
+*> The leading dimension of U, Z, and V. It must be at
+*> least 1 and at least max( NN ).
+*> Not modified.
+*>
+*> V COMPLEX*16 array, dimension (LDU, max(NN))
+*> The Housholder vectors computed by ZHETRD in reducing A to
+*> tridiagonal form.
+*> Modified.
+*>
+*> TAU COMPLEX*16 array, dimension (max(NN))
+*> The Householder factors computed by ZHETRD in reducing A
+*> to tridiagonal form.
+*> Modified.
+*>
+*> Z COMPLEX*16 array, dimension (LDU, max(NN))
+*> The unitary matrix of eigenvectors computed by ZHEEVD,
+*> ZHEEVX, ZHPEVD, CHPEVX, ZHBEVD, and CHBEVX.
+*> Modified.
+*>
+*> WORK - COMPLEX*16 array of dimension ( LWORK )
+*> Workspace.
+*> Modified.
+*>
+*> LWORK - INTEGER
+*> The number of entries in WORK. This must be at least
+*> 2*max( NN(j), 2 )**2.
+*> Not modified.
+*>
+*> RWORK DOUBLE PRECISION array, dimension (3*max(NN))
+*> Workspace.
+*> Modified.
+*>
+*> LRWORK - INTEGER
+*> The number of entries in RWORK.
+*>
+*> IWORK INTEGER array, dimension (6*max(NN))
+*> Workspace.
+*> Modified.
+*>
+*> LIWORK - INTEGER
+*> The number of entries in IWORK.
+*>
+*> RESULT DOUBLE PRECISION array, dimension (??)
+*> The values computed by the tests described above.
+*> The values are currently limited to 1/ulp, to avoid
+*> overflow.
+*> Modified.
+*>
+*> INFO INTEGER
+*> If 0, then everything ran OK.
+*> -1: NSIZES < 0
+*> -2: Some NN(j) < 0
+*> -3: NTYPES < 0
+*> -5: THRESH < 0
+*> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
+*> -16: LDU < 1 or LDU < NMAX.
+*> -21: LWORK too small.
+*> If DLATMR, SLATMS, ZHETRD, DORGC3, ZSTEQR, DSTERF,
+*> or DORMC2 returns an error code, the
+*> absolute value of it is returned.
+*> Modified.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> Some Local Variables and Parameters:
+*> ---- ----- --------- --- ----------
+*> ZERO, ONE Real 0 and 1.
+*> MAXTYP The number of types defined.
+*> NTEST The number of tests performed, or which can
+*> be performed so far, for the current matrix.
+*> NTESTT The total number of tests performed so far.
+*> NMAX Largest value in NN.
+*> NMATS The number of matrices generated so far.
+*> NERRS The number of tests which have exceeded THRESH
+*> so far (computed by DLAFTS).
+*> COND, IMODE Values to be passed to the matrix generators.
+*> ANORM Norm of A; passed to matrix generators.
+*>
+*> OVFL, UNFL Overflow and underflow thresholds.
+*> ULP, ULPINV Finest relative precision and its inverse.
+*> RTOVFL, RTUNFL Square roots of the previous 2 values.
+*> The following four arrays decode JTYPE:
+*> KTYPE(j) The general type (1-10) for type "j".
+*> KMODE(j) The MODE value to be passed to the matrix
+*> generator for type "j".
+*> KMAGN(j) The order of magnitude ( O(1),
+*> O(overflow^(1/2) ), O(underflow^(1/2) )
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complex16_eig
+*
+* =====================================================================
+ SUBROUTINE ZDRVST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
+ $ NOUNIT, A, LDA, D1, D2, D3, WA1, WA2, WA3, U,
+ $ LDU, V, TAU, Z, WORK, LWORK, RWORK, LRWORK,
+ $ IWORK, LIWORK, RESULT, INFO )
+*
+* -- LAPACK test routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
+ $ NSIZES, NTYPES
+ DOUBLE PRECISION THRESH
+* ..
+* .. Array Arguments ..
+ LOGICAL DOTYPE( * )
+ INTEGER ISEED( 4 ), IWORK( * ), NN( * )
+ DOUBLE PRECISION D1( * ), D2( * ), D3( * ), RESULT( * ),
+ $ RWORK( * ), WA1( * ), WA2( * ), WA3( * )
+ COMPLEX*16 A( LDA, * ), TAU( * ), U( LDU, * ),
+ $ V( LDU, * ), WORK( * ), Z( LDU, * )
+* ..
+*
+* =====================================================================
+*
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE, TWO, TEN
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
+ $ TEN = 10.0D+0 )
+ DOUBLE PRECISION HALF
+ PARAMETER ( HALF = ONE / TWO )
+ COMPLEX*16 CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
+ $ CONE = ( 1.0D+0, 0.0D+0 ) )
+ INTEGER MAXTYP
+ PARAMETER ( MAXTYP = 18 )
+* ..
+* .. Local Scalars ..
+ LOGICAL BADNN
+ CHARACTER UPLO
+ INTEGER I, IDIAG, IHBW, IINFO, IL, IMODE, INDWRK, INDX,
+ $ IROW, ITEMP, ITYPE, IU, IUPLO, J, J1, J2, JCOL,
+ $ JSIZE, JTYPE, KD, LGN, LIWEDC, LRWEDC, LWEDC,
+ $ M, M2, M3, MTYPES, N, NERRS, NMATS, NMAX,
+ $ NTEST, NTESTT
+ DOUBLE PRECISION ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
+ $ RTUNFL, TEMP1, TEMP2, TEMP3, ULP, ULPINV, UNFL,
+ $ VL, VU
+* ..
+* .. Local Arrays ..
+ INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
+ $ ISEED3( 4 ), KMAGN( MAXTYP ), KMODE( MAXTYP ),
+ $ KTYPE( MAXTYP )
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMCH, DLARND, DSXT1
+ EXTERNAL DLAMCH, DLARND, DSXT1
+* ..
+* .. External Subroutines ..
+ EXTERNAL ALASVM, DLABAD, DLAFTS, XERBLA, ZHBEV, ZHBEVD,
+ $ ZHBEVX, ZHEEV, ZHEEVD, ZHEEVR, ZHEEVX, ZHET21,
+ $ ZHET22, ZHPEV, ZHPEVD, ZHPEVX, ZLACPY, ZLASET,
+ $ ZHEEVD_2STAGE, ZHEEVR_2STAGE, ZHEEVX_2STAGE,
+ $ ZHEEV_2STAGE, ZHBEV_2STAGE, ZHBEVD_2STAGE,
+ $ ZHBEVX_2STAGE, ZHETRD_2STAGE, ZHETRD_SY2SB,
+ $ ZHETRD_SB2ST, ZLATMR, ZLATMS
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, INT, LOG, MAX, MIN, SQRT
+* ..
+* .. Data statements ..
+ DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 3*9 /
+ DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
+ $ 2, 3, 1, 2, 3 /
+ DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
+ $ 0, 0, 4, 4, 4 /
+* ..
+* .. Executable Statements ..
+*
+* 1) Check for errors
+*
+ NTESTT = 0
+ INFO = 0
+*
+ BADNN = .FALSE.
+ NMAX = 1
+ DO 10 J = 1, NSIZES
+ NMAX = MAX( NMAX, NN( J ) )
+ IF( NN( J ).LT.0 )
+ $ BADNN = .TRUE.
