summaryrefslogtreecommitdiff
path: root/TESTING/EIG/dget23.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /TESTING/EIG/dget23.f
downloadlapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip
Move LAPACK trunk into position.
Diffstat (limited to 'TESTING/EIG/dget23.f')
-rw-r--r--TESTING/EIG/dget23.f721
1 files changed, 721 insertions, 0 deletions
diff --git a/TESTING/EIG/dget23.f b/TESTING/EIG/dget23.f
new file mode 100644
index 00000000..48a48271
--- /dev/null
+++ b/TESTING/EIG/dget23.f
@@ -0,0 +1,721 @@
+ SUBROUTINE DGET23( COMP, BALANC, JTYPE, THRESH, ISEED, NOUNIT, N,
+ $ A, LDA, H, WR, WI, WR1, WI1, VL, LDVL, VR,
+ $ LDVR, LRE, LDLRE, RCONDV, RCNDV1, RCDVIN,
+ $ RCONDE, RCNDE1, RCDEIN, SCALE, SCALE1, RESULT,
+ $ WORK, LWORK, IWORK, INFO )
+*
+* -- LAPACK test routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ LOGICAL COMP
+ CHARACTER BALANC
+ INTEGER INFO, JTYPE, LDA, LDLRE, LDVL, LDVR, LWORK, N,
+ $ NOUNIT
+ DOUBLE PRECISION THRESH
+* ..
+* .. Array Arguments ..
+ INTEGER ISEED( 4 ), IWORK( * )
+ DOUBLE PRECISION A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
+ $ RCDEIN( * ), RCDVIN( * ), RCNDE1( * ),
+ $ RCNDV1( * ), RCONDE( * ), RCONDV( * ),
+ $ RESULT( 11 ), SCALE( * ), SCALE1( * ),
+ $ VL( LDVL, * ), VR( LDVR, * ), WI( * ),
+ $ WI1( * ), WORK( * ), WR( * ), WR1( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DGET23 checks the nonsymmetric eigenvalue problem driver SGEEVX.
+* If COMP = .FALSE., the first 8 of the following tests will be
+* performed on the input matrix A, and also test 9 if LWORK is
+* sufficiently large.
+* if COMP is .TRUE. all 11 tests will be performed.
+*
+* (1) | A * VR - VR * W | / ( n |A| ulp )
+*
+* Here VR is the matrix of unit right eigenvectors.
+* W is a block diagonal matrix, with a 1x1 block for each
+* real eigenvalue and a 2x2 block for each complex conjugate
+* pair. If eigenvalues j and j+1 are a complex conjugate pair,
+* so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the
+* 2 x 2 block corresponding to the pair will be:
+*
+* ( wr wi )
+* ( -wi wr )
+*
+* Such a block multiplying an n x 2 matrix ( ur ui ) on the
+* right will be the same as multiplying ur + i*ui by wr + i*wi.
+*
+* (2) | A**H * VL - VL * W**H | / ( n |A| ulp )
+*
+* Here VL is the matrix of unit left eigenvectors, A**H is the
+* conjugate transpose of A, and W is as above.
+*
+* (3) | |VR(i)| - 1 | / ulp and largest component real
+*
+* VR(i) denotes the i-th column of VR.
+*
+* (4) | |VL(i)| - 1 | / ulp and largest component real
+*
+* VL(i) denotes the i-th column of VL.
+*
+* (5) 0 if W(full) = W(partial), 1/ulp otherwise
+*
+* W(full) denotes the eigenvalues computed when VR, VL, RCONDV
+* and RCONDE are also computed, and W(partial) denotes the
+* eigenvalues computed when only some of VR, VL, RCONDV, and
+* RCONDE are computed.
+*
+* (6) 0 if VR(full) = VR(partial), 1/ulp otherwise
+*
+* VR(full) denotes the right eigenvectors computed when VL, RCONDV
+* and RCONDE are computed, and VR(partial) denotes the result
+* when only some of VL and RCONDV are computed.
+*
+* (7) 0 if VL(full) = VL(partial), 1/ulp otherwise
+*
+* VL(full) denotes the left eigenvectors computed when VR, RCONDV
+* and RCONDE are computed, and VL(partial) denotes the result
+* when only some of VR and RCONDV are computed.
