summaryrefslogtreecommitdiff
path: root/SRC
diff options
context:
space:
mode:
authorigor175 <igor175@8a072113-8704-0410-8d35-dd094bca7971>2013-04-22 08:43:55 +0000
committerigor175 <igor175@8a072113-8704-0410-8d35-dd094bca7971>2013-04-22 08:43:55 +0000
commit9523660b3a2574b95a022006eb62a51a558443e2 (patch)
treeb4181c532ca7e7a69ca47cbf08a3a53b1770b5e8 /SRC
parent1e800d2ed0b283b4fdfb167e8fe7188b721b229f (diff)
downloadlapack-9523660b3a2574b95a022006eb62a51a558443e2.tar.gz
lapack-9523660b3a2574b95a022006eb62a51a558443e2.tar.bz2
lapack-9523660b3a2574b95a022006eb62a51a558443e2.zip
added LAPACK routine (c,z)hesv_rook.f
Diffstat (limited to 'SRC')
-rw-r--r--SRC/chesv_rook.f295
-rw-r--r--SRC/zhesv_rook.f295
2 files changed, 590 insertions, 0 deletions
diff --git a/SRC/chesv_rook.f b/SRC/chesv_rook.f
new file mode 100644
index 00000000..4a4569f4
--- /dev/null
+++ b/SRC/chesv_rook.f
@@ -0,0 +1,295 @@
+*> \brief \b CHESV_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using the bounded Bunch-Kaufman ("rook") diagonal pivoting method
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download CHESV_ROOK + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chesv_rook.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chesv_rook.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chesv_rook.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE CHESV_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
+* LWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER UPLO
+* INTEGER INFO, LDA, LDB, LWORK, N, NRHS
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * )
+* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> CHESV_ROOK computes the solution to a complex system of linear equations
+*> A * X = B,
+*> where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
+*> matrices.
+*>
+*> The bounded Bunch-Kaufman ("rook") diagonal pivoting method is used
+*> to factor A as
+*> A = U * D * U**T, if UPLO = 'U', or
+*> A = L * D * L**T, if UPLO = 'L',
+*> where U (or L) is a product of permutation and unit upper (lower)
+*> triangular matrices, and D is Hermitian and block diagonal with
+*> 1-by-1 and 2-by-2 diagonal blocks.
+*>
+*> CHETRF_ROOK is called to compute the factorization of a complex
+*> Hermition matrix A using the bounded Bunch-Kaufman ("rook") diagonal
+*> pivoting method.
+*>
+*> The factored form of A is then used to solve the system
+*> of equations A * X = B by calling CHETRS_ROOK (uses BLAS 2).
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> = 'U': Upper triangle of A is stored;
+*> = 'L': Lower triangle of A is stored.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of linear equations, i.e., the order of the
+*> matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of columns
+*> of the matrix B. NRHS >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX array, dimension (LDA,N)
+*> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
+*> N-by-N upper triangular part of A contains the upper
+*> triangular part of the matrix A, and the strictly lower
+*> triangular part of A is not referenced. If UPLO = 'L', the
+*> leading N-by-N lower triangular part of A contains the lower
+*> triangular part of the matrix A, and the strictly upper
+*> triangular part of A is not referenced.
+*>
+*> On exit, if INFO = 0, the block diagonal matrix D and the
+*> multipliers used to obtain the factor U or L from the
+*> factorization A = U*D*U**H or A = L*D*L**H as computed by
+*> CHETRF_ROOK.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> Details of the interchanges and the block structure of D.
+*>
+*> If UPLO = 'U':
+*> Only the last KB elements of IPIV are set.
+*>
+*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
+*> interchanged and D(k,k) is a 1-by-1 diagonal block.
+*>
+*> If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
+*> columns k and -IPIV(k) were interchanged and rows and
+*> columns k-1 and -IPIV(k-1) were inerchaged,
+*> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
+*>
+*> If UPLO = 'L':
+*> Only the first KB elements of IPIV are set.
+*>
+*> If IPIV(k) > 0, then rows and columns k and IPIV(k)
+*> were interchanged and D(k,k) is a 1-by-1 diagonal block.
+*>
+*> If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
+*> columns k and -IPIV(k) were interchanged and rows and
+*> columns k+1 and -IPIV(k+1) were inerchaged,
+*> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is COMPLEX array, dimension (LDB,NRHS)
+*> On entry, the N-by-NRHS right hand side matrix B.
+*> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The length of WORK. LWORK >= 1, and for best performance
+*> LWORK >= max(1,N*NB), where NB is the optimal blocksize for
+*> CHETRF_ROOK.
+*> for LWORK < N, TRS will be done with Level BLAS 2
+*> for LWORK >= N, TRS will be done with Level BLAS 3
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
+*> has been completed, but the block diagonal matrix D is
+*> exactly singular, so the solution could not be computed.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2012
+*
+*> \ingroup complexHEsolve
+*>
+*> \verbatim
+*>
+*> November 2012, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
+*> School of Mathematics,
+*> University of Manchester
+*>
+*> \endverbatim
+*
+*
+* =====================================================================
+ SUBROUTINE CHESV_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
+ $ LWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2012
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, LDA, LDB, LWORK, N, NRHS
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER LWKOPT, NB
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ EXTERNAL LSAME, ILAENV
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, CHETRF_ROOK, CHETRS_ROOK
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -5
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -8
+ ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
+ INFO = -10
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ IF( N.EQ.0 ) THEN
+ LWKOPT = 1
+ ELSE
+ NB = ILAENV( 1, 'CHETRF_ROOK', UPLO, N, -1, -1, -1 )
+ LWKOPT = N*NB
+ END IF
+ WORK( 1 ) = LWKOPT
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CHESV_ROOK ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Compute the factorization A = U*D*U**H or A = L*D*L**H.