+ 10 CONTINUE
+*
+* Check for errors
+*
+ IF( NSIZES.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( BADNN ) THEN
+ INFO = -2
+ ELSE IF( NTYPES.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.NMAX ) THEN
+ INFO = -9
+ ELSE IF( LDU.LT.NMAX ) THEN
+ INFO = -16
+ ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
+ INFO = -22
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZDRVST2STG', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if nothing to do
+*
+ IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
+ $ RETURN
+*
+* More Important constants
+*
+ UNFL = DLAMCH( 'Safe minimum' )
+ OVFL = DLAMCH( 'Overflow' )
+ CALL DLABAD( UNFL, OVFL )
+ ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
+ ULPINV = ONE / ULP
+ RTUNFL = SQRT( UNFL )
+ RTOVFL = SQRT( OVFL )
+*
+* Loop over sizes, types
+*
+ DO 20 I = 1, 4
+ ISEED2( I ) = ISEED( I )
+ ISEED3( I ) = ISEED( I )
+ 20 CONTINUE
+*
+ NERRS = 0
+ NMATS = 0
+*
+ DO 1220 JSIZE = 1, NSIZES
+ N = NN( JSIZE )
+ IF( N.GT.0 ) THEN
+ LGN = INT( LOG( DBLE( N ) ) / LOG( TWO ) )
+ IF( 2**LGN.LT.N )
+ $ LGN = LGN + 1
+ IF( 2**LGN.LT.N )
+ $ LGN = LGN + 1
+ LWEDC = MAX( 2*N+N*N, 2*N*N )
+ LRWEDC = 1 + 4*N + 2*N*LGN + 3*N**2
+ LIWEDC = 3 + 5*N
+ ELSE
+ LWEDC = 2
+ LRWEDC = 8
+ LIWEDC = 8
+ END IF
+ ANINV = ONE / DBLE( MAX( 1, N ) )
+*
+ IF( NSIZES.NE.1 ) THEN
+ MTYPES = MIN( MAXTYP, NTYPES )
+ ELSE
+ MTYPES = MIN( MAXTYP+1, NTYPES )
+ END IF
+*
+ DO 1210 JTYPE = 1, MTYPES
+ IF( .NOT.DOTYPE( JTYPE ) )
+ $ GO TO 1210
+ NMATS = NMATS + 1
+ NTEST = 0
+*
+ DO 30 J = 1, 4
+ IOLDSD( J ) = ISEED( J )
+ 30 CONTINUE
+*
+* 2) Compute "A"
+*
+* Control parameters:
+*
+* KMAGN KMODE KTYPE
+* =1 O(1) clustered 1 zero
+* =2 large clustered 2 identity
+* =3 small exponential (none)
+* =4 arithmetic diagonal, (w/ eigenvalues)
+* =5 random log Hermitian, w/ eigenvalues
+* =6 random (none)
+* =7 random diagonal
+* =8 random Hermitian
+* =9 band Hermitian, w/ eigenvalues
+*
+ IF( MTYPES.GT.MAXTYP )
+ $ GO TO 110
+*
+ ITYPE = KTYPE( JTYPE )
+ IMODE = KMODE( JTYPE )
+*
+* Compute norm
+*
+ GO TO ( 40, 50, 60 )KMAGN( JTYPE )
+*
+ 40 CONTINUE
+ ANORM = ONE
+ GO TO 70
+*
+ 50 CONTINUE
+ ANORM = ( RTOVFL*ULP )*ANINV
+ GO TO 70
+*
+ 60 CONTINUE
+ ANORM = RTUNFL*N*ULPINV
+ GO TO 70
+*
+ 70 CONTINUE
+*
+ CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
+ IINFO = 0
+ COND = ULPINV
+*
+* Special Matrices -- Identity & Jordan block
+*
+* Zero
+*
+ IF( ITYPE.EQ.1 ) THEN
+ IINFO = 0
+*
+ ELSE IF( ITYPE.EQ.2 ) THEN
+*
+* Identity
+*
+ DO 80 JCOL = 1, N
+ A( JCOL, JCOL ) = ANORM
+ 80 CONTINUE
+*
+ ELSE IF( ITYPE.EQ.4 ) THEN
+*
+* Diagonal Matrix, [Eigen]values Specified
+*
+ CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
+ $ ANORM, 0, 0, 'N', A, LDA, WORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.5 ) THEN
+*
+* Hermitian, eigenvalues specified
+*
+ CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
+ $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.7 ) THEN
+*
+* Diagonal, random eigenvalues
+*
+ CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.8 ) THEN
+*
+* Hermitian, random eigenvalues
+*
+ CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
+ $ 'T', 'N', WORK( N+1 ), 1, ONE,
+ $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
+ $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
+*
+ ELSE IF( ITYPE.EQ.9 ) THEN
+*
+* Hermitian banded, eigenvalues specified
+*
+ IHBW = INT( ( N-1 )*DLARND( 1, ISEED3 ) )
+ CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
+ $ ANORM, IHBW, IHBW, 'Z', U, LDU, WORK,
+ $ IINFO )
+*
+* Store as dense matrix for most routines.
+*
+ CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
+ DO 100 IDIAG = -IHBW, IHBW
+ IROW = IHBW - IDIAG + 1
+ J1 = MAX( 1, IDIAG+1 )
+ J2 = MIN( N, N+IDIAG )
+ DO 90 J = J1, J2
+ I = J - IDIAG
+ A( I, J ) = U( IROW, J )
+ 90 CONTINUE
+ 100 CONTINUE
+ ELSE
+ IINFO = 1
+ END IF
+*
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
+ $ IOLDSD
+ INFO = ABS( IINFO )
+ RETURN
+ END IF
+*
+ 110 CONTINUE
+*
+ ABSTOL = UNFL + UNFL
+ IF( N.LE.1 ) THEN
+ IL = 1
+ IU = N
+ ELSE
+ IL = 1 + INT( ( N-1 )*DLARND( 1, ISEED2 ) )
+ IU = 1 + INT( ( N-1 )*DLARND( 1, ISEED2 ) )
+ IF( IL.GT.IU ) THEN
+ ITEMP = IL
+ IL = IU
+ IU = ITEMP
+ END IF
+ END IF
+*
+* Perform tests storing upper or lower triangular
+* part of matrix.
+*
+ DO 1200 IUPLO = 0, 1
+ IF( IUPLO.EQ.0 ) THEN
+ UPLO = 'L'
+ ELSE
+ UPLO = 'U'
+ END IF
+*
+* Call ZHEEVD and CHEEVX.
+*
+ CALL ZLACPY( ' ', N, N, A, LDA, V, LDU )
+*
+ NTEST = NTEST + 1
+ CALL ZHEEVD( 'V', UPLO, N, A, LDU, D1, WORK, LWEDC,
+ $ RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHEEVD(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 130
+ END IF
+ END IF
+*
+* Do tests 1 and 2.
+*
+ CALL ZHET21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ NTEST = NTEST + 2
+ CALL ZHEEVD_2STAGE( 'N', UPLO, N, A, LDU, D3, WORK,
+ $ LWORK, RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'ZHEEVD_2STAGE(N,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 130
+ END IF
+ END IF
+*
+* Do test 3.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 120 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 120 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 130 CONTINUE
+ CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ NTEST = NTEST + 1
+*
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
+ IF( IL.NE.1 ) THEN
+ VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ ELSE IF( N.GT.0 ) THEN
+ VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ ELSE IF( N.GT.0 ) THEN
+ VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ ELSE
+ TEMP3 = ZERO
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ CALL ZHEEVX( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M, WA1, Z, LDU, WORK, LWORK, RWORK,
+ $ IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHEEVX(V,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+* Do tests 4 and 5.
+*
+ CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL ZHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ CALL ZHEEVX_2STAGE( 'N', 'A', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M2, WA2, Z, LDU,
+ $ WORK, LWORK, RWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'ZHEEVX_2STAGE(N,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 150
+ END IF
+ END IF
+*
+* Do test 6.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 140 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
+ 140 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 150 CONTINUE
+ CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ NTEST = NTEST + 1
+*
+ CALL ZHEEVX( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK,
+ $ IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHEEVX(V,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 160
+ END IF
+ END IF
+*
+* Do tests 7 and 8.