+*
+* (8) 0 if SCALE, ILO, IHI, ABNRM (full) =
+* SCALE, ILO, IHI, ABNRM (partial)
+* 1/ulp otherwise
+*
+* SCALE, ILO, IHI and ABNRM describe how the matrix is balanced.
+* (full) is when VR, VL, RCONDE and RCONDV are also computed, and
+* (partial) is when some are not computed.
+*
+* (9) 0 if RCONDV(full) = RCONDV(partial), 1/ulp otherwise
+*
+* RCONDV(full) denotes the reciprocal condition numbers of the
+* right eigenvectors computed when VR, VL and RCONDE are also
+* computed. RCONDV(partial) denotes the reciprocal condition
+* numbers when only some of VR, VL and RCONDE are computed.
+*
+* (10) |RCONDV - RCDVIN| / cond(RCONDV)
+*
+* RCONDV is the reciprocal right eigenvector condition number
+* computed by DGEEVX and RCDVIN (the precomputed true value)
+* is supplied as input. cond(RCONDV) is the condition number of
+* RCONDV, and takes errors in computing RCONDV into account, so
+* that the resulting quantity should be O(ULP). cond(RCONDV) is
+* essentially given by norm(A)/RCONDE.
+*
+* (11) |RCONDE - RCDEIN| / cond(RCONDE)
+*
+* RCONDE is the reciprocal eigenvalue condition number
+* computed by DGEEVX and RCDEIN (the precomputed true value)
+* is supplied as input. cond(RCONDE) is the condition number
+* of RCONDE, and takes errors in computing RCONDE into account,
+* so that the resulting quantity should be O(ULP). cond(RCONDE)
+* is essentially given by norm(A)/RCONDV.
+*
+* Arguments
+* =========
+*
+* COMP (input) LOGICAL
+* COMP describes which input tests to perform:
+* = .FALSE. if the computed condition numbers are not to
+* be tested against RCDVIN and RCDEIN
+* = .TRUE. if they are to be compared
+*
+* BALANC (input) CHARACTER
+* Describes the balancing option to be tested.
+* = 'N' for no permuting or diagonal scaling
+* = 'P' for permuting but no diagonal scaling
+* = 'S' for no permuting but diagonal scaling
+* = 'B' for permuting and diagonal scaling
+*
+* JTYPE (input) INTEGER
+* Type of input matrix. Used to label output if error occurs.
+*
+* THRESH (input) DOUBLE PRECISION
+* A test will count as "failed" if the "error", computed as
+* described above, exceeds THRESH. Note that the error
+* is scaled to be O(1), so THRESH should be a reasonably
+* small multiple of 1, e.g., 10 or 100. In particular,
+* it should not depend on the precision (single vs. double)
+* or the size of the matrix. It must be at least zero.
+*
+* ISEED (input) INTEGER array, dimension (4)
+* If COMP = .FALSE., the random number generator seed
+* used to produce matrix.
+* If COMP = .TRUE., ISEED(1) = the number of the example.
+* Used to label output if error occurs.
+*
+* NOUNIT (input) INTEGER
+* The FORTRAN unit number for printing out error messages
+* (e.g., if a routine returns INFO not equal to 0.)
+*
+* N (input) INTEGER
+* The dimension of A. N must be at least 0.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+* Used to hold the matrix whose eigenvalues are to be
+* computed.
+*
+* LDA (input) INTEGER
+* The leading dimension of A, and H. LDA must be at
+* least 1 and at least N.
+*
+* H (workspace) DOUBLE PRECISION array, dimension (LDA,N)
+* Another copy of the test matrix A, modified by DGEEVX.
+*
+* WR (workspace) DOUBLE PRECISION array, dimension (N)
+* WI (workspace) DOUBLE PRECISION array, dimension (N)
+* The real and imaginary parts of the eigenvalues of A.
+* On exit, WR + WI*i are the eigenvalues of the matrix in A.
+*
+* WR1 (workspace) DOUBLE PRECISION array, dimension (N)
+* WI1 (workspace) DOUBLE PRECISION array, dimension (N)
+* Like WR, WI, these arrays contain the eigenvalues of A,
+* but those computed when DGEEVX only computes a partial
+* eigendecomposition, i.e. not the eigenvalues and left
+* and right eigenvectors.
+*
+* VL (workspace) DOUBLE PRECISION array, dimension (LDVL,N)
+* VL holds the computed left eigenvectors.
+*
+* LDVL (input) INTEGER
+* Leading dimension of VL. Must be at least max(1,N).
