diff options
author | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
---|---|---|
committer | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
commit | baba851215b44ac3b60b9248eb02bcce7eb76247 (patch) | |
tree | 8c0f5c006875532a30d4409f5e94b0f310ff00a7 /TESTING/LIN/zlatsy.f | |
download | lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2 lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip |
Move LAPACK trunk into position.
Diffstat (limited to 'TESTING/LIN/zlatsy.f')
-rw-r--r-- | TESTING/LIN/zlatsy.f | 207 |
1 files changed, 207 insertions, 0 deletions
diff --git a/TESTING/LIN/zlatsy.f b/TESTING/LIN/zlatsy.f new file mode 100644 index 00000000..82abb7e2 --- /dev/null +++ b/TESTING/LIN/zlatsy.f @@ -0,0 +1,207 @@ + SUBROUTINE ZLATSY( UPLO, N, X, LDX, ISEED ) +* +* -- LAPACK auxiliary test routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER UPLO + INTEGER LDX, N +* .. +* .. Array Arguments .. + INTEGER ISEED( * ) + COMPLEX*16 X( LDX, * ) +* .. +* +* Purpose +* ======= +* +* ZLATSY generates a special test matrix for the complex symmetric +* (indefinite) factorization. The pivot blocks of the generated matrix +* will be in the following order: +* 2x2 pivot block, non diagonalizable +* 1x1 pivot block +* 2x2 pivot block, diagonalizable +* (cycle repeats) +* A row interchange is required for each non-diagonalizable 2x2 block. +* +* Arguments +* ========= +* +* UPLO (input) CHARACTER +* Specifies whether the generated matrix is to be upper or +* lower triangular. +* = 'U': Upper triangular +* = 'L': Lower triangular +* +* N (input) INTEGER +* The dimension of the matrix to be generated. +* +* X (output) COMPLEX*16 array, dimension (LDX,N) +* The generated matrix, consisting of 3x3 and 2x2 diagonal +* blocks which result in the pivot sequence given above. +* The matrix outside of these diagonal blocks is zero. +* +* LDX (input) INTEGER +* The leading dimension of the array X. +* +* ISEED (input/output) INTEGER array, dimension (4) +* On entry, the seed for the random number generator. The last +* of the four integers must be odd. (modified on exit) +* +* ===================================================================== +* +* .. Parameters .. + COMPLEX*16 EYE + PARAMETER ( EYE = ( 0.0D0, 1.0D0 ) ) +* .. +* .. Local Scalars .. + INTEGER I, J, N5 + DOUBLE PRECISION ALPHA, ALPHA3, BETA + COMPLEX*16 A, B, C, R +* .. +* .. External Functions .. + COMPLEX*16 ZLARND + EXTERNAL ZLARND +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, SQRT +* .. +* .. Executable Statements .. +* +* Initialize constants +* + ALPHA = ( 1.D0+SQRT( 17.D0 ) ) / 8.D0 + BETA = ALPHA - 1.D0 / 1000.D0 + ALPHA3 = ALPHA*ALPHA*ALPHA +* +* UPLO = 'U': Upper