+*
+ CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL ZHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ CALL ZHEEVX_2STAGE( 'N', 'I', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M3, WA3, Z, LDU,
+ $ WORK, LWORK, RWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'ZHEEVX_2STAGE(N,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 160
+ END IF
+ END IF
+*
+* Do test 9.
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 160 CONTINUE
+ CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ NTEST = NTEST + 1
+*
+ CALL ZHEEVX( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK,
+ $ IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHEEVX(V,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 170
+ END IF
+ END IF
+*
+* Do tests 10 and 11.
+*
+ CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL ZHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ CALL ZHEEVX_2STAGE( 'N', 'V', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M3, WA3, Z, LDU,
+ $ WORK, LWORK, RWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'ZHEEVX_2STAGE(N,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 170
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( NTEST ) = ULPINV
+ GO TO 170
+ END IF
+*
+* Do test 12.
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 170 CONTINUE
+*
+* Call ZHPEVD and CHPEVX.
+*
+ CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+* Load array WORK with the upper or lower triangular
+* part of the matrix in packed form.
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 190 J = 1, N
+ DO 180 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 180 CONTINUE
+ 190 CONTINUE
+ ELSE
+ INDX = 1
+ DO 210 J = 1, N
+ DO 200 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 200 CONTINUE
+ 210 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ INDWRK = N*( N+1 ) / 2 + 1
+ CALL ZHPEVD( 'V', UPLO, N, WORK, D1, Z, LDU,
+ $ WORK( INDWRK ), LWEDC, RWORK, LRWEDC, IWORK,
+ $ LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHPEVD(V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 270
+ END IF
+ END IF
+*
+* Do tests 13 and 14.
+*
+ CALL ZHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 230 J = 1, N
+ DO 220 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 220 CONTINUE
+ 230 CONTINUE
+ ELSE
+ INDX = 1
+ DO 250 J = 1, N
+ DO 240 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 240 CONTINUE
+ 250 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 2
+ INDWRK = N*( N+1 ) / 2 + 1
+ CALL ZHPEVD( 'N', UPLO, N, WORK, D3, Z, LDU,
+ $ WORK( INDWRK ), LWEDC, RWORK, LRWEDC, IWORK,
+ $ LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHPEVD(N,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 270
+ END IF
+ END IF
+*
+* Do test 15.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 260 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 260 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Load array WORK with the upper or lower triangular part
+* of the matrix in packed form.
+*
+ 270 CONTINUE
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 290 J = 1, N
+ DO 280 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 280 CONTINUE
+ 290 CONTINUE
+ ELSE
+ INDX = 1
+ DO 310 J = 1, N
+ DO 300 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 300 CONTINUE
+ 310 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+*
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
+ IF( IL.NE.1 ) THEN
+ VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ ELSE IF( N.GT.0 ) THEN
+ VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ IF( IU.NE.N ) THEN
+ VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ ELSE IF( N.GT.0 ) THEN
+ VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
+ $ TEN*ULP*TEMP3, TEN*RTUNFL )
+ END IF
+ ELSE
+ TEMP3 = ZERO
+ VL = ZERO
+ VU = ONE
+ END IF
+*
+ CALL ZHPEVX( 'V', 'A', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M, WA1, Z, LDU, V, RWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHPEVX(V,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 370
+ END IF
+ END IF
+*
+* Do tests 16 and 17.
+*
+ CALL ZHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 330 J = 1, N
+ DO 320 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 320 CONTINUE
+ 330 CONTINUE
+ ELSE
+ INDX = 1
+ DO 350 J = 1, N
+ DO 340 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 340 CONTINUE
+ 350 CONTINUE
+ END IF
+*
+ CALL ZHPEVX( 'N', 'A', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHPEVX(N,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 370
+ END IF
+ END IF
+*
+* Do test 18.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 360 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
+ 360 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 370 CONTINUE
+ NTEST = NTEST + 1
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 390 J = 1, N
+ DO 380 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 380 CONTINUE
+ 390 CONTINUE
+ ELSE
+ INDX = 1
+ DO 410 J = 1, N
+ DO 400 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 400 CONTINUE
+ 410 CONTINUE
+ END IF
+*
+ CALL ZHPEVX( 'V', 'I', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHPEVX(V,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 460
+ END IF
+ END IF
+*
+* Do tests 19 and 20.
+*
+ CALL ZHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 430 J = 1, N
+ DO 420 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 420 CONTINUE
+ 430 CONTINUE
+ ELSE
+ INDX = 1
+ DO 450 J = 1, N
+ DO 440 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 440 CONTINUE
+ 450 CONTINUE
+ END IF
+*
+ CALL ZHPEVX( 'N', 'I', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M3, WA3, Z, LDU, V, RWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHPEVX(N,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 460
+ END IF
+ END IF
+*
+* Do test 21.
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 460 CONTINUE
+ NTEST = NTEST + 1
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 480 J = 1, N
+ DO 470 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 470 CONTINUE
+ 480 CONTINUE
+ ELSE
+ INDX = 1
+ DO 500 J = 1, N
+ DO 490 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 490 CONTINUE
+ 500 CONTINUE
+ END IF
+*
+ CALL ZHPEVX( 'V', 'V', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHPEVX(V,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 550
+ END IF
+ END IF
+*
+* Do tests 22 and 23.
+*
+ CALL ZHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 520 J = 1, N
+ DO 510 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 510 CONTINUE
+ 520 CONTINUE
+ ELSE
+ INDX = 1
+ DO 540 J = 1, N
+ DO 530 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 530 CONTINUE
+ 540 CONTINUE
+ END IF
+*
+ CALL ZHPEVX( 'N', 'V', UPLO, N, WORK, VL, VU, IL, IU,
+ $ ABSTOL, M3, WA3, Z, LDU, V, RWORK, IWORK,
+ $ IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHPEVX(N,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 550
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( NTEST ) = ULPINV
+ GO TO 550
+ END IF
+*
+* Do test 24.
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 550 CONTINUE
+*
+* Call ZHBEVD and CHBEVX.
+*
+ IF( JTYPE.LE.7 ) THEN
+ KD = 0
+ ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
+ KD = MAX( N-1, 0 )
+ ELSE
+ KD = IHBW
+ END IF
+*
+* Load array V with the upper or lower triangular part
+* of the matrix in band form.
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 570 J = 1, N
+ DO 560 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 560 CONTINUE
+ 570 CONTINUE
+ ELSE
+ DO 590 J = 1, N
+ DO 580 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 580 CONTINUE
+ 590 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ CALL ZHBEVD( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
+ $ LWEDC, RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'ZHBEVD(V,' // UPLO //
+ $ ')', IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 650
+ END IF
+ END IF
+*
+* Do tests 25 and 26.
+*
+ CALL ZHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 610 J = 1, N
+ DO 600 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 600 CONTINUE
+ 610 CONTINUE
+ ELSE
+ DO 630 J = 1, N
+ DO 620 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 620 CONTINUE
+ 630 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 2
+ CALL ZHBEVD_2STAGE( 'N', UPLO, N, KD, V, LDU, D3,
+ $ Z, LDU, WORK, LWORK, RWORK,
+ $ LRWEDC, IWORK, LIWEDC, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )
+ $ 'ZHBEVD_2STAGE(N,' // UPLO //
+ $ ')', IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 650
+ END IF
+ END IF
+*
+* Do test 27.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 640 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 640 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Load array V with the upper or lower triangular part
+* of the matrix in band form.