+*
+* VR (workspace) DOUBLE PRECISION array, dimension (LDVR,N)
+* VR holds the computed right eigenvectors.
+*
+* LDVR (input) INTEGER
+* Leading dimension of VR. Must be at least max(1,N).
+*
+* LRE (workspace) DOUBLE PRECISION array, dimension (LDLRE,N)
+* LRE holds the computed right or left eigenvectors.
+*
+* LDLRE (input) INTEGER
+* Leading dimension of LRE. Must be at least max(1,N).
+*
+* RCONDV (workspace) DOUBLE PRECISION array, dimension (N)
+* RCONDV holds the computed reciprocal condition numbers
+* for eigenvectors.
+*
+* RCNDV1 (workspace) DOUBLE PRECISION array, dimension (N)
+* RCNDV1 holds more computed reciprocal condition numbers
+* for eigenvectors.
+*
+* RCDVIN (input) DOUBLE PRECISION array, dimension (N)
+* When COMP = .TRUE. RCDVIN holds the precomputed reciprocal
+* condition numbers for eigenvectors to be compared with
+* RCONDV.
+*
+* RCONDE (workspace) DOUBLE PRECISION array, dimension (N)
+* RCONDE holds the computed reciprocal condition numbers
+* for eigenvalues.
+*
+* RCNDE1 (workspace) DOUBLE PRECISION array, dimension (N)
+* RCNDE1 holds more computed reciprocal condition numbers
+* for eigenvalues.
+*
+* RCDEIN (input) DOUBLE PRECISION array, dimension (N)
+* When COMP = .TRUE. RCDEIN holds the precomputed reciprocal
+* condition numbers for eigenvalues to be compared with
+* RCONDE.
+*
+* SCALE (workspace) DOUBLE PRECISION array, dimension (N)
+* Holds information describing balancing of matrix.
+*
+* SCALE1 (workspace) DOUBLE PRECISION array, dimension (N)
+* Holds information describing balancing of matrix.
+*
+* RESULT (output) DOUBLE PRECISION array, dimension (11)
+* The values computed by the 11 tests described above.
+* The values are currently limited to 1/ulp, to avoid
+* overflow.
+*
+* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)
+*
+* LWORK (input) INTEGER
+* The number of entries in WORK. This must be at least
+* 3*N, and 6*N+N**2 if tests 9, 10 or 11 are to be performed.
+*
+* IWORK (workspace) INTEGER array, dimension (2*N)
+*
+* INFO (output) INTEGER
+* If 0, successful exit.
+* If <0, input parameter -INFO had an incorrect value.
+* If >0, DGEEVX returned an error code, the absolute
+* value of which is returned.
+*
+* =====================================================================
+*
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE, TWO
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
+ DOUBLE PRECISION EPSIN
+ PARAMETER ( EPSIN = 5.9605D-8 )
+* ..
+* .. Local Scalars ..
+ LOGICAL BALOK, NOBAL
+ CHARACTER SENSE
+ INTEGER I, IHI, IHI1, IINFO, ILO, ILO1, ISENS, ISENSM,
+ $ J, JJ, KMIN
+ DOUBLE PRECISION ABNRM, ABNRM1, EPS, SMLNUM, TNRM, TOL, TOLIN,
+ $ ULP, ULPINV, V, VIMIN, VMAX, VMX, VRMIN, VRMX,
+ $ VTST
+* ..
+* .. Local Arrays ..
+ CHARACTER SENS( 2 )
+ DOUBLE PRECISION DUM( 1 ), RES( 2 )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ DOUBLE PRECISION DLAMCH, DLAPY2, DNRM2
+ EXTERNAL LSAME, DLAMCH, DLAPY2, DNRM2
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGEEVX, DGET22, DLACPY, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, MAX, MIN
+* ..
+* .. Data statements ..
+ DATA SENS / 'N', 'V' /
+* ..
+* .. Executable Statements ..
+*
+* Check for errors
+*
+ NOBAL = LSAME( BALANC, 'N' )
+ BALOK = NOBAL .OR. LSAME( BALANC, 'P' ) .OR.
