diff options
author | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
---|---|---|
committer | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
commit | baba851215b44ac3b60b9248eb02bcce7eb76247 (patch) | |
tree | 8c0f5c006875532a30d4409f5e94b0f310ff00a7 /TESTING/LIN/strt05.f | |
download | lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2 lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip |
Move LAPACK trunk into position.
Diffstat (limited to 'TESTING/LIN/strt05.f')
-rw-r--r-- | TESTING/LIN/strt05.f | 235 |
1 files changed, 235 insertions, 0 deletions
diff --git a/TESTING/LIN/strt05.f b/TESTING/LIN/strt05.f new file mode 100644 index 00000000..e13894c0 --- /dev/null +++ b/TESTING/LIN/strt05.f @@ -0,0 +1,235 @@ + SUBROUTINE STRT05( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X, + $ LDX, XACT, LDXACT, FERR, BERR, RESLTS ) +* +* -- LAPACK test routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER DIAG, TRANS, UPLO + INTEGER LDA, LDB, LDX, LDXACT, N, NRHS +* .. +* .. Array Arguments .. + REAL A( LDA, * ), B( LDB, * ), BERR( * ), FERR( * ), + $ RESLTS( * ), X( LDX, * ), XACT( LDXACT, * ) +* .. +* +* Purpose +* ======= +* +* STRT05 tests the error bounds from iterative refinement for the +* computed solution to a system of equations A*X = B, where A is a +* triangular n by n matrix. +* +* RESLTS(1) = test of the error bound +* = norm(X - XACT) / ( norm(X) * FERR ) +* +* A large value is returned if this ratio is not less than one. +* +* RESLTS(2) = residual from the iterative refinement routine +* = the maximum of BERR / ( (n+1)*EPS + (*) ), where +* (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) +* +* Arguments +* ========= +* +* UPLO (input) CHARACTER*1 +* Specifies whether the matrix A is upper or lower triangular. +* = 'U': Upper triangular +* = 'L': Lower triangular +* +* TRANS (input) CHARACTER*1 +* Specifies the form of the system of equations. +* = 'N': A * X = B (No transpose) +* = 'T': A'* X = B (Transpose) +* = 'C': A'* X = B (Conjugate transpose = Transpose) +* +* DIAG (input) CHARACTER*1 +* Specifies whether or not the matrix A is unit triangular. +* = 'N': Non-unit triangular +* = 'U': Unit triangular +* +* N (input) INTEGER +* The number of rows of the matrices X, B, and XACT, and the +* order of the matrix A. N >= 0. +* +* NRHS (input) INTEGER +* The number of columns of the matrices X, B, and XACT. +* NRHS >= 0. +* +* A (input) REAL array, dimension (LDA,N) +* The triangular matrix A. If UPLO = 'U', the leading n by n +* upper triangular part of the array A contains the upper +* triangular matrix, and the strictly lower triangular part of +* A is not referenced. If UPLO = 'L', the leading n by n lower +* triangular part of the array A contains the lower triangular +* matrix, and the strictly upper triangular part of A is not +* referenced. If DIAG = 'U', the diagonal elements of A are +* also not referenced and are assumed to be 1. +* +* LDA (input) INTEGER +* The leading dimension of the array A. LDA >= max(1,N). +* +* B (input) REAL array, dimension (LDB,NRHS) +* The right hand side vectors for the system of linear +* equations. +* +* LDB (input) INTEGER +* The leading dimension of the array B. LDB >= max(1,N). +* +* X (input) REAL array, dimension (LDX,NRHS) +* The computed solution vectors. Each vector is stored as a +* column of the matrix X. +* +* LDX (input) INTEGER +* The leading dimension of the array X. LDX >= max(1,N). +* +* XACT (input) REAL array, dimension (LDX,NRHS) +* The exact solution vectors. Each vector is stored