+*
+ 650 CONTINUE
+ IF( IUPLO.EQ.1 ) THEN
+ DO 670 J = 1, N
+ DO 660 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 660 CONTINUE
+ 670 CONTINUE
+ ELSE
+ DO 690 J = 1, N
+ DO 680 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 680 CONTINUE
+ 690 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ CALL ZHBEVX( 'V', 'A', UPLO, N, KD, V, LDU, U, LDU, VL,
+ $ VU, IL, IU, ABSTOL, M, WA1, Z, LDU, WORK,
+ $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHBEVX(V,A,' // UPLO //
+ $ ')', IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 750
+ END IF
+ END IF
+*
+* Do tests 28 and 29.
+*
+ CALL ZHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 710 J = 1, N
+ DO 700 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 700 CONTINUE
+ 710 CONTINUE
+ ELSE
+ DO 730 J = 1, N
+ DO 720 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 720 CONTINUE
+ 730 CONTINUE
+ END IF
+*
+ CALL ZHBEVX_2STAGE( 'N', 'A', UPLO, N, KD, V, LDU,
+ $ U, LDU, VL, VU, IL, IU, ABSTOL,
+ $ M2, WA2, Z, LDU, WORK, LWORK,
+ $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )
+ $ 'ZHBEVX_2STAGE(N,A,' // UPLO //
+ $ ')', IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 750
+ END IF
+ END IF
+*
+* Do test 30.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 740 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
+ 740 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+* Load array V with the upper or lower triangular part
+* of the matrix in band form.
+*
+ 750 CONTINUE
+ NTEST = NTEST + 1
+ IF( IUPLO.EQ.1 ) THEN
+ DO 770 J = 1, N
+ DO 760 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 760 CONTINUE
+ 770 CONTINUE
+ ELSE
+ DO 790 J = 1, N
+ DO 780 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 780 CONTINUE
+ 790 CONTINUE
+ END IF
+*
+ CALL ZHBEVX( 'V', 'I', UPLO, N, KD, V, LDU, U, LDU, VL,
+ $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
+ $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'ZHBEVX(V,I,' // UPLO //
+ $ ')', IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 840
+ END IF
+ END IF
+*
+* Do tests 31 and 32.
+*
+ CALL ZHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 810 J = 1, N
+ DO 800 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 800 CONTINUE
+ 810 CONTINUE
+ ELSE
+ DO 830 J = 1, N
+ DO 820 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 820 CONTINUE
+ 830 CONTINUE
+ END IF
+ CALL ZHBEVX_2STAGE( 'N', 'I', UPLO, N, KD, V, LDU,
+ $ U, LDU, VL, VU, IL, IU, ABSTOL,
+ $ M3, WA3, Z, LDU, WORK, LWORK,
+ $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )
+ $ 'ZHBEVX_2STAGE(N,I,' // UPLO //
+ $ ')', IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 840
+ END IF
+ END IF
+*
+* Do test 33.
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+* Load array V with the upper or lower triangular part
+* of the matrix in band form.
+*
+ 840 CONTINUE
+ NTEST = NTEST + 1
+ IF( IUPLO.EQ.1 ) THEN
+ DO 860 J = 1, N
+ DO 850 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 850 CONTINUE
+ 860 CONTINUE
+ ELSE
+ DO 880 J = 1, N
+ DO 870 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 870 CONTINUE
+ 880 CONTINUE
+ END IF
+ CALL ZHBEVX( 'V', 'V', UPLO, N, KD, V, LDU, U, LDU, VL,
+ $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
+ $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'ZHBEVX(V,V,' // UPLO //
+ $ ')', IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 930
+ END IF
+ END IF
+*
+* Do tests 34 and 35.
+*
+ CALL ZHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 900 J = 1, N
+ DO 890 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 890 CONTINUE
+ 900 CONTINUE
+ ELSE
+ DO 920 J = 1, N
+ DO 910 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 910 CONTINUE
+ 920 CONTINUE
+ END IF
+ CALL ZHBEVX_2STAGE( 'N', 'V', UPLO, N, KD, V, LDU,
+ $ U, LDU, VL, VU, IL, IU, ABSTOL,
+ $ M3, WA3, Z, LDU, WORK, LWORK,
+ $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )
+ $ 'ZHBEVX_2STAGE(N,V,' // UPLO //
+ $ ')', IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 930
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( NTEST ) = ULPINV
+ GO TO 930
+ END IF
+*
+* Do test 36.
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ 930 CONTINUE
+*
+* Call ZHEEV
+*
+ CALL ZLACPY( ' ', N, N, A, LDA, V, LDU )
+*
+ NTEST = NTEST + 1
+ CALL ZHEEV( 'V', UPLO, N, A, LDU, D1, WORK, LWORK, RWORK,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHEEV(V,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 950
+ END IF
+ END IF
+*
+* Do tests 37 and 38
+*
+ CALL ZHET21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ NTEST = NTEST + 2
+ CALL ZHEEV_2STAGE( 'N', UPLO, N, A, LDU, D3,
+ $ WORK, LWORK, RWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'ZHEEV_2STAGE(N,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 950
+ END IF
+ END IF
+*
+* Do test 39
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 940 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 940 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 950 CONTINUE
+*
+ CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+* Call ZHPEV
+*
+* Load array WORK with the upper or lower triangular
+* part of the matrix in packed form.
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 970 J = 1, N
+ DO 960 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 960 CONTINUE
+ 970 CONTINUE
+ ELSE
+ INDX = 1
+ DO 990 J = 1, N
+ DO 980 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 980 CONTINUE
+ 990 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ INDWRK = N*( N+1 ) / 2 + 1
+ CALL ZHPEV( 'V', UPLO, N, WORK, D1, Z, LDU,
+ $ WORK( INDWRK ), RWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHPEV(V,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1050
+ END IF
+ END IF
+*
+* Do tests 40 and 41.
+*
+ CALL ZHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ IF( IUPLO.EQ.1 ) THEN
+ INDX = 1
+ DO 1010 J = 1, N
+ DO 1000 I = 1, J
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1000 CONTINUE
+ 1010 CONTINUE
+ ELSE
+ INDX = 1
+ DO 1030 J = 1, N
+ DO 1020 I = J, N
+ WORK( INDX ) = A( I, J )
+ INDX = INDX + 1
+ 1020 CONTINUE
+ 1030 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 2
+ INDWRK = N*( N+1 ) / 2 + 1
+ CALL ZHPEV( 'N', UPLO, N, WORK, D3, Z, LDU,
+ $ WORK( INDWRK ), RWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHPEV(N,' // UPLO // ')',
+ $ IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1050
+ END IF
+ END IF
+*
+* Do test 42
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 1040 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 1040 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 1050 CONTINUE
+*
+* Call ZHBEV
+*
+ IF( JTYPE.LE.7 ) THEN
+ KD = 0
+ ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
+ KD = MAX( N-1, 0 )
+ ELSE
+ KD = IHBW
+ END IF
+*
+* Load array V with the upper or lower triangular part
+* of the matrix in band form.
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1070 J = 1, N
+ DO 1060 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1060 CONTINUE
+ 1070 CONTINUE
+ ELSE
+ DO 1090 J = 1, N
+ DO 1080 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1080 CONTINUE
+ 1090 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 1
+ CALL ZHBEV( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
+ $ RWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'ZHBEV(V,' // UPLO // ')',
+ $ IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1140
+ END IF
+ END IF
+*
+* Do tests 43 and 44.
+*
+ CALL ZHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ IF( IUPLO.EQ.1 ) THEN
+ DO 1110 J = 1, N
+ DO 1100 I = MAX( 1, J-KD ), J
+ V( KD+1+I-J, J ) = A( I, J )
+ 1100 CONTINUE
+ 1110 CONTINUE
+ ELSE
+ DO 1130 J = 1, N
+ DO 1120 I = J, MIN( N, J+KD )
+ V( 1+I-J, J ) = A( I, J )
+ 1120 CONTINUE
+ 1130 CONTINUE
+ END IF
+*
+ NTEST = NTEST + 2
+ CALL ZHBEV_2STAGE( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU,
+ $ WORK, LWORK, RWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )
+ $ 'ZHBEV_2STAGE(N,' // UPLO // ')',
+ $ IINFO, N, KD, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1140
+ END IF
+ END IF
+*
+ 1140 CONTINUE
+*
+* Do test 45.