+ $ LSAME( BALANC, 'S' ) .OR. LSAME( BALANC, 'B' )
+ INFO = 0
+ IF( .NOT.BALOK ) THEN
+ INFO = -2
+ ELSE IF( THRESH.LT.ZERO ) THEN
+ INFO = -4
+ ELSE IF( NOUNIT.LE.0 ) THEN
+ INFO = -6
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -7
+ ELSE IF( LDA.LT.1 .OR. LDA.LT.N ) THEN
+ INFO = -9
+ ELSE IF( LDVL.LT.1 .OR. LDVL.LT.N ) THEN
+ INFO = -16
+ ELSE IF( LDVR.LT.1 .OR. LDVR.LT.N ) THEN
+ INFO = -18
+ ELSE IF( LDLRE.LT.1 .OR. LDLRE.LT.N ) THEN
+ INFO = -20
+ ELSE IF( LWORK.LT.3*N .OR. ( COMP .AND. LWORK.LT.6*N+N*N ) ) THEN
+ INFO = -31
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DGET23', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if nothing to do
+*
+ DO 10 I = 1, 11
+ RESULT( I ) = -ONE
+ 10 CONTINUE
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* More Important constants
+*
+ ULP = DLAMCH( 'Precision' )
+ SMLNUM = DLAMCH( 'S' )
+ ULPINV = ONE / ULP
+*
+* Compute eigenvalues and eigenvectors, and test them
+*
+ IF( LWORK.GE.6*N+N*N ) THEN
+ SENSE = 'B'
+ ISENSM = 2
+ ELSE
+ SENSE = 'E'
+ ISENSM = 1
+ END IF
+ CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
+ CALL DGEEVX( BALANC, 'V', 'V', SENSE, N, H, LDA, WR, WI, VL, LDVL,
+ $ VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE, RCONDV,
+ $ WORK, LWORK, IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ RESULT( 1 ) = ULPINV
+ IF( JTYPE.NE.22 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'DGEEVX1', IINFO, N, JTYPE,
+ $ BALANC, ISEED
+ ELSE
+ WRITE( NOUNIT, FMT = 9999 )'DGEEVX1', IINFO, N, ISEED( 1 )
+ END IF
+ INFO = ABS( IINFO )
+ RETURN
+ END IF
+*
+* Do Test (1)
+*
+ CALL DGET22( 'N', 'N', 'N', N, A, LDA, VR, LDVR, WR, WI, WORK,
+ $ RES )
+ RESULT( 1 ) = RES( 1 )
+*
+* Do Test (2)
+*
+ CALL DGET22( 'T', 'N', 'T', N, A, LDA, VL, LDVL, WR, WI, WORK,
+ $ RES )
+ RESULT( 2 ) = RES( 1 )
+*
+* Do Test (3)
+*
+ DO 30 J = 1, N
+ TNRM = ONE
+ IF( WI( J ).EQ.ZERO ) THEN
+ TNRM = DNRM2( N, VR( 1, J ), 1 )
+ ELSE IF( WI( J ).GT.ZERO ) THEN
+ TNRM = DLAPY2( DNRM2( N, VR( 1, J ), 1 ),
+ $ DNRM2( N, VR( 1, J+1 ), 1 ) )
+ END IF
+ RESULT( 3 ) = MAX( RESULT( 3 ),
+ $ MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) )
+ IF( WI( J ).GT.ZERO ) THEN
+ VMX = ZERO
+ VRMX = ZERO
+ DO 20 JJ = 1, N
+ VTST = DLAPY2( VR( JJ, J ), VR( JJ, J+1 ) )
+ IF( VTST.GT.VMX )
+ $ VMX = VTST
+ IF( VR( JJ, J+1 ).EQ.ZERO .AND. ABS( VR( JJ, J ) ).GT.
+ $ VRMX )VRMX = ABS( VR( JJ, J ) )
+ 20 CONTINUE
+ IF( VRMX / VMX.LT.ONE-TWO*ULP )
+ $ RESULT( 3 ) = ULPINV
+ END IF
+ 30 CONTINUE
+*
+* Do Test (4)
+*
+ DO 50 J = 1, N
+ TNRM = ONE
+ IF( WI( J ).EQ.ZERO ) THEN
+ TNRM = DNRM2( N, VL( 1, J ), 1 )
+ ELSE IF( WI( J ).GT.ZERO ) THEN
+ TNRM = DLAPY2( DNRM2( N, VL( 1, J ), 1 ),
+ $ DNRM2( N, VL( 1, J+1 ), 1 ) )
+ END IF
+ RESULT( 4 ) = MAX( RESULT( 4 ),
+ $ MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) )
+ IF( WI( J ).GT.ZERO ) THEN
+ VMX = ZERO
+ VRMX = ZERO
+ DO 40 JJ = 1, N
+ VTST = DLAPY2( VL( JJ, J ), VL( JJ, J+1 ) )
+ IF( VTST.GT.VMX )
+ $ VMX = VTST
+ IF( VL( JJ, J+1 ).EQ.ZERO .AND. ABS( VL( JJ, J ) ).GT.