triangular storage +* + IF( UPLO.EQ.'U' ) THEN +* +* Fill the upper triangle of the matrix with zeros. +* + DO 20 J = 1, N + DO 10 I = 1, J + X( I, J ) = 0.0D0 + 10 CONTINUE + 20 CONTINUE + N5 = N / 5 + N5 = N - 5*N5 + 1 +* + DO 30 I = N, N5, -5 + A = ALPHA3*ZLARND( 5, ISEED ) + B = ZLARND( 5, ISEED ) / ALPHA + C = A - 2.D0*B*EYE + R = C / BETA + X( I, I ) = A + X( I-2, I ) = B + X( I-2, I-1 ) = R + X( I-2, I-2 ) = C + X( I-1, I-1 ) = ZLARND( 2, ISEED ) + X( I-3, I-3 ) = ZLARND( 2, ISEED ) + X( I-4, I-4 ) = ZLARND( 2, ISEED ) + IF( ABS( X( I-3, I-3 ) ).GT.ABS( X( I-4, I-4 ) ) ) THEN + X( I-4, I-3 ) = 2.0D0*X( I-3, I-3 ) + ELSE + X( I-4, I-3 ) = 2.0D0*X( I-4, I-4 ) + END IF + 30 CONTINUE +* +* Clean-up for N not a multiple of 5. +* + I = N5 - 1 + IF( I.GT.2 ) THEN + A = ALPHA3*ZLARND( 5, ISEED ) + B = ZLARND( 5, ISEED ) / ALPHA + C = A - 2.D0*B*EYE + R = C / BETA + X( I, I ) = A + X( I-2, I ) = B + X( I-2, I-1 ) = R + X( I-2, I-2 ) = C + X( I-1, I-1 ) = ZLARND( 2, ISEED ) + I = I - 3 + END IF + IF( I.GT.1 ) THEN + X( I, I ) = ZLARND( 2, ISEED ) + X( I-1, I-1 ) = ZLARND( 2, ISEED ) + IF( ABS( X( I, I ) ).GT.ABS( X( I-1, I-1 ) ) ) THEN + X( I-1, I ) = 2.0D0*X( I, I ) + ELSE + X( I-1, I ) = 2.0D0*X( I-1, I-1 ) + END IF + I = I - 2 + ELSE IF( I.EQ.1 ) THEN + X( I, I ) = ZLARND( 2, ISEED ) + I = I - 1 + END IF +* +* UPLO = 'L': Lower triangular storage +* + ELSE +* +* Fill the lower triangle of the matrix with zeros. +* + DO 50 J = 1, N + DO 40 I = J, N + X( I, J ) = 0.0D0 + 40 CONTINUE + 50 CONTINUE + N5 = N / 5 + N5 = N5*5 +* + DO 60 I = 1, N5, 5 + A = ALPHA3*ZLARND( 5, ISEED ) + B = ZLARND( 5, ISEED ) / ALPHA + C = A - 2.D0*B*EYE + R = C / BETA + X( I, I ) = A + X( I+2, I ) = B + X( I+2, I+1 ) = R + X( I+2, I+2 ) = C + X( I+1, I+1 ) = ZLARND( 2, ISEED ) + X( I+3, I+3 ) = ZLARND( 2, ISEED ) + X( I+4, I+4 ) = ZLARND( 2, ISEED ) + IF( ABS( X( I+3, I+3 ) ).GT.ABS( X( I+4, I+4 ) ) ) THEN + X( I+4, I+3 ) = 2.0D0*X( I+3, I+3 ) + ELSE + X( I+4, I+3 ) = 2.0D0*X( I+4, I+4 ) + END IF + 60 CONTINUE +* +* Clean-up for N not a multiple of 5. +* + I = N5 + 1 + IF( I.LT.N-1 ) THEN + A = ALPHA3*ZLARND( 5, ISEED ) + B = ZLARND( 5, ISEED ) / ALPHA + C = A - 2.D0*B*EYE + R = C / BETA + X( I, I ) = A + X( I+2, I ) = B + X( I+2, I+1 ) = R + X( I+2, I+2 ) = C + X( I+1, I+1 ) = ZLARND( 2, ISEED ) + I = I + 3 + END IF + IF( I.LT.N ) THEN + X( I, I ) = ZLARND( 2, ISEED ) + X( I+1, I+1 ) = ZLARND( 2, ISEED ) + IF( ABS( X( I, I ) ).GT.ABS( X( I+1, I+1 ) ) ) THEN + X( I+1, I ) = 2.0D0*X( I, I ) + ELSE + X( I+1, I ) = 2.0D0*X( I+1, I+1 ) + END IF + I = I + 2 + ELSE IF( I.EQ.N ) THEN + X( I, I ) = ZLARND( 2, ISEED ) + I = I + 1 + END IF + END IF +* + RETURN +* +* End of ZLATSY +* + END |