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 1150 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
+ 1150 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ CALL ZLACPY( ' ', N, N, A, LDA, V, LDU )
+ NTEST = NTEST + 1
+ CALL ZHEEVR( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M, WA1, Z, LDU, IWORK, WORK, LWORK,
+ $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHEEVR(V,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1170
+ END IF
+ END IF
+*
+* Do tests 45 and 46 (or ... )
+*
+ CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL ZHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
+ $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ CALL ZHEEVR_2STAGE( 'N', 'A', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M2, WA2, Z, LDU,
+ $ IWORK, WORK, LWORK, RWORK, LRWORK,
+ $ IWORK( 2*N+1 ), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'ZHEEVR_2STAGE(N,A,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1170
+ END IF
+ END IF
+*
+* Do test 47 (or ... )
+*
+ TEMP1 = ZERO
+ TEMP2 = ZERO
+ DO 1160 J = 1, N
+ TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
+ TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
+ 1160 CONTINUE
+ RESULT( NTEST ) = TEMP2 / MAX( UNFL,
+ $ ULP*MAX( TEMP1, TEMP2 ) )
+*
+ 1170 CONTINUE
+*
+ NTEST = NTEST + 1
+ CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
+ CALL ZHEEVR( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
+ $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHEEVR(V,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1180
+ END IF
+ END IF
+*
+* Do tests 48 and 49 (or +??)
+*
+ CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL ZHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
+ CALL ZHEEVR_2STAGE( 'N', 'I', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M3, WA3, Z, LDU,
+ $ IWORK, WORK, LWORK, RWORK, LRWORK,
+ $ IWORK( 2*N+1 ), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'ZHEEVR_2STAGE(N,I,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1180
+ END IF
+ END IF
+*
+* Do test 50 (or +??)
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, ULP*TEMP3 )
+ 1180 CONTINUE
+*
+ NTEST = NTEST + 1
+ CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
+ CALL ZHEEVR( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
+ $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
+ $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
+ $ IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )'ZHEEVR(V,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ RESULT( NTEST+1 ) = ULPINV
+ RESULT( NTEST+2 ) = ULPINV
+ GO TO 1190
+ END IF
+ END IF
+*
+* Do tests 51 and 52 (or +??)
+*
+ CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+ CALL ZHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
+ $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
+*
+ NTEST = NTEST + 2
+ CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
+ CALL ZHEEVR_2STAGE( 'N', 'V', UPLO, N, A, LDU, VL, VU,
+ $ IL, IU, ABSTOL, M3, WA3, Z, LDU,
+ $ IWORK, WORK, LWORK, RWORK, LRWORK,
+ $ IWORK( 2*N+1 ), LIWORK-2*N, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ WRITE( NOUNIT, FMT = 9999 )
+ $ 'ZHEEVR_2STAGE(N,V,' // UPLO //
+ $ ')', IINFO, N, JTYPE, IOLDSD
+ INFO = ABS( IINFO )
+ IF( IINFO.LT.0 ) THEN
+ RETURN
+ ELSE
+ RESULT( NTEST ) = ULPINV
+ GO TO 1190
+ END IF
+ END IF
+*
+ IF( M3.EQ.0 .AND. N.GT.0 ) THEN
+ RESULT( NTEST ) = ULPINV
+ GO TO 1190
+ END IF
+*
+* Do test 52 (or +??)
+*
+ TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
+ TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
+ IF( N.GT.0 ) THEN
+ TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
+ ELSE
+ TEMP3 = ZERO
+ END IF
+ RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
+ $ MAX( UNFL, TEMP3*ULP )
+*
+ CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
+*
+*
+*
+*
+* Load array V with the upper or lower triangular part
+* of the matrix in band form.
+*
+ 1190 CONTINUE
+*
+ 1200 CONTINUE
+*
+* End of Loop -- Check for RESULT(j) > THRESH
+*
+ NTESTT = NTESTT + NTEST
+ CALL DLAFTS( 'ZST', N, N, JTYPE, NTEST, RESULT, IOLDSD,
+ $ THRESH, NOUNIT, NERRS )
+*
+ 1210 CONTINUE
+ 1220 CONTINUE
+*
+* Summary
+*
+ CALL ALASVM( 'ZST', NOUNIT, NERRS, NTESTT, 0 )
+*
+ 9999 FORMAT( ' ZDRVST2STG: ', A, ' returned INFO=', I6, / 9X, 'N=', I6,
+ $ ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
+ 9998 FORMAT( ' ZDRVST2STG: ', A, ' returned INFO=', I6, / 9X, 'N=', I6,
+ $ ', KD=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
+ $ ')' )
+*
+ RETURN
+*
+* End of ZDRVST2STG
+*
+ END
diff --git a/TESTING/EIG/zerrst.f b/TESTING/EIG/zerrst.f
index 92c9e52c..8afa1dce 100644
--- a/TESTING/EIG/zerrst.f
+++ b/TESTING/EIG/zerrst.f
@@ -1,5 +1,7 @@
*> \brief \b ZERRST
*
+* @precisions fortran z -> c
+*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
@@ -25,6 +27,10 @@
*> ZUNGTR, ZUPMTR, ZSTEQR, CSTEIN, ZPTEQR, ZHBTRD,
*> ZHEEV, CHEEVX, CHEEVD, ZHBEV, CHBEVX, CHBEVD,
*> ZHPEV, CHPEVX, CHPEVD, and ZSTEDC.