+ $ VRMX )VRMX = ABS( VL( JJ, J ) )
+ 40 CONTINUE
+ IF( VRMX / VMX.LT.ONE-TWO*ULP )
+ $ RESULT( 4 ) = ULPINV
+ END IF
+ 50 CONTINUE
+*
+* Test for all options of computing condition numbers
+*
+ DO 200 ISENS = 1, ISENSM
+*
+ SENSE = SENS( ISENS )
+*
+* Compute eigenvalues only, and test them
+*
+ CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
+ CALL DGEEVX( BALANC, 'N', 'N', SENSE, N, H, LDA, WR1, WI1, DUM,
+ $ 1, DUM, 1, ILO1, IHI1, SCALE1, ABNRM1, RCNDE1,
+ $ RCNDV1, WORK, LWORK, IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ RESULT( 1 ) = ULPINV
+ IF( JTYPE.NE.22 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'DGEEVX2', IINFO, N, JTYPE,
+ $ BALANC, ISEED
+ ELSE
+ WRITE( NOUNIT, FMT = 9999 )'DGEEVX2', IINFO, N,
+ $ ISEED( 1 )
+ END IF
+ INFO = ABS( IINFO )
+ GO TO 190
+ END IF
+*
+* Do Test (5)
+*
+ DO 60 J = 1, N
+ IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
+ $ RESULT( 5 ) = ULPINV
+ 60 CONTINUE
+*
+* Do Test (8)
+*
+ IF( .NOT.NOBAL ) THEN
+ DO 70 J = 1, N
+ IF( SCALE( J ).NE.SCALE1( J ) )
+ $ RESULT( 8 ) = ULPINV
+ 70 CONTINUE
+ IF( ILO.NE.ILO1 )
+ $ RESULT( 8 ) = ULPINV
+ IF( IHI.NE.IHI1 )
+ $ RESULT( 8 ) = ULPINV
+ IF( ABNRM.NE.ABNRM1 )
+ $ RESULT( 8 ) = ULPINV
+ END IF
+*
+* Do Test (9)
+*
+ IF( ISENS.EQ.2 .AND. N.GT.1 ) THEN
+ DO 80 J = 1, N
+ IF( RCONDV( J ).NE.RCNDV1( J ) )
+ $ RESULT( 9 ) = ULPINV
+ 80 CONTINUE
+ END IF
+*
+* Compute eigenvalues and right eigenvectors, and test them
+*
+ CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
+ CALL DGEEVX( BALANC, 'N', 'V', SENSE, N, H, LDA, WR1, WI1, DUM,
+ $ 1, LRE, LDLRE, ILO1, IHI1, SCALE1, ABNRM1, RCNDE1,
+ $ RCNDV1, WORK, LWORK, IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ RESULT( 1 ) = ULPINV
+ IF( JTYPE.NE.22 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'DGEEVX3', IINFO, N, JTYPE,
+ $ BALANC, ISEED
+ ELSE
+ WRITE( NOUNIT, FMT = 9999 )'DGEEVX3', IINFO, N,
+ $ ISEED( 1 )
+ END IF
+ INFO = ABS( IINFO )
+ GO TO 190
+ END IF
+*
+* Do Test (5) again
+*
+ DO 90 J = 1, N
+ IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
+ $ RESULT( 5 ) = ULPINV
+ 90 CONTINUE
+*
+* Do Test (6)
+*
+ DO 110 J = 1, N
+ DO 100 JJ = 1, N
+ IF( VR( J, JJ ).NE.LRE( J, JJ ) )
+ $ RESULT( 6 ) = ULPINV
+ 100 CONTINUE
+ 110 CONTINUE
+*
+* Do Test (8) again
+*
+ IF( .NOT.NOBAL ) THEN
+ DO 120 J = 1, N
+ IF( SCALE( J ).NE.SCALE1( J ) )
+ $ RESULT( 8 ) = ULPINV
+ 120 CONTINUE