+*
+ CALL CHETRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
+ IF( INFO.EQ.0 ) THEN
+*
+* Solve the system A*X = B, overwriting B with X.
+*
+* Solve with TRS ( Use Level BLAS 2)
+*
+ CALL CHETRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
+*
+ END IF
+*
+ WORK( 1 ) = LWKOPT
+*
+ RETURN
+*
+* End of CHESV_ROOK
+*
+ END
diff --git a/SRC/zhesv_rook.f b/SRC/zhesv_rook.f
new file mode 100644
index 00000000..9d35d650
--- /dev/null
+++ b/SRC/zhesv_rook.f
@@ -0,0 +1,295 @@
+*> \brief \b ZHESV_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using the bounded Bunch-Kaufman ("rook") diagonal pivoting method
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZHESV_ROOK + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhesv_rook.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhesv_rook.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhesv_rook.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZHESV_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
+* LWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER UPLO
+* INTEGER INFO, LDA, LDB, LWORK, N, NRHS
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * )
+* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZHESV_ROOK computes the solution to a complex system of linear equations
+*> A * X = B,
+*> where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
+*> matrices.
+*>
+*> The bounded Bunch-Kaufman ("rook") diagonal pivoting method is used
+*> to factor A as
+*> A = U * D * U**T, if UPLO = 'U', or
+*> A = L * D * L**T, if UPLO = 'L',
+*> where U (or L) is a product of permutation and unit upper (lower)
+*> triangular matrices, and D is Hermitian and block diagonal with
+*> 1-by-1 and 2-by-2 diagonal blocks.
+*>
+*> ZHETRF_ROOK is called to compute the factorization of a complex
+*> Hermition matrix A using the bounded Bunch-Kaufman ("rook") diagonal
+*> pivoting method.
+*>
+*> The factored form of A is then used to solve the system
+*> of equations A * X = B by calling ZHETRS_ROOK (uses BLAS 2).
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> = 'U': Upper triangle of A is stored;
+*> = 'L': Lower triangle of A is stored.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of linear equations, i.e., the order of the
+*> matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of columns
+*> of the matrix B. NRHS >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
+*> N-by-N upper triangular part of A contains the upper
+*> triangular part of the matrix A, and the strictly lower
+*> triangular part of A is not referenced. If UPLO = 'L', the
+*> leading N-by-N lower triangular part of A contains the lower
+*> triangular part of the matrix A, and the strictly upper
+*> triangular part of A is not referenced.
+*>
+*> On exit, if INFO = 0, the block diagonal matrix D and the
+*> multipliers used to obtain the factor U or L from the
+*> factorization A = U*D*U**H or A = L*D*L**H as computed by
+*> ZHETRF_ROOK.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> Details of the interchanges and the block structure of D.
+*>
+*> If UPLO = 'U':
+*> Only the last KB elements of IPIV are set.
+*>
+*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
+*> interchanged and D(k,k) is a 1-by-1 diagonal block.
+*>
+*> If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
+*> columns k and -IPIV(k) were interchanged and rows and
+*> columns k-1 and -IPIV(k-1) were inerchaged,
+*> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
+*>
+*> If UPLO = 'L':
+*> Only the first KB elements of IPIV are set.
+*>
+*> If IPIV(k) > 0, then rows and columns k and IPIV(k)
+*> were interchanged and D(k,k) is a 1-by-1 diagonal block.
+*>
+*> If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
+*> columns k and -IPIV(k) were interchanged and rows and
+*> columns k+1 and -IPIV(k+1) were inerchaged,
+*> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is COMPLEX*16 array, dimension (LDB,NRHS)
+*> On entry, the N-by-NRHS right hand side matrix B.
+*> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The length of WORK. LWORK >= 1, and for best performance
+*> LWORK >= max(1,N*NB), where NB is the optimal blocksize for
+*> ZHETRF_ROOK.
+*> for LWORK < N, TRS will be done with Level BLAS 2
+*> for LWORK >= N, TRS will be done with Level BLAS 3
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
+*> has been completed, but the block diagonal matrix D is
+*> exactly singular, so the solution could not be computed.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2012
+*
+*> \ingroup complex16HEsolve
+*>
+*> \verbatim
+*>
+*> November 2012, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
+*> School of Mathematics,
+*> University of Manchester
+*>
+*> \endverbatim
+*
+*
+* =====================================================================
+ SUBROUTINE ZHESV_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
+ $ LWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2012
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, LDA, LDB, LWORK, N, NRHS
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER LWKOPT, NB
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ EXTERNAL LSAME, ILAENV
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, ZHETRF_ROOK, ZHETRS_ROOK
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -5
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -8
+ ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
+ INFO = -10
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ IF( N.EQ.0 ) THEN
+ LWKOPT = 1
+ ELSE
+ NB = ILAENV( 1, 'ZHETRF_ROOK', UPLO, N, -1, -1, -1 )
+ LWKOPT = N*NB
+ END IF
+ WORK( 1 ) = LWKOPT
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZHESV_ROOK ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Compute the factorization A = U*D*U**H or A = L*D*L**H.
+*
+ CALL ZHETRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
+ IF( INFO.EQ.0 ) THEN
+*
+* Solve the system A*X = B, overwriting B with X.
+*
+* Solve with TRS ( Use Level BLAS 2)
+*
+ CALL ZHETRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
+*
+ END IF
+*
+ WORK( 1 ) = LWKOPT
+*
+ RETURN
+*
+* End of ZHESV_ROOK
+*
+ END