+*> ZHEEVD_2STAGE, ZHEEVR_2STAGE, ZHEEVX_2STAGE,
+*> ZHEEV_2STAGE, ZHBEV_2STAGE, ZHBEVD_2STAGE,
+*> ZHBEVX_2STAGE, ZHETRD_2STAGE, ZHETRD_SY2SB,
+*> ZHETRD_SB2ST
*> \endverbatim
*
* Arguments:
@@ -93,7 +99,11 @@
EXTERNAL CHKXER, ZHBEV, ZHBEVD, ZHBEVX, ZHBTRD, ZHEEV,
$ ZHEEVD, ZHEEVR, ZHEEVX, ZHETRD, ZHPEV, ZHPEVD,
$ ZHPEVX, ZHPTRD, ZPTEQR, ZSTEDC, ZSTEIN, ZSTEQR,
- $ ZUNGTR, ZUNMTR, ZUPGTR, ZUPMTR
+ $ ZUNGTR, ZUNMTR, ZUPGTR, ZUPMTR,
+ $ ZHEEVD_2STAGE, ZHEEVR_2STAGE, ZHEEVX_2STAGE,
+ $ ZHEEV_2STAGE, ZHBEV_2STAGE, ZHBEVD_2STAGE,
+ $ ZHBEVX_2STAGE, ZHETRD_2STAGE, ZHETRD_SY2SB,
+ $ ZHETRD_SB2ST
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@@ -151,6 +161,103 @@
CALL CHKXER( 'ZHETRD', INFOT, NOUT, LERR, OK )
NT = NT + 4
*
+* ZHETRD_2STAGE
+*
+ SRNAMT = 'ZHETRD_2STAGE'
+ INFOT = 1
+ CALL ZHETRD_2STAGE( '/', 'U', 0, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL ZHETRD_2STAGE( 'H', 'U', 0, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL ZHETRD_2STAGE( 'N', '/', 0, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL ZHETRD_2STAGE( 'N', 'U', -1, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL ZHETRD_2STAGE( 'N', 'U', 2, A, 1, D, E, TAU,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL ZHETRD_2STAGE( 'N', 'U', 0, A, 1, D, E, TAU,
+ $ C, 0, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 12
+ CALL ZHETRD_2STAGE( 'N', 'U', 0, A, 1, D, E, TAU,
+ $ C, 1, W, 0, INFO )
+ CALL CHKXER( 'ZHETRD_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 7
+*
+* ZHETRD_HE2HB
+*
+ SRNAMT = 'ZHETRD_HE2HB'
+ INFOT = 1
+ CALL ZHETRD_HE2HB( '/', 0, 0, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HE2HB', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL ZHETRD_HE2HB( 'U', -1, 0, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HE2HB', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL ZHETRD_HE2HB( 'U', 0, -1, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HE2HB', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL ZHETRD_HE2HB( 'U', 2, 0, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HE2HB', INFOT, NOUT, LERR, OK )
+ INFOT = 7
+ CALL ZHETRD_HE2HB( 'U', 0, 2, A, 1, C, 1, TAU, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HE2HB', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL ZHETRD_HE2HB( 'U', 0, 0, A, 1, C, 1, TAU, W, 0, INFO )
+ CALL CHKXER( 'ZHETRD_HE2HB', INFOT, NOUT, LERR, OK )
+ NT = NT + 6
+*
+* ZHETRD_HB2ST
+*
+ SRNAMT = 'ZHETRD_HB2ST'
+ INFOT = 1
+ CALL ZHETRD_HB2ST( '/', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL ZHETRD_HB2ST( 'Y', '/', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL ZHETRD_HB2ST( 'Y', 'H', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL ZHETRD_HB2ST( 'Y', 'N', '/', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL ZHETRD_HB2ST( 'Y', 'N', 'U', -1, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL ZHETRD_HB2ST( 'Y', 'N', 'U', 0, -1, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 7
+ CALL ZHETRD_HB2ST( 'Y', 'N', 'U', 0, 1, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL ZHETRD_HB2ST( 'Y', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 0, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL ZHETRD_HB2ST( 'Y', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 0, INFO )
+ CALL CHKXER( 'ZHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ NT = NT + 9
+*
* ZUNGTR
*
SRNAMT = 'ZUNGTR'
@@ -377,6 +484,63 @@
CALL CHKXER( 'ZHEEVD', INFOT, NOUT, LERR, OK )
NT = NT + 12
*
+* ZHEEVD_2STAGE
+*
+ SRNAMT = 'ZHEEVD_2STAGE'
+ INFOT = 1
+ CALL ZHEEVD_2STAGE( '/', 'U', 0, A, 1, X, W, 1,
+ $ RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'ZHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL ZHEEVD_2STAGE( 'V', 'U', 0, A, 1, X, W, 1,
+ $ RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'ZHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL ZHEEVD_2STAGE( 'N', '/', 0, A, 1, X, W, 1,
+ $ RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'ZHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL ZHEEVD_2STAGE( 'N', 'U', -1, A, 1, X, W, 1,
+ $ RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'ZHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL ZHEEVD_2STAGE( 'N', 'U', 2, A, 1, X, W, 3,
+ $ RW, 2, IW, 1, INFO )
+ CALL CHKXER( 'ZHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL ZHEEVD_2STAGE( 'N', 'U', 1, A, 1, X, W, 0,
+ $ RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'ZHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL ZHEEVD_2STAGE( 'N', 'U', 2, A, 2, X, W, 2,
+ $ RW, 2, IW, 1, INFO )
+ CALL CHKXER( 'ZHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 8
+* CALL ZHEEVD_2STAGE( 'V', 'U', 2, A, 2, X, W, 3,
+* $ RW, 25, IW, 12, INFO )
+* CALL CHKXER( 'ZHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL ZHEEVD_2STAGE( 'N', 'U', 1, A, 1, X, W, 1,
+ $ RW, 0, IW, 1, INFO )
+ CALL CHKXER( 'ZHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL ZHEEVD_2STAGE( 'N', 'U', 2, A, 2, X, W, 25,
+ $ RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'ZHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 10
+* CALL ZHEEVD_2STAGE( 'V', 'U', 2, A, 2, X, W, 8,
+* $ RW, 18, IW, 12, INFO )
+* CALL CHKXER( 'ZHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 12
+ CALL ZHEEVD_2STAGE( 'N', 'U', 1, A, 1, X, W, 1,
+ $ RW, 1, IW, 0, INFO )
+ CALL CHKXER( 'ZHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 12
+* CALL ZHEEVD_2STAGE( 'V', 'U', 2, A, 2, X, W, 8,
+* $ RW, 25, IW, 11, INFO )
+* CALL CHKXER( 'ZHEEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 10
+*
* ZHEEV
*
SRNAMT = 'ZHEEV '
@@ -397,6 +561,29 @@
CALL CHKXER( 'ZHEEV ', INFOT, NOUT, LERR, OK )
NT = NT + 5
*
+* ZHEEV_2STAGE
+*
+ SRNAMT = 'ZHEEV_2STAGE '
+ INFOT = 1
+ CALL ZHEEV_2STAGE( '/', 'U', 0, A, 1, X, W, 1, RW, INFO )
+ CALL CHKXER( 'ZHEEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL ZHEEV_2STAGE( 'V', 'U', 0, A, 1, X, W, 1, RW, INFO )
+ CALL CHKXER( 'ZHEEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL ZHEEV_2STAGE( 'N', '/', 0, A, 1, X, W, 1, RW, INFO )
+ CALL CHKXER( 'ZHEEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL ZHEEV_2STAGE( 'N', 'U', -1, A, 1, X, W, 1, RW, INFO )
+ CALL CHKXER( 'ZHEEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL ZHEEV_2STAGE( 'N', 'U', 2, A, 1, X, W, 3, RW, INFO )
+ CALL CHKXER( 'ZHEEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL ZHEEV_2STAGE( 'N', 'U', 2, A, 2, X, W, 2, RW, INFO )
+ CALL CHKXER( 'ZHEEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ NT = NT + 6
+*
* ZHEEVX
*
SRNAMT = 'ZHEEVX'
@@ -441,6 +628,65 @@
CALL CHKXER( 'ZHEEVX', INFOT, NOUT, LERR, OK )
NT = NT + 10
*
+* ZHEEVX_2STAGE
+*
+ SRNAMT = 'ZHEEVX_2STAGE'
+ INFOT = 1
+ CALL ZHEEVX_2STAGE( '/', 'A', 'U', 0, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL ZHEEVX_2STAGE( 'V', 'A', 'U', 0, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL ZHEEVX_2STAGE( 'N', '/', 'U', 0, A, 1,