+ IF( ILO.NE.ILO1 )
+ $ RESULT( 8 ) = ULPINV
+ IF( IHI.NE.IHI1 )
+ $ RESULT( 8 ) = ULPINV
+ IF( ABNRM.NE.ABNRM1 )
+ $ RESULT( 8 ) = ULPINV
+ END IF
+*
+* Do Test (9) again
+*
+ IF( ISENS.EQ.2 .AND. N.GT.1 ) THEN
+ DO 130 J = 1, N
+ IF( RCONDV( J ).NE.RCNDV1( J ) )
+ $ RESULT( 9 ) = ULPINV
+ 130 CONTINUE
+ END IF
+*
+* Compute eigenvalues and left eigenvectors, and test them
+*
+ CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
+ CALL DGEEVX( BALANC, 'V', 'N', SENSE, N, H, LDA, WR1, WI1, LRE,
+ $ LDLRE, DUM, 1, ILO1, IHI1, SCALE1, ABNRM1, RCNDE1,
+ $ RCNDV1, WORK, LWORK, IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ RESULT( 1 ) = ULPINV
+ IF( JTYPE.NE.22 ) THEN
+ WRITE( NOUNIT, FMT = 9998 )'DGEEVX4', IINFO, N, JTYPE,
+ $ BALANC, ISEED
+ ELSE
+ WRITE( NOUNIT, FMT = 9999 )'DGEEVX4', IINFO, N,
+ $ ISEED( 1 )
+ END IF
+ INFO = ABS( IINFO )
+ GO TO 190
+ END IF
+*
+* Do Test (5) again
+*
+ DO 140 J = 1, N
+ IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
+ $ RESULT( 5 ) = ULPINV
+ 140 CONTINUE
+*
+* Do Test (7)
+*
+ DO 160 J = 1, N
+ DO 150 JJ = 1, N
+ IF( VL( J, JJ ).NE.LRE( J, JJ ) )
+ $ RESULT( 7 ) = ULPINV
+ 150 CONTINUE
+ 160 CONTINUE
+*
+* Do Test (8) again
+*
+ IF( .NOT.NOBAL ) THEN
+ DO 170 J = 1, N
+ IF( SCALE( J ).NE.SCALE1( J ) )
+ $ RESULT( 8 ) = ULPINV
+ 170 CONTINUE
+ IF( ILO.NE.ILO1 )
+ $ RESULT( 8 ) = ULPINV
+ IF( IHI.NE.IHI1 )
+ $ RESULT( 8 ) = ULPINV
+ IF( ABNRM.NE.ABNRM1 )
+ $ RESULT( 8 ) = ULPINV
+ END IF
+*
+* Do Test (9) again
+*
+ IF( ISENS.EQ.2 .AND. N.GT.1 ) THEN
+ DO 180 J = 1, N
+ IF( RCONDV( J ).NE.RCNDV1( J ) )
+ $ RESULT( 9 ) = ULPINV
+ 180 CONTINUE
+ END IF
+*
+ 190 CONTINUE
+*
+ 200 CONTINUE
+*
+* If COMP, compare condition numbers to precomputed ones
+*
+ IF( COMP ) THEN
+ CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
+ CALL DGEEVX( 'N', 'V', 'V', 'B', N, H, LDA, WR, WI, VL, LDVL,
+ $ VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE, RCONDV,
+ $ WORK, LWORK, IWORK, IINFO )
+ IF( IINFO.NE.0 ) THEN
+ RESULT( 1 ) = ULPINV
+ WRITE( NOUNIT, FMT = 9999 )'DGEEVX5', IINFO, N, ISEED( 1 )
+ INFO = ABS( IINFO )
+ GO TO 250
+ END IF
+*
+* Sort eigenvalues and condition numbers lexicographically
+* to compare with inputs
+*
+ DO 220 I = 1, N - 1
+ KMIN = I
+ VRMIN = WR( I )
+ VIMIN = WI( I )
+ DO 210 J = I + 1, N
+ IF( WR( J ).LT.VRMIN ) THEN
+ KMIN = J
+ VRMIN = WR( J )
+ VIMIN = WI( J )
+ END IF
+ 210 CONTINUE
