summaryrefslogtreecommitdiff
path: root/TESTING/EIG/zbdt01.f
diff options
context:
space:
mode:
authorjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
committerjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
commite1d39294aee16fa6db9ba079b14442358217db71 (patch)
tree30e5aa04c1f6596991fda5334f63dfb9b8027849 /TESTING/EIG/zbdt01.f
parent5fe0466a14e395641f4f8a300ecc9dcb8058081b (diff)
downloadlapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.gz
lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.bz2
lapack-e1d39294aee16fa6db9ba079b14442358217db71.zip
Integrating Doxygen in comments
Diffstat (limited to 'TESTING/EIG/zbdt01.f')
-rw-r--r--TESTING/EIG/zbdt01.f215
1 files changed, 150 insertions, 65 deletions
diff --git a/TESTING/EIG/zbdt01.f b/TESTING/EIG/zbdt01.f
index ddf520e2..10eb6016 100644
--- a/TESTING/EIG/zbdt01.f
+++ b/TESTING/EIG/zbdt01.f
@@ -1,9 +1,157 @@
+*> \brief \b ZBDT01
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition
+* ==========
+*
+* SUBROUTINE ZBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
+* RWORK, RESID )
+*
+* .. Scalar Arguments ..
+* INTEGER KD, LDA, LDPT, LDQ, M, N
+* DOUBLE PRECISION RESID
+* ..
+* .. Array Arguments ..
+* DOUBLE PRECISION D( * ), E( * ), RWORK( * )
+* COMPLEX*16 A( LDA, * ), PT( LDPT, * ), Q( LDQ, * ),
+* $ WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+*>\details \b Purpose:
+*>\verbatim
+*>
+*> ZBDT01 reconstructs a general matrix A from its bidiagonal form
+*> A = Q * B * P'
+*> where Q (m by min(m,n)) and P' (min(m,n) by n) are unitary
+*> matrices and B is bidiagonal.
+*>
+*> The test ratio to test the reduction is
+*> RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS )
+*> where PT = P' and EPS is the machine precision.
+*>
+*>\endverbatim
+*
+* Arguments
+* =========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrices A and Q.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrices A and P'.
+*> \endverbatim
+*>
+*> \param[in] KD
+*> \verbatim
+*> KD is INTEGER
+*> If KD = 0, B is diagonal and the array E is not referenced.
+*> If KD = 1, the reduction was performed by xGEBRD; B is upper
+*> bidiagonal if M >= N, and lower bidiagonal if M < N.
+*> If KD = -1, the reduction was performed by xGBBRD; B is
+*> always upper bidiagonal.
+*> \endverbatim
+*>
+*> \param[in] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*> The m by n matrix A.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in] Q
+*> \verbatim
+*> Q is COMPLEX*16 array, dimension (LDQ,N)
+*> The m by min(m,n) unitary matrix Q in the reduction
+*> A = Q * B * P'.
+*> \endverbatim
+*>
+*> \param[in] LDQ
+*> \verbatim
+*> LDQ is INTEGER
+*> The leading dimension of the array Q. LDQ >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in] D
+*> \verbatim
+*> D is DOUBLE PRECISION array, dimension (min(M,N))
+*> The diagonal elements of the bidiagonal matrix B.
+*> \endverbatim
+*>
+*> \param[in] E
+*> \verbatim
+*> E is DOUBLE PRECISION array, dimension (min(M,N)-1)
+*> The superdiagonal elements of the bidiagonal matrix B if
+*> m >= n, or the subdiagonal elements of B if m < n.
+*> \endverbatim
+*>
+*> \param[in] PT
+*> \verbatim
+*> PT is COMPLEX*16 array, dimension (LDPT,N)
+*> The min(m,n) by n unitary matrix P' in the reduction
+*> A = Q * B * P'.
+*> \endverbatim
+*>
+*> \param[in] LDPT
+*> \verbatim
+*> LDPT is INTEGER
+*> The leading dimension of the array PT.
+*> LDPT >= max(1,min(M,N)).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (M+N)
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is DOUBLE PRECISION array, dimension (M)
+*> \endverbatim
+*>
+*> \param[out] RESID
+*> \verbatim
+*> RESID is DOUBLE PRECISION
+*> The test ratio: norm(A - Q * B * P') / ( n * norm(A) * EPS )
+*> \endverbatim
+*>
+*
+* Authors
+* =======
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complex16_eig
+*
+* =====================================================================
SUBROUTINE ZBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
$ RWORK, RESID )
*
* -- LAPACK test routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
*
* .. Scalar Arguments ..
INTEGER KD, LDA, LDPT, LDQ, M, N
@@ -15,69 +163,6 @@
$ WORK( * )
* ..
*
-* Purpose
-* =======
-*
-* ZBDT01 reconstructs a general matrix A from its bidiagonal form
-* A = Q * B * P'
-* where Q (m by min(m,n)) and P' (min(m,n) by n) are unitary
-* matrices and B is bidiagonal.
-*
-* The test ratio to test the reduction is
-* RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS )
-* where PT = P' and EPS is the machine precision.
-*
-* Arguments
-* =========
-*
-* M (input) INTEGER
-* The number of rows of the matrices A and Q.
-*
-* N (input) INTEGER
-* The number of columns of the matrices A and P'.
-*
-* KD (input) INTEGER
-* If KD = 0, B is diagonal and the array E is not referenced.
-* If KD = 1, the reduction was performed by xGEBRD; B is upper
-* bidiagonal if M >= N, and lower bidiagonal if M < N.
-* If KD = -1, the reduction was performed by xGBBRD; B is
-* always upper bidiagonal.
-*
-* A (input) COMPLEX*16 array, dimension (LDA,N)
-* The m by n matrix A.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,M).
-*
-* Q (input) COMPLEX*16 array, dimension (LDQ,N)
-* The m by min(m,n) unitary matrix Q in the reduction
-* A = Q * B * P'.
-*
-* LDQ (input) INTEGER
-* The leading dimension of the array Q. LDQ >= max(1,M).
-*
-* D (input) DOUBLE PRECISION array, dimension (min(M,N))
-* The diagonal elements of the bidiagonal matrix B.
-*
-* E (input) DOUBLE PRECISION array, dimension (min(M,N)-1)
-* The superdiagonal elements of the bidiagonal matrix B if
-* m >= n, or the subdiagonal elements of B if m < n.
-*
-* PT (input) COMPLEX*16 array, dimension (LDPT,N)
-* The min(m,n) by n unitary matrix P' in the reduction
-* A = Q * B * P'.
-*
-* LDPT (input) INTEGER
-* The leading dimension of the array PT.
-* LDPT >= max(1,min(M,N)).
-*
-* WORK (workspace) COMPLEX*16 array, dimension (M+N)
-*
-* RWORK (workspace) DOUBLE PRECISION array, dimension (M)
-*
-* RESID (output) DOUBLE PRECISION
-* The test ratio: norm(A - Q * B * P') / ( n * norm(A) * EPS )
-*
* =====================================================================
*
* .. Parameters ..