+ $ 0.0D0, 1.0D0, 1, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL ZHEEVX_2STAGE( 'N', 'A', '/', 0, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, RW, IW, I3, INFO )
+ INFOT = 4
+ CALL ZHEEVX_2STAGE( 'N', 'A', 'U', -1, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL ZHEEVX_2STAGE( 'N', 'A', 'U', 2, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 2, W, 3, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL ZHEEVX_2STAGE( 'N', 'V', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 9
+ CALL ZHEEVX_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 1, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL ZHEEVX_2STAGE( 'N', 'I', 'U', 2, A, 2,
+ $ 0.0D0, 0.0D0, 2, 1, 0.0D0,
+ $ M, X, Z, 2, W, 3, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 15
+ CALL ZHEEVX_2STAGE( 'N', 'A', 'U', 2, A, 2,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 0, W, 3, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 17
+ CALL ZHEEVX_2STAGE( 'N', 'A', 'U', 2, A, 2,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 2, W, 0, RW, IW, I1, INFO )
+ CALL CHKXER( 'ZHEEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 11
+*
* ZHEEVR
*
SRNAMT = 'ZHEEVR'
@@ -508,6 +754,90 @@
CALL CHKXER( 'ZHEEVR', INFOT, NOUT, LERR, OK )
NT = NT + 12
*
+* ZHEEVR_2STAGE
+*
+ SRNAMT = 'ZHEEVR_2STAGE'
+ N = 1
+ INFOT = 1
+ CALL ZHEEVR_2STAGE( '/', 'A', 'U', 0, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'ZHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL ZHEEVR_2STAGE( 'V', 'A', 'U', 0, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'ZHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL ZHEEVR_2STAGE( 'N', '/', 'U', 0, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'ZHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL ZHEEVR_2STAGE( 'N', 'A', '/', -1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N,
+ $ IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'ZHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL ZHEEVR_2STAGE( 'N', 'A', 'U', -1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N,
+ $ IW( 2*N+1 ), 10*N, INFO )
+ CALL CHKXER( 'ZHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL ZHEEVR_2STAGE( 'N', 'A', 'U', 2, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'ZHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 8
+ CALL ZHEEVR_2STAGE( 'N', 'V', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'ZHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 9
+ CALL ZHEEVR_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 0, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'ZHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 10
+ CALL ZHEEVR_2STAGE( 'N', 'I', 'U', 2, A, 2,
+ $ 0.0D0, 0.0D0, 2, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'ZHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 15
+ CALL ZHEEVR_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 0, IW, Q, 2*N, RW, 24*N, IW( 2*N+1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'ZHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 18
+ CALL ZHEEVR_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 2*N-1, RW, 24*N, IW( 2*N+1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'ZHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 20
+ CALL ZHEEVR_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 26*N, RW, 24*N-1, IW( 2*N-1 ),
+ $ 10*N, INFO )
+ CALL CHKXER( 'ZHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 22
+ CALL ZHEEVR_2STAGE( 'N', 'I', 'U', 1, A, 1,
+ $ 0.0D0, 0.0D0, 1, 1, 0.0D0,
+ $ M, R, Z, 1, IW, Q, 26*N, RW, 24*N, IW, 10*N-1,
+ $ INFO )
+ CALL CHKXER( 'ZHEEVR_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 13
+*
* ZHPEVD
*
SRNAMT = 'ZHPEVD'
@@ -646,6 +976,47 @@
CALL CHKXER( 'ZHBTRD', INFOT, NOUT, LERR, OK )
NT = NT + 6
*
+* ZHETRD_HB2ST
+*
+ SRNAMT = 'ZHETRD_HB2ST'
+ INFOT = 1
+ CALL ZHETRD_HB2ST( '/', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL ZHETRD_HB2ST( 'N', '/', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL ZHETRD_HB2ST( 'N', 'H', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL ZHETRD_HB2ST( 'N', 'N', '/', 0, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL ZHETRD_HB2ST( 'N', 'N', 'U', -1, 0, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL ZHETRD_HB2ST( 'N', 'N', 'U', 0, -1, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 7
+ CALL ZHETRD_HB2ST( 'N', 'N', 'U', 0, 1, A, 1, D, E,
+ $ C, 1, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL ZHETRD_HB2ST( 'N', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 0, W, 1, INFO )
+ CALL CHKXER( 'ZHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL ZHETRD_HB2ST( 'N', 'N', 'U', 0, 0, A, 1, D, E,
+ $ C, 1, W, 0, INFO )
+ CALL CHKXER( 'ZHETRD_HB2ST', INFOT, NOUT, LERR, OK )
+ NT = NT + 9
+*
* ZHBEVD
*
SRNAMT = 'ZHBEVD'
@@ -711,6 +1082,75 @@
CALL CHKXER( 'ZHBEVD', INFOT, NOUT, LERR, OK )
NT = NT + 15
*
+* ZHBEVD_2STAGE
+*
+ SRNAMT = 'ZHBEVD_2STAGE'
+ INFOT = 1
+ CALL ZHBEVD_2STAGE( '/', 'U', 0, 0, A, 1, X, Z, 1,
+ $ W, 1, RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'ZHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL ZHBEVD_2STAGE( 'V', 'U', 0, 0, A, 1, X, Z, 1,
+ $ W, 1, RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'ZHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL ZHBEVD_2STAGE( 'N', '/', 0, 0, A, 1, X, Z, 1,
+ $ W, 1, RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'ZHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL ZHBEVD_2STAGE( 'N', 'U', -1, 0, A, 1, X, Z, 1,
+ $ W, 1, RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'ZHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL ZHBEVD_2STAGE( 'N', 'U', 0, -1, A, 1, X, Z, 1,
+ $ W, 1, RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'ZHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL ZHBEVD_2STAGE( 'N', 'U', 2, 1, A, 1, X, Z, 1,
+ $ W, 2, RW, 2, IW, 1, INFO )
+ CALL CHKXER( 'ZHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 9
+ CALL ZHBEVD_2STAGE( 'N', 'U', 2, 1, A, 2, X, Z, 0,
+ $ W, 8, RW, 25, IW, 12, INFO )
+ CALL CHKXER( 'ZHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL ZHBEVD_2STAGE( 'N', 'U', 1, 0, A, 1, X, Z, 1,
+ $ W, 0, RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'ZHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL ZHBEVD_2STAGE( 'N', 'U', 2, 1, A, 2, X, Z, 2,
+ $ W, 1, RW, 2, IW, 1, INFO )
+ CALL CHKXER( 'ZHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 11
+* CALL ZHBEVD_2STAGE( 'V', 'U', 2, 1, A, 2, X, Z, 2,
+* $ W, 2, RW, 25, IW, 12, INFO )
+* CALL CHKXER( 'ZHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL ZHBEVD_2STAGE( 'N', 'U', 1, 0, A, 1, X, Z, 1,
+ $ W, 1, RW, 0, IW, 1, INFO )
+ CALL CHKXER( 'ZHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL ZHBEVD_2STAGE( 'N', 'U', 2, 1, A, 2, X, Z, 2,
+ $ W, 25, RW, 1, IW, 1, INFO )