as a +* column of the matrix XACT. +* +* LDXACT (input) INTEGER +* The leading dimension of the array XACT. LDXACT >= max(1,N). +* +* FERR (input) REAL array, dimension (NRHS) +* The estimated forward error bounds for each solution vector +* X. If XTRUE is the true solution, FERR bounds the magnitude +* of the largest entry in (X - XTRUE) divided by the magnitude +* of the largest entry in X. +* +* BERR (input) REAL array, dimension (NRHS) +* The componentwise relative backward error of each solution +* vector (i.e., the smallest relative change in any entry of A +* or B that makes X an exact solution). +* +* RESLTS (output) REAL array, dimension (2) +* The maximum over the NRHS solution vectors of the ratios: +* RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) +* RESLTS(2) = BERR / ( (n+1)*EPS + (*) ) +* +* ===================================================================== +* +* .. Parameters .. + REAL ZERO, ONE + PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) +* .. +* .. Local Scalars .. + LOGICAL NOTRAN, UNIT, UPPER + INTEGER I, IFU, IMAX, J, K + REAL AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM +* .. +* .. External Functions .. + LOGICAL LSAME + INTEGER ISAMAX + REAL SLAMCH + EXTERNAL LSAME, ISAMAX, SLAMCH +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX, MIN +* .. +* .. Executable Statements .. +* +* Quick exit if N = 0 or NRHS = 0. +* + IF( N.LE.0 .OR. NRHS.LE.0 ) THEN + RESLTS( 1 ) = ZERO + RESLTS( 2 ) = ZERO + RETURN + END IF +* + EPS = SLAMCH( 'Epsilon' ) + UNFL = SLAMCH( 'Safe minimum' ) + OVFL = ONE / UNFL + UPPER = LSAME( UPLO, 'U' ) + NOTRAN = LSAME( TRANS, 'N' ) + UNIT = LSAME( DIAG, 'U' ) +* +* Test 1: Compute the maximum of +* norm(X - XACT) / ( norm(X) * FERR ) +* over all the vectors X and XACT using the infinity-norm. +* + ERRBND = ZERO + DO 30 J = 1, NRHS + IMAX = ISAMAX( N, X( 1, J ), 1 ) + XNORM = MAX( ABS( X( IMAX, J ) ), UNFL ) + DIFF = ZERO + DO 10 I = 1, N + DIFF = MAX( DIFF, ABS( X( I, J )-XACT( I, J ) ) ) + 10 CONTINUE +* + IF( XNORM.GT.ONE ) THEN + GO TO 20 + ELSE IF( DIFF.LE.OVFL*XNORM ) THEN + GO TO 20 + ELSE + ERRBND = ONE / EPS + GO TO 30 + END IF +* + 20 CONTINUE + IF( DIFF / XNORM.LE.FERR( J ) ) THEN + ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) ) + ELSE + ERRBND = ONE / EPS + END IF + 30 CONTINUE + RESLTS( 1 ) = ERRBND +* +* Test 2: Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where +* (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) +* + IFU = 0 + IF( UNIT ) + $ IFU = 1 + DO 90 K = 1, NRHS + DO 80 I = 1, N + TMP = ABS( B( I, K ) ) + IF( UPPER ) THEN + IF( .NOT.NOTRAN ) THEN + DO 40 J = 1, I - IFU + TMP = TMP + ABS( A( J, I ) )*ABS( X( J, K ) ) + 40 CONTINUE + IF( UNIT ) + $ TMP = TMP + ABS( X( I, K ) ) + ELSE + IF( UNIT ) + $ TMP = TMP + ABS( X( I, K ) ) + DO 50 J = I + IFU, N + TMP = TMP + ABS( A( I, J ) )*ABS( X( J, K ) ) + 50 CONTINUE + END IF + ELSE + IF( NOTRAN ) THEN + DO 60 J = 1, I - IFU + TMP = TMP + ABS( A( I, J ) )*ABS( X( J, K ) ) + 60 CONTINUE + IF( UNIT ) + $ TMP = TMP + ABS( X( I, K ) ) + ELSE + IF( UNIT ) + $ TMP = TMP + ABS( X( I, K ) ) + DO 70 J = I + IFU, N + TMP = TMP + ABS( A( J, I ) )*ABS( X( J, K ) ) + 70 CONTINUE + END IF + END IF + IF( I.EQ.1 ) THEN + AXBI = TMP + ELSE + AXBI = MIN( AXBI, TMP ) + END IF + 80 CONTINUE + TMP = BERR( K ) / ( ( N+1 )*EPS+( N+1 )*UNFL / + $ MAX( AXBI, ( N+1 )*UNFL ) ) + IF( K.EQ.1 ) THEN + RESLTS( 2 ) = TMP + ELSE + RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP ) + END IF + 90 CONTINUE +* + RETURN +* +* End of STRT05 +* + END |