+ WR( KMIN ) = WR( I )
+ WI( KMIN ) = WI( I )
+ WR( I ) = VRMIN
+ WI( I ) = VIMIN
+ VRMIN = RCONDE( KMIN )
+ RCONDE( KMIN ) = RCONDE( I )
+ RCONDE( I ) = VRMIN
+ VRMIN = RCONDV( KMIN )
+ RCONDV( KMIN ) = RCONDV( I )
+ RCONDV( I ) = VRMIN
+ 220 CONTINUE
+*
+* Compare condition numbers for eigenvectors
+* taking their condition numbers into account
+*
+ RESULT( 10 ) = ZERO
+ EPS = MAX( EPSIN, ULP )
+ V = MAX( DBLE( N )*EPS*ABNRM, SMLNUM )
+ IF( ABNRM.EQ.ZERO )
+ $ V = ONE
+ DO 230 I = 1, N
+ IF( V.GT.RCONDV( I )*RCONDE( I ) ) THEN
+ TOL = RCONDV( I )
+ ELSE
+ TOL = V / RCONDE( I )
+ END IF
+ IF( V.GT.RCDVIN( I )*RCDEIN( I ) ) THEN
+ TOLIN = RCDVIN( I )
+ ELSE
+ TOLIN = V / RCDEIN( I )
+ END IF
+ TOL = MAX( TOL, SMLNUM / EPS )
+ TOLIN = MAX( TOLIN, SMLNUM / EPS )
+ IF( EPS*( RCDVIN( I )-TOLIN ).GT.RCONDV( I )+TOL ) THEN
+ VMAX = ONE / EPS
+ ELSE IF( RCDVIN( I )-TOLIN.GT.RCONDV( I )+TOL ) THEN
+ VMAX = ( RCDVIN( I )-TOLIN ) / ( RCONDV( I )+TOL )
+ ELSE IF( RCDVIN( I )+TOLIN.LT.EPS*( RCONDV( I )-TOL ) ) THEN
+ VMAX = ONE / EPS
+ ELSE IF( RCDVIN( I )+TOLIN.LT.RCONDV( I )-TOL ) THEN
+ VMAX = ( RCONDV( I )-TOL ) / ( RCDVIN( I )+TOLIN )
+ ELSE
+ VMAX = ONE
+ END IF
+ RESULT( 10 ) = MAX( RESULT( 10 ), VMAX )
+ 230 CONTINUE
+*
+* Compare condition numbers for eigenvalues
+* taking their condition numbers into account
+*
+ RESULT( 11 ) = ZERO
+ DO 240 I = 1, N
+ IF( V.GT.RCONDV( I ) ) THEN
+ TOL = ONE
+ ELSE
+ TOL = V / RCONDV( I )
+ END IF
+ IF( V.GT.RCDVIN( I ) ) THEN
+ TOLIN = ONE
+ ELSE
+ TOLIN = V / RCDVIN( I )
+ END IF
+ TOL = MAX( TOL, SMLNUM / EPS )
+ TOLIN = MAX( TOLIN, SMLNUM / EPS )
+ IF( EPS*( RCDEIN( I )-TOLIN ).GT.RCONDE( I )+TOL ) THEN
+ VMAX = ONE / EPS
+ ELSE IF( RCDEIN( I )-TOLIN.GT.RCONDE( I )+TOL ) THEN
+ VMAX = ( RCDEIN( I )-TOLIN ) / ( RCONDE( I )+TOL )
+ ELSE IF( RCDEIN( I )+TOLIN.LT.EPS*( RCONDE( I )-TOL ) ) THEN
+ VMAX = ONE / EPS
+ ELSE IF( RCDEIN( I )+TOLIN.LT.RCONDE( I )-TOL ) THEN
+ VMAX = ( RCONDE( I )-TOL ) / ( RCDEIN( I )+TOLIN )
+ ELSE
+ VMAX = ONE
+ END IF
+ RESULT( 11 ) = MAX( RESULT( 11 ), VMAX )
+ 240 CONTINUE
+ 250 CONTINUE
+*
+ END IF
+*
+ 9999 FORMAT( ' DGET23: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
+ $ I6, ', INPUT EXAMPLE NUMBER = ', I4 )
+ 9998 FORMAT( ' DGET23: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
+ $ I6, ', JTYPE=', I6, ', BALANC = ', A, ', ISEED=(',
+ $ 3( I5, ',' ), I5, ')' )
+*
+ RETURN
+*
+* End of DGET23
+*
+ END