+ CALL CHKXER( 'ZHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 13
+* CALL ZHBEVD_2STAGE( 'V', 'U', 2, 1, A, 2, X, Z, 2,
+* $ W, 25, RW, 2, IW, 12, INFO )
+* CALL CHKXER( 'ZHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 15
+ CALL ZHBEVD_2STAGE( 'N', 'U', 1, 0, A, 1, X, Z, 1,
+ $ W, 1, RW, 1, IW, 0, INFO )
+ CALL CHKXER( 'ZHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 15
+ CALL ZHBEVD_2STAGE( 'N', 'U', 2, 1, A, 2, X, Z, 2,
+ $ W, 25, RW, 2, IW, 0, INFO )
+ CALL CHKXER( 'ZHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 15
+* CALL ZHBEVD_2STAGE( 'V', 'U', 2, 1, A, 2, X, Z, 2,
+* $ W, 25, RW, 25, IW, 2, INFO )
+* CALL CHKXER( 'ZHBEVD_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 13
+*
* ZHBEV
*
SRNAMT = 'ZHBEV '
@@ -734,6 +1174,43 @@
CALL CHKXER( 'ZHBEV ', INFOT, NOUT, LERR, OK )
NT = NT + 6
*
+* ZHBEV_2STAGE
+*
+ SRNAMT = 'ZHBEV_2STAGE '
+ INFOT = 1
+ CALL ZHBEV_2STAGE( '/', 'U', 0, 0, A, 1, X,
+ $ Z, 1, W, 0, RW, INFO )
+ CALL CHKXER( 'ZHBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 1
+ CALL ZHBEV_2STAGE( 'V', 'U', 0, 0, A, 1, X,
+ $ Z, 1, W, 0, RW, INFO )
+ CALL CHKXER( 'ZHBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL ZHBEV_2STAGE( 'N', '/', 0, 0, A, 1, X,
+ $ Z, 1, W, 0, RW, INFO )
+ CALL CHKXER( 'ZHBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL ZHBEV_2STAGE( 'N', 'U', -1, 0, A, 1, X,
+ $ Z, 1, W, 0, RW, INFO )
+ CALL CHKXER( 'ZHBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL ZHBEV_2STAGE( 'N', 'U', 0, -1, A, 1, X,
+ $ Z, 1, W, 0, RW, INFO )
+ CALL CHKXER( 'ZHBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 6
+ CALL ZHBEV_2STAGE( 'N', 'U', 2, 1, A, 1, X,
+ $ Z, 1, W, 0, RW, INFO )
+ CALL CHKXER( 'ZHBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 9
+ CALL ZHBEV_2STAGE( 'N', 'U', 2, 0, A, 1, X,
+ $ Z, 0, W, 0, RW, INFO )
+ CALL CHKXER( 'ZHBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL ZHBEV_2STAGE( 'N', 'U', 2, 0, A, 1, X,
+ $ Z, 1, W, 0, RW, INFO )
+ CALL CHKXER( 'ZHBEV_2STAGE ', INFOT, NOUT, LERR, OK )
+ NT = NT + 8
+*
* ZHBEVX
*
SRNAMT = 'ZHBEVX'
@@ -781,6 +1258,74 @@
$ 0, 0.0D0, M, X, Z, 1, W, RW, IW, I3, INFO )
CALL CHKXER( 'ZHBEVX', INFOT, NOUT, LERR, OK )
NT = NT + 11
+*
+* ZHBEVX_2STAGE
+*
+ SRNAMT = 'ZHBEVX_2STAGE'
+ INFOT = 1
+ CALL ZHBEVX_2STAGE( '/', 'A', 'U', 0, 0, A, 1, Q, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ INFOT = 1
+ CALL ZHBEVX_2STAGE( 'V', 'A', 'U', 0, 0, A, 1, Q, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL ZHBEVX_2STAGE( 'N', '/', 'U', 0, 0, A, 1, Q, 1,
+ $ 0.0D0, 1.0D0, 1, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 3
+ CALL ZHBEVX_2STAGE( 'N', 'A', '/', 0, 0, A, 1, Q, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ INFOT = 4
+ CALL ZHBEVX_2STAGE( 'N', 'A', 'U', -1, 0, A, 1, Q, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 5
+ CALL ZHBEVX_2STAGE( 'N', 'A', 'U', 0, -1, A, 1, Q, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 7
+ CALL ZHBEVX_2STAGE( 'N', 'A', 'U', 2, 1, A, 1, Q, 2,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 2, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+* INFOT = 9
+* CALL ZHBEVX_2STAGE( 'V', 'A', 'U', 2, 0, A, 1, Q, 1,
+* $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+* $ M, X, Z, 2, W, 0, RW, IW, I3, INFO )
+* CALL CHKXER( 'ZHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 11
+ CALL ZHBEVX_2STAGE( 'N', 'V', 'U', 1, 0, A, 1, Q, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 12
+ CALL ZHBEVX_2STAGE( 'N', 'I', 'U', 1, 0, A, 1, Q, 1,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 13
+ CALL ZHBEVX_2STAGE( 'N', 'I', 'U', 1, 0, A, 1, Q, 1,
+ $ 0.0D0, 0.0D0, 1, 2, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 18
+ CALL ZHBEVX_2STAGE( 'N', 'A', 'U', 2, 0, A, 1, Q, 2,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 0, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ INFOT = 20
+ CALL ZHBEVX_2STAGE( 'N', 'A', 'U', 2, 0, A, 1, Q, 2,
+ $ 0.0D0, 0.0D0, 0, 0, 0.0D0,
+ $ M, X, Z, 1, W, 0, RW, IW, I3, INFO )
+ CALL CHKXER( 'ZHBEVX_2STAGE', INFOT, NOUT, LERR, OK )
+ NT = NT + 12
END IF
*
* Print a summary line.
diff --git a/TESTING/Makefile b/TESTING/Makefile
index 968a9a2b..9b641e76 100644
--- a/TESTING/Makefile
+++ b/TESTING/Makefile
@@ -46,6 +46,7 @@ all: single complex double complex16 singleproto doubleproto complexproto co
SEIGTST= snep.out \
ssep.out \
+ sse2.out \
ssvd.out \
sec.out \
sed.out \
@@ -66,6 +67,7 @@ SEIGTST= snep.out \
CEIGTST= cnep.out \
csep.out \
+ cse2.out \
csvd.out \
cec.out \
ced.out \
@@ -86,6 +88,7 @@ CEIGTST= cnep.out \
DEIGTST= dnep.out \
dsep.out \
+ dse2.out \
dsvd.out \
dec.out \
ded.out \
@@ -106,6 +109,7 @@ DEIGTST= dnep.out \
ZEIGTST= znep.out \
zsep.out \
+ zse2.out \
zsvd.out \
zec.out \
zed.out \
@@ -223,6 +227,10 @@ ssep.out: sep.in xeigtsts
@echo SEP: Testing Symmetric Eigenvalue Problem routines
./xeigtsts < sep.in > $@ 2>&1
+sse2.out: se2.in xeigtsts
+ @echo SEP: Testing Symmetric Eigenvalue Problem routines
+ ./xeigtsts < se2.in > $@ 2>&1
+
ssvd.out: svd.in xeigtsts
@echo SVD: Testing Singular Value Decomposition routines
./xeigtsts < svd.in > $@ 2>&1
@@ -301,6 +309,10 @@ csep.out: sep.in xeigtstc
@echo SEP: Testing Symmetric Eigenvalue Problem routines
./xeigtstc < sep.in > $@ 2>&1
+cse2.out: se2.in xeigtstc
+ @echo SEP: Testing Symmetric Eigenvalue Problem routines
+ ./xeigtstc < se2.in > $@ 2>&1
+
csvd.out: svd.in xeigtstc
@echo SVD: Testing Singular Value Decomposition routines
./xeigtstc < svd.in > $@ 2>&1
@@ -379,6 +391,10 @@ dsep.out: sep.in xeigtstd
@echo SEP: Testing Symmetric Eigenvalue Problem routines
./xeigtstd < sep.in > $@ 2>&1
+dse2.out: se2.in xeigtstd
+ @echo SEP: Testing Symmetric Eigenvalue Problem routines
+ ./xeigtstd < se2.in > $@ 2>&1
+
dsvd.out: svd.in xeigtstd
@echo SVD: Testing Singular Value Decomposition routines
./xeigtstd < svd.in > $@ 2>&1
@@ -457,6 +473,10 @@ zsep.out: sep.in xeigtstz
@echo SEP: Testing Symmetric Eigenvalue Problem routines
./xeigtstz < sep.in > $@ 2>&1
+zse2.out: se2.in xeigtstz
+ @echo SEP: Testing Symmetric Eigenvalue Problem routines
+ ./xeigtstz < se2.in > $@ 2>&1
+
zsvd.out: svd.in xeigtstz
@echo SVD: Testing Singular Value Decomposition routines
./xeigtstz < svd.in > $@ 2>&1
diff --git a/TESTING/se2.in b/TESTING/se2.in
new file mode 100644
index 00000000..e20649c9
--- /dev/null
+++ b/TESTING/se2.in
@@ -0,0 +1,15 @@
+SE2: Data file for testing Symmetric Eigenvalue Problem routines
+6 Number of values of N
+0 1 2 3 5 20 Values of N (dimension)
+5 Number of values of NB
+1 3 3 3 10 Values of NB (blocksize)
+2 2 2 2 2 Values of NBMIN (minimum blocksize)
+1 0 5 9 1 Values of NX (crossover point)
+50.0 Threshold value
+T Put T to test the LAPACK routines
+T Put T to test the driver routines
+T Put T to test the error exits
+1 Code to interpret the seed
+SE2 20
+1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21
+